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The influence of outer large-scale motions (LSMs) on near-wall structures in compressible
turbulent channel flows is investigated. To separate the compressibility effects, velocity
fluctuations are decomposed into solenoidal and dilatational components using the
Helmholtz decomposition method. Solenoidal velocity fluctuations manifest as near-wall
streaks and outer large-scale structures. The spanwise drifting of near-wall solenoidal
streaks is found to be driven by the outer LSMs, while LSMs have a trivial influence
on the spanwise density of solenoidal streaks, consistent with the outer LSM impacts
found in incompressible flows (Zhou et al., J. Fluid Mech., vol. 940, 2022, p. A23).
Dilatational motions are characterized by the near-wall small-scale travelling-wave packets
and the large-scale parts in the outer region. The streamwise advection velocity of the
near-wall structures remains at 16 ∼ 18uτ , hardly influenced by Mach numbers, Reynolds
numbers and wall temperatures. The spanwise drifting of near-wall dilatational structures,
quantified by the particle image velocimetry method, follows a mechanism distinct from
solenoidal streaks. This drifting velocity is notably larger than those of the solenoidal
streaks, and the influence of outer LSMs is not the primary trigger for this drifting.
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1. Introduction

Coherent structures have received considerable attention due to their significance in
wall-bounded turbulent flows. The coherent structures in the near-wall region, dominated
by the velocity streaks and quasi-streamwise vortices scaled in wall units, have been widely
investigated (Kim, Moin & Moser 1987; Robinson 1991; Jeong et al. 1997). Near-wall
streaks and vortices are mutually generated through a self-sustaining process (Jiménez
& Moin 1991; Hamilton, Kim & Waleffe 1995), which is autonomous in the sense that
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it can persist with no need of turbulence in the outer layer (Jiménez & Pinelli 1999).
As Reynolds numbers increase, large-scale motions (LSMs) and very-large-scale motions
(VLSMs) emerge (Jiménez 1998; Kim & Adrian 1999; del Álamo & Jiménez 2003;
del Álamo et al. 2004; Guala, Hommema & Adrian 2006; Balakumar & Adrian 2007;
Hutchins & Marusic 2007a; Monty et al. 2009). These motions, found primarily within
the logarithmic and outer regions, consist of low- and high-speed regions elongated in the
streamwise direction, with large-scale circulations occurring between them. Additionally,
their sizes are usually characterized by the outer length scale (Adrian 2007), i.e. the
boundary layer thickness, half-channel height or pipe radius. LSMs are attributed more
significance because they play important roles in the dynamics of high-Reynolds-number
wall-bounded turbulence (Guala et al. 2006).

The impact on near-wall turbulence from outer LSMs and VLSMs has garnered
much attention, which has been categorized by Mathis, Hutchins & Marusic (2009)
into superposition and amplitude modulation. The linear superposition effect signifies
the footprint of LSMs in the near-wall region (Abe, Kawamura & Choi 2004; Hoyas
& Jiménez 2006; Hutchins & Marusic 2007b) and the considerable contribution to the
turbulent kinetic energy (Hoyas & Jiménez 2006; Marusic, Mathis & Hutchins 2010a).
Furthermore, the amplitude modulation corresponds to the nonlinear impact of LSMs
on the amplitude of near-wall small-scale turbulent fluctuations. Marusic, Mathis &
Hutchins (2010b) developed a model to predict the near-wall velocity fluctuations, using
the large-scale signals from the centre of the logarithmic region as input (Mathis, Hutchins
& Marusic 2011). The moments up to the sixth order, as well as the premultiplied
streamwise energy spectra of the streamwise velocity fluctuations, are well predicted by
this model.

Toh & Itano (2005) introduced a top-down hypothesis about how outer LSMs impact
near-wall turbulence. They focused on the relationship between the spanwise motions
of near-wall streaks and outer large-scale circulations. In this process, the large-scale
circulations induce the near-wall streaks to move spanwise from the down-wash side
towards the up-wash side. Abe, Antonia & Toh (2018) extended this work to higher
Reynolds numbers. They identified antisymmetric LSM pairs in streamwise minimal
channel flows, of which the spanwise scales align with those predicted by the optimal
transient growth analysis (del Álamo & Jiménez 2006). Zhou, Xu & Jiménez (2022)
quantified the spanwise drifting velocity of the near-wall streaks using the particle image
velocimetry (PIV) method, providing evidence for this top-down hypothesis. It is observed
that the near-wall streaks drift in the spanwise direction at a speed of approximately ±uτ ,
driven by the hierarchy of large-scale circulations. Here, uτ represents the friction velocity.
Meanwhile, the near-wall streak accumulation induced by LSMs rarely occurs, limited by
the short lifetime of the streaks.

Compared with the incompressible flow, the compressibility effects associated with
the dilatational motions make the compressible wall-bounded turbulent flows more
complicated. The Helmholtz decomposition method has been widely employed in
compressible isotropic turbulence to separate the compressibility effects (Samtaney, Pullin
& Kosović 2001; Sagaut & Cambon 2008). Subsequently, Pirozzoli, Bernardini & Grasso
(2010) and Yu, Xu & Pirozzoli (2019) extended it into compressible boundary layer flows
and channel flows. This method decomposes the velocity fluctuations into a rotational,
solenoidal component and a potential, dilatational component. Wang et al. (2012a), Wang
et al. (2012b) and Wang, Gotoh & Watanabe (2017) have shown that the solenoidal
component demonstrates statistical properties similar to those of the incompressible flows,
whereas the dilatational velocity fluctuations progressively intensify as the Mach number
increases.
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Furthermore, LSMs and VLSMs have also been evidenced in compressible
wall-bounded turbulent flows (Ganapathisubramani, Clemens & Dolling 2006; Ringuette,
Wu & Martin 2008; Pirozzoli & Bernardini 2011, 2013; Bross, Scharnowski & Kähler
2021). It was reported that the LSMs in compressible flows exhibit statistical properties
similar to those in incompressible flows (Pirozzoli & Bernardini 2011; Alizard et al. 2015).
Meanwhile, some experimental studies also suggest that the scale of LSMs gradually
enlarges as the Mach number increases (Ganapathisubramani et al. 2006; Ringuette et al.
2008; Bross et al. 2021).

In contrast to the incompressible flows, the influence of outer LSMs on the near-wall
turbulence exhibits greater complexity in compressible turbulent flows. Existing studies
mainly examined the superposition and amplitude modulation effects, focusing on the
modifications of the predictive models for the near-wall fluctuations (Bernardini &
Pirozzoli 2011; Helm & Martin 2013; Agostini et al. 2016, 2017; Yu & Xu 2022).
Density-weighted modifications were employed to extend the predictive models from
incompressible flows to compressible turbulent flows. Yu & Xu (2022) found that near-wall
temperature fluctuations are primarily influenced by the amplitude modulation of outer
large-scale velocity fluctuations, while the superposition effects of LSMs are significantly
weaker than those of the velocity components. They proposed a predictive model for the
near-wall turbulence at high Reynolds numbers, where the mean density variation and the
strong Reynolds analogy are involved to predict the near-wall velocity and temperature
fluctuations, respectively. The variances and the probability density distributions of the
fluctuations are well predicted by this model. It should be noted that the density-weighted
modifications may fail in cases of strong compressibility, such as with cold walls, as
pointed out by Yu & Xu (2022). This underscores the importance of further exploring
structural evolution in compressible flows.

However, research focused on the structural evolution mechanisms is limited, leaving the
impact of outer LSMs on near-wall structure evolution in compressible turbulent flows a
topic ripe for further investigation. Furthermore, whether the top-down influence noted
by Zhou et al. (2022) still exists is yet to be determined. This uncertainty drives the
current study, in which the Helmholtz decomposition method enables us to separate the
compressibility effects, by decomposing the near-wall velocity fluctuations into solenoidal
components and dilatational components. Thus, our main purpose is to conduct a thorough
analysis of the influence exerted by outer large-scale structures on near-wall solenoidal
and dilatational structures in compressible wall-bounded turbulent flows, and to examine
the impact of compressibility on the inner–outer interactions through the discussion of
dilatational structures. The spanwise drifting of the structures in the near-wall region will
be particularly focused on.

The paper is organized as follows. Section 2 will introduce the direct numerical
simulation (DNS) data we used. The Helmholtz decomposition method as well as its
results are discussed in § 3. The influence of outer large-scale structures on the near-wall
solenoidal streaks and dilatational structures is examined and quantified in §§ 4 and 5,
respectively. Conclusions are given in § 6.

2. DNS database of the compressible turbulent channel flows

We consider the compressible turbulent channel flows with constant total mass, mass flux
and heat flux as done by Yu et al. (2019). The flow is established between two parallel
plates separated by 2h, driven by the pressure gradient. The streamwise, wall-normal and
spanwise coordinates are x, y and z, respectively. Additionally, the corresponding velocity
components are u, v and w. The average bulk velocity is Um.
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The governing equations of the turbulent flow are the Navier–Stokes equations of the
compressible Newtonian ideal gas, written as

∂ρ

∂t
+ ∂ρuj

∂xj
= 0, (2.1)

∂ρui

∂t
+ ∂ρuiuj

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
+ f1δi1, (2.2)

∂ρE
∂t

+ ∂ρujE
∂xj

= −∂puj

∂xj
+ ∂uiτij

∂xj
− ∂qj

∂xj
+ f1u1 − φ, (2.3)

where xi(i = 1, 2, 3) = (x, y, z), ui(i = 1, 2, 3) = (u, v, w) and

τij = 2μSij − 2
3
μSkkδij, qj = −λ ∂T

∂xj
, E = CvT + 1

2
uiui. (2.4a–c)

Here, t is the time. The density, temperature and pressure are represented by ρ, T and
p, respectively. The ideal gas law p = ρRT is satisfied in the flow, where R is the gas
constant, the sound speed c = √

γ RT . The constant-volume specific heat is Cv and the
constant-pressure specific heat is Cp. The ratio of specific heat γ = Cp/Cv = 1.4. Here,
τij represents the viscous stress, where ν is the kinematic viscosity and μ is the dynamic
viscosity, determined by Sutherland’s law. Additionally, qj is the heat transfer term and
the heat conductivity λ = μ/(CpPr), where the Prandtl number Pr = 0.7. A body force
f1 and a cooling term φ are added in (2.2) and (2.3), respectively, to ensure the constant
mass flux and heat flux in the channel. The mass flux and heat flux in the channel are
determined by the upstream density ρ0, velocity U0 and temperature T0, as suggested by
Yu et al. (2019). The corresponding upstream Reynolds number and Mach number are Re0
and M0, respectively.

Periodic boundary conditions are imposed in the streamwise and spanwise directions,
with periods Lx and Lz, respectively. The no-slip and no-penetration conditions for velocity
u = v = w = 0, and the isothermal condition for temperature T = Tw, are applied at the
upper and lower walls.

We use the DNS database of compressible turbulent channel flows from Yu et al. (2019)
and Yu & Xu (2021), in which the DNS is carried out with the code HOAM-OPENCFD
developed by Li et al. (2010). The seventh-order upwind scheme and sixth-order
central scheme are adopted to calculate the convection and viscous terms, respectively.
Additionally, the third-order Runge–Kutta scheme is used for time advancement. The grids
are uniformly distributed in the streamwise and spanwise directions, and stretched by a
hyperbolic tangent function in the wall-normal direction, to refine the near-wall part.

The friction velocity uτ = √
τw/ρw and the Reynolds number Reτ = h+ = ρwuτ h/μw

define wall units in the following discussions, denoted by a ‘+’ superscript. Here, τw is the
wall shear stress, ρw is the density on the wall and μw is the wall viscosity. Furthermore,
Mc is the Mach number in the channel centre, written as

Mc = Uc√
γ RTc

, (2.5)

where Uc and Tc are respectively the mean velocity and temperature at the centreline of the
channel. Also, Tr is the recovery temperature at the upstream Mach number M0, defined
as

Tr = [1 + 1
2(γ − 1)rM2

0]T0, (2.6)
where r is the recovery factor.
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Case M0 Reτ Mc Tw/Tr Lx Lz 	+
x 	+

z (	+
y )min (	+

y )max

C3 3.0 496 2.53 1.0 2πh πh 5.4 2.8 0.58 8.0
C6 6.0 515 3.28 1.0 2πh πh 5.6 2.8 0.59 8.2
C8 8.0 494 3.48 1.0 2πh πh 5.4 2.7 0.57 8.0
C8-1000 8.0 1170 3.36 1.0 2πh πh 7.8 4.1 0.87 12.2
C8-CW05 8.0 497 3.39 0.5 2πh πh 5.4 2.8 0.58 8.0

Table 1. Computational parameters. 	x, 	y and 	z are the resolutions in the streamwise, wall-normal and
spanwise directions, respectively.

The computational parameters are listed in table 1. These cases have been used by Yu
et al. (2019) and Yu & Xu (2021) to investigate the compressibility effects in turbulent
channel flows, with their accuracy and reliability validated. Among them, C3, C6 and C8
correspond to the cases at different Mach numbers M0, with Reτ approximately 500. The
Mach number Mc in the channel centre increases from C3 to C8. Cases C8 and C8-1000
represent cases at different Reτ , where for the former, Reτ = 494 and for the latter, Reτ =
1170. Both cases have the same M0. Cases from C3 to C8-1000 satisfy Tw = Tr, which
means the wall is nearly adiabatic. Case C8-CW05 stands as a case with a cold wall,
sharing similar M0 and Reτ with Case C8. Results of the fully developed turbulent channel
flows will be employed in the following discussions.

3. Helmholtz decomposition of velocity fluctuations

Helmholtz decomposition is applied to decompose the velocity fluctuation u′ into a
rotational, solenoidal component us and a potential, dilatational component ud, by solving
the following Poisson equations:

∇2A = −∇ × u′, ∇2ϕ = ∇ · u′, (3.1a,b)

where A is the vector potential of the vorticity and ϕ is the velocity potential. The
solenoidal and dilatational components can be obtained from the following equations:

us = ∇ × A, ud = ∇ϕ. (3.2a,b)

The Helmholtz decomposition result is unique when using the following boundary
conditions (Hirasaki & Hellums 1970; Yu et al. 2019; Yu & Xu 2021):

∂ϕ

∂y
= 0,

∂Ay

∂y
= 0, Ax = Az = 0. (3.3a–c)

The current Poisson equations are solved numerically, by the Fourier–Galerkin method in
the streamwise and spanwise directions, and the second-order central difference method
in the wall-normal direction.

Distributions of the solenoidal and dilatational velocity fluctuations are displayed in
figure 1. The wall-normal dilatational velocity on the wall equals zero, due to the boundary
condition (3.3a–c), and the streamwise and spanwise components reach maximum on
the wall, as shown in figure 1(a). The streamwise and spanwise dilatational velocity
fluctuations gradually weaken at a higher position until y+ ≈ 100, while the wall-normal
component rapidly increases near the wall, reaching a peak and then diminishing a bit.
When y+ > 200, as the height increases, the dilatational velocity fluctuations in all three
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Figure 1. Wall-normal distributions of the root mean square of the solenoidal and dilatational velocity
fluctuations (Case C3). (a) Dilatational components: ud , black; vd , red; wd , blue. (b) Solenoidal components:
us, black; vs, red; ws, blue.
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Figure 2. Wall-normal distributions of the root mean square of us and ud fluctuations at different Mach
numbers. (a) ud , (b) us. C3 at M0 = 3.0, red; C6 at M0 = 6.0, blue; C8 at M0 = 8.0, black.

directions gradually strengthen and reach a local maximum in the centre of the channel.
Among them, the streamwise component is larger than the other two components. The
solenoidal velocity fluctuations are much stronger than the dilatational ones, as shown
in figure 1(b). Due to the no-slip and no-penetration boundary conditions, us + ud = 0,
the solenoidal velocity fluctuations on the wall have the same intensity as the dilatational
components. The solenoidal velocity fluctuations in all three directions rapidly increase at
a higher position and reach a peak near the wall, then gradually decay.

Distributions of the streamwise solenoidal and dilatational velocity fluctuations at
different Mach numbers are shown in figure 2. The ud fluctuations in figure 2(a) gradually
intensify with increasing Mach numbers. However, the us fluctuations in figure 2(b)
are rarely influenced by the changes of Mach numbers. The solenoidal components are
statistically closer to the velocity fluctuations in the incompressible turbulent flow, while
the dilatational components characterize the effects of compressibility. This is consistent
with the previous findings (Wang et al. 2012a,b, 2017), and provides a basis for the
reliability of the Helmholtz decomposition method. Furthermore, in all cases we adopted,
the fluctuations of dilatational components are significantly smaller than those of the
solenoidal components, indicating that the velocity fluctuations are still dominated by the
solenoidal components.
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Figure 3. Instantaneous distributions of us and ud in the lower half-channel of Case C3. (a) u+
d : u+

d = 0.12,
red; u+

d = −0.12, blue. (b) u+
s : u+

s = 3, red; u+
s = −3, blue. Length in the x direction is 2πh and in the z

direction is πh. Flow is from left to right.

We next turn our attention to the flow structures characterized by the streamwise
solenoidal and dilatational velocity, as shown in the instantaneous distributions in figure 3.
Dilatational structures in figure 3(a) could be roughly categorized into two types: the
small-scale structures near the wall, and the large-scale structures in the outer region,
typically located far from the wall and extending towards the centre of the channel.
These two types of structures correspond to the local maxima of velocity fluctuations
at the wall and the centre of the channel in figure 1(a), respectively. The instantaneous
distributions of ud on the (x, z) plane at y+ = 10 are shown in figure 4. The dilatational
structures in the near-wall region are organized in the form of small-scale fluctuation
structures alternating in the streamwise direction, also referred to as ‘pressure-dilatation
structures’ or ‘travelling-wave packets’ (Yu et al. 2019). These dilatational structures
become stronger with increasing Mach numbers and decreasing wall temperatures, as
shown in figure 4(b,c). Additionally, structures characterized by us are displayed in
figure 3(b). They consist of near-wall streaks elongated in the streamwise direction and
LSMs in the outer region, resembling the streaks observed in incompressible turbulent
flow. Notably, the near-wall low-speed streaks are represented by blue iso-surfaces near
the wall; in the outer region, red and blue iso-surfaces depict large-scale high-speed and
low-speed regions, respectively. Although Case C3 has a relatively low Reynolds number
of Reτ = 496, two pairs of LSMs can still be observed in the spanwise direction.

To quantify the scales of the structures at different heights, figure 5 displays the
premultiplied energy spectra of ud and us non-dimensionalized by the outer scales.
The dilatational structures are primarily located in the viscous sublayer and above the
logarithmic layer, as shown in figure 5(a,c), consistent with the results in figure 3(a).
The size of the structures in the viscous sublayer is approximately λ+x × λ+z = O(100) ×
O(400), while the size of those above the logarithmic layer is λx × λz = O(h) × O(2h).
However, the solenoidal streaks are mainly concentrated in the buffer layer and logarithmic
layer. The near-wall streaks concentrated at approximately y+ = 20 have a spanwise size
of λ+z = O(100), while the fluctuation energy of the outer LSMs is mainly concentrated
at approximately λz = O(h). The results indicate that the spanwise sizes of the solenoidal
streaks are generally consistent with those in the incompressible turbulent flow. Notably,
as suggested by figure 5(d), the peak at λz = h penetrates downwards into the near-wall
region at approximately y+ = 10, consistent with the footprint of LSMs observed in
incompressible flows (Abe et al. 2004; Hoyas & Jiménez 2006). The streamwise length of
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Figure 4. Instantaneous distributions of ud on (x, z) plane at y+ = 10. (a) Case C3, (b) Case C8 and (c) Case
C8-CW05.

the near-wall streaks in incompressible turbulent flows is approximately λ+x = O(1000),
while the length of the VLSMs could reach O(6h) (Balakumar & Adrian 2007; Pirozzoli
& Bernardini 2011). In Case C3, the streamwise length of the solenoidal streaks is
primarily λx = O(2h), without obvious scale separations, due to the streamwise length
of the computational domain Lx = 2πh. Additionally, it could be observed that a clear
separation in the wall-normal distribution ranges between dilatational structures and
solenoidal streaks. There are no obvious dilatational structures in the logarithmic layer.

The investigation of LSMs in compressible turbulent flows and their footprints in the
near-wall region invites further study. Figure 6 presents the premultiplied spanwise energy
spectra of us. In Case C8, akin to the observations in Case C3, the peaks representing
LSMs are less pronounced due to the weaker scale separation at lower Reτ . The energy
associated with outer LSMs is mainly concentrated at approximately λz = O(h). As the
Reynolds number increases, the scale separation becomes clearer, and LSMs gradually
grow to higher positions at y+ = 200 ∼ 400. Notably, in Case C8-1000, the spectral
peaks associated with LSMs emerge distinctly, as shown in figure 6(b). The spanwise
scale of LSMs, consistently at approximately λz = O(h), mirrors the observations in
incompressible flows (del Álamo & Jiménez 2003; Abe et al. 2004; Adrian 2007) and
is also noted in the compressible cases addressed in this study. Across various cases,
outer LSMs consistently penetrate the near-wall region, aligning with the LSM footprint
in incompressible turbulent flows (Abe et al. 2004; Hoyas & Jiménez 2006; Hutchins &
Marusic 2007b). The visibility of this footprint also becomes more pronounced as the
Reynolds number advances to 1000, as illustrated in figure 6(b).

Furthermore, as suggested in figure 6, the dilatational velocity fluctuations exhibit
large-scale structures with a characteristic scale of h to 2h, similar to the spectral
organization of the LSMs corresponding to us, as also reported by Yu et al. (2019).
Therefore, the potential association in large-scale structure between the solenoidal and
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Figure 5. Premultiplied energy spectra of ud and us in Case C3: (a) kxEudud ; (b) kxEusus ; (c) kzEudud ;
(d) kzEusus .
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Figure 6. Premultiplied energy spectra kzEusus of us in (a) Case C8 and (b) Case C8-1000.

dilatational velocity fluctuations needs further investigation. The spectral linear stochastic
estimation (sLSE) method (Bendat & Piersol 2011; Baars, Hutchins & Marusic 2016; Yu
& Xu 2021) is used to address this. The relationship between the spectral coefficients of
dilatational velocity ud( y1) and solenoidal velocity us( y2) is expressed as

ûd( y1) = Ĥûs( y2), (3.4)
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Figure 7. (a) Streamwise and (b) spanwise linear coherence spectra γs between ud( y1) and us( y2) in Case
C8. Here, y+

1 = h+. y+
2 = h+ (black), ; y+

2 = 200 (red); y+
2 = 100 (blue); y+

2 = 10 (light blue).

where ϕ̂ denotes the Fourier coefficient of variable ϕ, and Ĥ represents the spectral
coefficient of the Hankel kernel function, defined by

Ĥ = ûd( y1)ûs
∗( y2)

ûs( y2)ûs
∗( y2)

. (3.5)

Thus, the spectral correlation between ud( y1) and us( y2) could be evaluated through the
linear coherence spectra γs, defined as

γ 2
s = ûd( y1)ûs

∗( y2)
2

[ûd( y1)ûd
∗( y1)][ûs( y2)ûs

∗( y2)]
. (3.6)

In Case C8, the coherence spectra γs for streamwise and spanwise directions are depicted
in figure 7. Here, y1 = h is selected for ud, pinpointing the region where the large-scale
dilatational structures are most prominent. For λ+x > 200, the streamwise coherence
spectra between ud(h) and us at different heights tend towards zero. Despite a weak
correlation between ud(h) and us(h) for λ+x < 50, the energy contribution of ud at these
scales is negligible. Similarly, the spanwise coherence spectra for various λ+z all approach
zero. While results from other cases are not displayed, they align with the findings from
Case C8, suggesting that despite the spectral resemblance between the outer large-scale
dilatational and solenoidal LSMs, a clear linear correlation in the spectral space is absent.
It is important to clarify that this lack of linear correlation does not imply a complete
disconnection between large-scale dilatational structures and outer solenoidal LSMs. Their
formation might still be interconnected, possibly through nonlinear mechanisms akin to
those highlighted by Yu et al. (2024).

It is also important to note that the regions with strong divergence do not align perfectly
with the locations of the dilatational structures characterized by ud. The instantaneous
distribution of the velocity divergence, denoted as θ = ∇ · u, is shown in figure 8. In
the near-wall region, small-scale divergence fluctuations alternating in the streamwise
direction exist, similar to the near-wall dilatational structures, as shown in figure 8(a).
However, the divergence in the outer region is much smaller than that in the near-wall
region, without large-scale components. This discrepancy arises from the reason that the
fluctuations at higher wavenumbers tend to have a larger impact on the velocity divergence.
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Figure 8. (a) Instantaneous distributions of θ on the (x, z) plane at y+ = 10 in Case C3. (b) Instantaneous
distributions of θ in the lower half-channel of Case C3. θ = 0.2Um/h, red; θ = −0.2Um/h, blue. Length in the
x direction is 2πh and in the z direction is πh. Flow is from left to right.

Furthermore, the dilatational structures in the viscous sublayer and above the logarithmic
layer will be treated separately in the following discussions.

4. Influence of large-scale motions on near-wall solenoidal streaks

As we discussed in § 3, the solenoidal streaks are mainly composed of near-wall streaks
elongated in the streamwise direction and LSMs in the outer region, similar to the streaks
in incompressible turbulent flows. The influence of outer LSMs on the near-wall solenoidal
streaks will be the focus in this section, from the view point of near-wall streak drifting
and merging.

4.1. Spanwise drift of the near-wall streaks versus the outer large-scale motions
Before analysing the near-wall solenoidal streaks, it is necessary to define the spanwise
locations of these streaks. The method of Zhou et al. (2022) is adopted, considering the
similarity between the solenoidal streaks and the streaks in incompressible flows. The
spanwise location z = ζ(t, xr, y) of a meaningful low-speed streak is determined by

∂u(2D)
s

∂z
(t, x, y, z)|x=xr,z=ζ = 0,

∂2u(2D)
s

∂z2 (t, x, y, z)|x=xr,z=ζ > 0, (4.1a,b)

where u(2D)
s represents the locally averaged streamwise solenoidal velocity,

u(2D)
s (t, xr, y, z) = 1

	x

∫ xr+	x/2

xr−	x/2
us(t, x, y, z) dx. (4.2)

Here, xr is the midpoint of the streamwise averaging interval and 	x+ ≈ 380 ∼ 450 is
the streamwise size of the interval. A similar definition is also used elsewhere for other
velocity components, v

(2D)
s and w(2D)

s .
To obtain the spanwise drifting information of the near-wall streaks, the averaging

interval needs to move in the streamwise direction following the near-wall streaks.
Therefore, xr = xr0 + uadt, where uad is the mean advection velocity of the near-wall
streaks, and xr0 is the initial position of the interval. The uad could be obtained using
the method proposed by Kim & Hussain (1993). The streamwise displacement of us after
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Figure 9. Wall-normal distributions of the streamwise advection velocity uad of us at different (a) Mach
numbers, (b) Reynolds numbers and wall temperatures. Solid lines denote uad and dashed lines denote the
mean velocity U. (a) Case C3, red; Case C6, blue; Case C8, black. (b) Case C8, black; Case C8-1000, red;
Case C8-CW05, blue.

	t is defined as the position, δxmax, of the maximum of the correlation

Rus(δx, y, 	t) = 1
u2

s,rms( y)N

∑
N

(us(x, y, z, t)us(x + δx, y, z, t + 	t)), (4.3)

where N is the total number of samples. The streamwise advection velocity is defined
as uad = δxmax/	t. Figure 9 shows the wall-normal distributions of uad at different
Mach numbers, Reynolds numbers and wall temperatures. In each case, N = nxnznt =
576 × 576 × 100 = 3.32 × 107, where nx, nz and nt denote sample numbers in the x, z
and t directions, respectively. Here, 	t+ ≈ 25 ∼ 30 is adopted in all cases, while the
results are robust in the range 	t+ ∈ [10, 40] (Zhou et al. 2022). Mach numbers and
Reynolds numbers have a trivial influence on the streamwise advection velocity uad,
when the boundaries are nearly adiabatic. Additionally, uad remains at approximately
10uτ below y+ = 10, and collapses with the mean velocity above y+ = 30. This result
is also in accordance with the conclusion in incompressible turbulent flows (Kim &
Hussain 1993; del Álamo & Jiménez 2009). The near-wall advection velocity increases
as the wall temperature decreases, as shown in figure 9(b), consistent with the results
by Pei et al. (2012, 2013). For Case C8-CW05, u+

ad ≈ 13.5 in the near-wall region,
and collapses with the mean velocity in the outer region. The ejections associated with
low-speed streaks move slightly slower than the mean advection velocity, at approximately
1 ∼ 2uτ (Lozano-Durán & Jiménez 2014). Thus, u+

ad = 8 is adopted to trace the near-wall
low-speed solenoidal streaks in Cases C3, C6, C8 and C8-1000, while u+

ad = 12 for Case
C8-CW05. Posterior tests show that the conclusions are robust within the uad deviation
range of ±3uτ .

The time history of the spanwise locations of low-speed solenoidal streaks at y+ = 5
is displayed in figure 10. The uad of Zhou et al. (2022) is adopted in Case C3, where
u+

ad = 8 in the near-wall region and u+
ad = 16.7 at y+ = 200, considering the consistency

of uad with the incompressible flows. Each line in figure 10(a) represents the trajectory
of a single low-speed streak. The trajectories exhibit evident spanwise position variations
over time, indicating the drifting of the solenoidal streaks. Their mean spanwise spacing
is still approximately 100 wall units, suggesting a minor compressibility influence on
streak spacing in Case C3. The lifetime of the branches spans from 200 to 800 wall units,
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Figure 10. Time history of the spanwise locations of low-speed solenoidal streaks (Case C3). Locations of the
low-speed streaks are determined by the condition (4.1a,b). (a) y+ = 5 and (b) y+ = 200. The red dashed line
denotes the averaged location of a large-scale streak.

consistent with the results of Zhou et al. (2022). Figure 10(b) shows the multiple spanwise
local minima in LSMs. The spanwise drifting of the small-scale structures is still observed,
although the branch-like structures are more fragmented.

To quantify the spanwise drifting velocity at a point (t, xr0, y1, zs), the PIV method
of Zhou et al. (2022) is adopted to track the solenoidal streaks, denoted by u(2D)

s . The
one-dimensional interrogation window is located at zs − 	ζ/2 < z < zs + 	ζ/2, where
	ζ is the spanwise length of the window. This window at y = y1 is advected streamwise
with the low-speed streaks at the same height. The streak displacement after 	t is defined
as the position, δzmax, of the maximum of the correlation

Ru(2D)
s

(δz, 	t) = 1
(I0I1)1/2

∫ zs+	ζ/2

zs−	ζ/2
u(2D)

s (t, xr0, y1, z)u(2D)
s (t + 	t, xr0

+ uad	t, y1, z + δz) dz. (4.4)

Here, I0 and I1 respectively represent the mean squares of u(2D)
s (t, xr0, y1, z) and u(2D)

s (t +
	t, xr0 + uad	t, y1, z + δz), which are used to normalize the correlation. The spanwise
drifting velocity at point (t, xr0, y1, zs) is defined as wad = δzmax/	t. Considering the
mean spanwise spacing of the near-wall streaks at the scale of O(100) wall units, 	ζ+ ≈
50 of Zhou et al. (2022) is still adopted. The following discussion focuses on the near-wall
solenoidal streaks at y+

1 = 13. The advection velocity of the interrogation window is
u+

ad = 8 in Cases C3, C6, C8 and C8-1000, while u+
ad = 12 for Case C8-CW05. The total

number of samples used for statistics ranges from 3.46 × 106 to 8.64 × 106. Samples with
Ru(2D) (δzmax) < 0.8 are rejected. The probability density function (p.d.f.) of the drifting
velocity wad is shown in figure 11. In all cases, w+

ad is mainly concentrated in the range
of [−2, 2], regardless of Mach numbers, Reynolds numbers and wall temperatures. This
range is also similar to the incompressible results of Zhou et al. (2022).

To quantify the influence of outer large-scale structures on the spanwise drifting
of near-wall solenoidal streaks, the window-filtered wall-normal solenoidal velocity
ṽs(x0, y2, z0) is chosen to represent the large-scale structures in the outer region.
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Figure 11. Probability density function of the drifting velocity wad at different (a) Mach numbers, (b) Reynolds
numbers and wall temperatures. 	t+ ≈ 20. (a) Case C3, red; Case C6, blue; Case C8, black. (b) Case C8, black;
Case C8-1000, red; Case C8-CW05, blue. The dashed black lines denote wad from the incompressible case at
Reτ = 535 of Zhou et al. (2022).

Additionally, ṽs(x0, y2, z0) is defined as

ṽs(x0, y2, z0) = 1
	z

z0+ 1
2 	z∫

z0− 1
2 	z

v(2D)
s (x0, y2, z) dz, (4.5)

where v
(2D)
s is given by (4.2). Figure 12 shows the joint p.d.f. of the spanwise drift

velocity w+
ad at y+

1 = 13 and ∂ṽs
+/∂z+ at y+

2 = 200 in different cases. Here, 	z+ = 214
is used to filter out the small-scale components in the outer region. If the outer large-scale
structures do affect the spanwise drifting of the near-wall solenoidal streaks, as suggested
by Zhou et al. (2022) in incompressible flows, the streaks will drift from the down-washing
side with ṽs < 0 to the up-washing side with ṽs > 0. The near-wall streaks shall drift
in the positive direction when ∂ṽs/∂z > 0, and vice versa. Thus, a positive correlation
between wad and ∂ṽs/∂z shall exist. The joint p.d.f.s in figure 12 from different cases are
all preferentially aligned to the first and third quadrants, in agreement with the results
from incompressible flows. This indicates that the large-scale solenoidal structures still
drive the near-wall solenoidal streaks to drift in the spanwise direction, in compressible
turbulent flows, regardless of Mach numbers, Reynolds numbers and wall temperatures.
Furthermore, it is important to note that the spanwise drifting of streak structures differs
from meandering. The spanwise drifting considered in this paper refers to the spanwise
movement of a specific location within the structure over time, whereas meandering
primarily concerns the variation in spanwise coordinates at different streamwise positions
within the structure. Therefore, although the spanwise meandering of large-scale structures
is widely observed (Hutchins & Marusic 2007b; Flores & Jiménez 2010; Abe et al. 2018),
it has little impact on the statistical results of the spanwise drifting of near-wall streaks.

The influence of outer LSMs could be further quantitatively assessed by defining the
inertia tensor of the joint p.d.f. of wad and ∂ṽs/∂z as follows, using the method of Zhou
et al. (2022):

I =
(

Iwadwad Iwad(∂ṽs/∂z)
I(∂ṽs/∂z)wad I(∂ṽs/∂z)(∂ṽs/∂z)

)
, (4.6)
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Figure 12. Joint p.d.f. of the spanwise drift velocity w+
ad at y+

1 = 13 and ∂ṽs
+/∂z+ at y+

2 = 200 in (a) Case
C3, (b) Case C6, (c) Case C8, (d) Case C8-1000 and (e) Case C8-CW05. Contour levels are 0.1, 0.3, 0.5, 0.7,
0.9 of the maximum probability density, respectively. Here, 	t+ ≈ 20 and 	z+ ≈ 200. The white dashed lines
denote ∂ṽs

+/∂z+ = tan(θ)w+
ad .

where

Iab = 1
LxLz

∫∫
a(x, z)b(x, z) dz dx. (4.7)
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Case C3 C6 C8 C8-1000 C8-CW05

θ(×10−3) 1.49 1.30 1.38 1.48 2.67

Table 2. Inclination angle θ of the leading eigenvector of the inertia tensor I .

The principal axes’ inclination angle θ of the joint p.d.f. inertia ellipse, derived from
the inertia tensor’s leading eigenvector (a1, a2), serves as a metric for the outer LSMs’
influence strength, with θ = arctan(|a2/a1|). The inclination angle θ is shown in table 2
and figure 12. These results suggest that θ is marginally affected by Mach and Reynolds
numbers, showcasing a concentration range between 1.3 × 10−3 and 1.5 × 10−3 for Cases
C3, C6, C8 and C8-1000. Conversely, wall temperature exerts a more pronounced impact
on θ , as evidenced by a significant rise in the cold wall case C8-CW05.

4.2. Near-wall solenoidal streak density
In incompressible flows, the outer LSMs drive the near-wall streaks to drift in the spanwise
direction; however, there lacks obvious correlation between the outer LSMs and the
near-wall streak density (Zhou et al. 2022). Whether this conclusion remains valid for the
solenoidal streaks in compressible flows requires further investigation. Hence, we define
two spanwise windows, one located at y+

1 = 13 to capture the near-wall streak density, and
the other one at y = y2 to obtain the outer large-scale wall-normal velocity, as suggested by
Zhou et al. (2022). Both windows have the same size 	z, centred at the same streamwise
and spanwise locations. The near-wall streak density ρs is computed by counting the
local minima of u(2D)

s , as defined in (4.1a,b). Additionally, ρs = ns/	z, where ns is the
number of local minima within the spanwise range 	z of the window. The outer large-scale
wall-normal velocity, ṽs, is given by (4.5). Positive ṽs represents the up-washing side of
the large-scale circulations, with negative ṽs for the down-washing side. Here, the window
width in the following discussions is chosen to be 	z+ = 214, the same as that of Zhou
et al. (2022). The total number of samples used for statistics ranges from 1.99 × 107 to
3.32 × 107.

The p.d.f. of the near-wall solenoidal streak density is shown in figure 13. Results in
Cases C3, C6, C8 and C8-1000 show agreement with the incompressible results, regardless
of the Mach numbers and Reynolds numbers, where the p.d.f.s reach their maximum at
1/ρ+

s ≈ 70 ∼ 85. This further indicates that the solenoidal streak spacing over adiabatic
walls has not undergone significant changes compared with the incompressible flows.
However, the cold-wall condition in Case C8-CW05 leads to an increase in the streak
spacing, while the peak of the p.d.f.s shifts to 1/ρ+

s ≈ 110.
The correlation coefficient R(ρs, ṽs) is used to quantify the relationship between

near-wall solenoidal streak density and outer LSMs, which is defined as

R(ρs, ṽs) =
∑

(ρs − 	ρs)ṽs[∑
(ρs − 	ρs)

2
∑

ṽs
2
]1/2 , (4.8)

where the mean streak density 	ρ+
s ≈ 0.01, and the mean value of ṽs is 0. The distributions

of the correlation R(ρs, ṽs) at different heights y2 are shown in figure 14. In all cases, the
correlation continuously decreases with increasing heights, approaching zero. At different
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Figure 13. Probability density function of the streak density at different (a) Mach numbers, (b) Reynolds
numbers and wall temperatures. black dashed, the incompressible case at Reτ = 550 of Zhou et al. (2022).
(a) red, Case C3; blue, Case C6; black, Case C8. (b) black, Case C8; red, Case C8-1000; blue, Case C8-CW05.

30 100 200 300 400

0

0.1R
ρ

sṽ
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Figure 14. Correlation R(ρs, ṽs) between the near-wall streak density ρs (y+
1 = 13) and wall-normal velocity

ṽs( y+
2 ) at different (a) Mach numbers, (b) Reynolds numbers and wall temperatures. (a) Case C3, red; Case

C6, blue; Case C8, black. (b) Case C8, black; Case C8-1000, red; Case C8-CW05, blue. The dashed black lines
denote the correlation R from the incompressible case at Reτ = 535 of Zhou et al. (2022).

heights, the correlation is consistently smaller than 0.2, regardless of Mach numbers,
Reynolds numbers and wall temperatures. This suggests that, in the compressible flow,
there is no obvious accumulation of solenoidal streaks under large-scale circulations,
consistent with the conclusion in incompressible turbulent flow.

5. Influence of large-scale motions on near-wall dilatational structures

5.1. Streamwise advection velocity of the dilatational structures
Having established the influence of outer LSMs on the near-wall solenoidal streaks, their
effects on the dilatational structures remain to be checked. A similar window tracking
method as § 4.1 is adopted in this section, to track the spanwise drifting of near-wall
dilatational structures. The tracking windows need to follow the dilatational structures
in the streamwise direction. Therefore, their mean streamwise advection velocity uad
shall be discussed first. The method proposed by Kim & Hussain (1993) is adopted,
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Figure 15. Wall-normal distributions of the streamwise advection velocity uad of ud at different 	t in Case
C3. 	t+ = 2.5, black; 	t+ = 5, red; 	t+ = 10, blue. Two black dashed lines denote y+ = 20 and y+ = 300.

where the definition of the correlation Rx
ud

(δx, y, 	t) is consistent with (4.3). The total
number of samples used for statistics ranges from 3.32 × 107 to 1.33 × 108 in different
cases. If the streamwise displacement of ud after 	t is δxmax, then Rx

ud
will reach the

maximum at δx = δxmax. Thus, the mean streamwise advection velocity could be defined
as uad = δxmax/	t.

The streamwise advection velocity of ud at different 	t is shown in figure 15. The
influence of 	t is trivial in the near-wall region y+ < 20 and outer region y+ > 300,
while 	t has a significant effect in the logarithmic region. As suggested in figure 5, ud
fluctuations are primarily concentrated in the near-wall and outer regions, rather than
the logarithmic region. This indicates the absence of stable dilatational structures in
the logarithmic region, where ud may experience a stronger dispersion and dissipation,
leading to a failure of Taylor’s frozen turbulence hypothesis (Taylor 1938). The dilatational
structures in the near-wall and outer regions are more stable, and their advection velocity
remains robust within the range 	t+ = 2.5 ∼ 10. In Case C3, u+

ad ≈ 16 ∼ 18 in the
near-wall region, and u+

ad ≈ 10 ∼ 11 near the channel centre, as shown in figure 15. Both
parts are notably different from the advection velocity of solenoidal streaks at the same
height.

It should be noted that ud is not the sole variable representing the dilatational structures.
Therefore, it is essential to consider whether the advection velocities collapse when the
dilatational structures are represented by other variables. The dilatational structures are
organized in the form of positive and negative fluctuations distributed alternately along the
streamwise direction. Motivated by this, Yu et al. (2022) applied the streamwise Hilbert
transform to ud, thereby extracting the envelopes to represent the positions of dilatational
structures. Here, we define

uH = abs(Hx(ud)), uH+ =
{

uH (u+
H ≥ 0.12)

0 (u+
H < 0.12)

, (5.1a,b)

where the operator Hx is the Hilbert transform in the streamwise direction, and uH+ is uH
filtered with a threshold value of 0.12uτ . The instantaneous distributions of ud and uH are
shown in figure 16. The interior regions of the black isolines cover most parts with strong
ud fluctuations, indicating that both uH and uH+ could represent the dilatational structures.

We choose the method proposed by Kim & Hussain (1993), similar to (4.3), to calculate
the streamwise advection velocity uad when selecting different variables to represent the
dilatational structures. Results are illustrated in figure 17. The advection velocities of ud,
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Figure 16. Instantaneous distributions of ud and uH on (x, z) plane at y+ = 10 (Case C3). Shaded, u+
d ; black

contour lines, u+
H = 0.12.
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Figure 17. (a) Positions of maximum correlations δxmax in Case C3, as a function of 	t, when selecting
different variables to represent the dilatational structures. ud , black; uH , red; uH+, blue. (b) Wall-normal
distributions of the streamwise advection velocity uad of divergence θ and dilatational velocity ud in Case
C3. 	t+ = 10. θ , red; ud , blue. Two black dashed lines denote y+ = 20 and y+ = 300.

uH and uH+ are shown in figure 17(a), which are denoted by the slopes of the three lines.
Three lines nearly collapse with each other, indicating that the advection velocities using
these three variables are approximately the same. Moreover, the advection velocities of the
divergence θ and ud are shown in figure 17(b). Although there exist differences between the
results of θ and ud, the disparities in the near-wall region and the outer region are within
the range of ±2uτ . In summary, the streamwise advection velocities of stable dilatational
structures are similar when represented by different variables. Therefore, ud will be used
to represent the dilatational structures in the following discussions.

Wall-normal distributions of the streamwise advection velocity of ud are shown
in figure 18, from different cases. The uad maintains at 16 ∼ 18uτ in the near-wall
region y+ < 50, with its value nearly unaffected by the Mach numbers M0, Reynolds
numbers Reτ and wall temperature conditions Tw/Tr. This result also collapses with the
near-wall advection velocity of pressure fluctuations in incompressible turbulent flows, at
approximately 17uτ suggested by Kim & Hussain (1993). Thus, u+

ad = 17.0 will be adopted
in § 5.2 when tracking the near-wall dilatational structures. Additionally, the streamwise
advection velocity uad near the channel centre increases with higher Mach numbers, higher
Reynolds numbers and colder wall temperatures.
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Figure 18. Wall-normal distributions of the streamwise advection velocity uad of ud at different (a) Mach
numbers M0, (b) Reynolds numbers Reτ and wall temperatures Tw/Tr. 	t+ = 2.5. Two black dashed lines
denote y+ = 20 and y+ = 300. (a) Case C3, red; Case C6, blue; Case C8, black. (b) Case C8, black; Case
C8-1000, red; Case C8-CW05, blue.

5.2. Spanwise drift of the near-wall dilatational structures
A window tracking method is adopted to acquire the spanwise drifting velocity
of dilatational structures. The near-wall dilatational structures are organized in the
form of alternating positive and negative ud along the streamwise direction, with
distinct characteristic scales compared with the solenoidal streaks. Consequently, the
streamwise-averaged variable u(2D) could not reflect the position of dilatational structures.
To quantify the spanwise drifting velocity at a specific point (t, xs, y1, zs), we choose a
two-dimensional window to track the dilatational structures, following the PIV method.
The correlation Rz

ud
is defined as

Rz
ud

(δz, 	t) = 1
(I0I1)1/2

∫ xs+	χ/2

xs−	χ/2

∫ zs+	ζ/2

zs−	ζ/2
ud(t, x, y1, z)ud(t + 	t, x

+ uad	t, y1, z + δz) dz dx, (5.2)

where I0 and I1 respectively represent the mean squares of ud(t, x, y1, z) and ud(t +
	t, x + uad	t, y1, z + δz), used to normalize the correlation. If the spanwise displacement
of the dilatational structures after 	t is δzmax, then Rz

ud
will reach its maximum at

δz = δzmax. Thus, the spanwise drifting velocity at point (t, xs, y1, zs) could be defined
as wad = δzmax/	t. Here, 	χ and 	ζ in (5.2) represent the streamwise and spanwise
length of the tracking window, respectively. The window should be short enough to
differentiate the dilatational structures from the LSMs, and also long enough to retain the
structural information. Here, we choose 	χ+ × 	ζ+ ≈ 200 × 200. The spanwise length
of the window is similar to the scale of the dilatational structures, while the window
encompasses one to two pairs of alternating positive and negative fluctuations in the
streamwise direction, suggesting this window size is reasonable. Posterior tests show that
the results below are robust when 	χ+ and 	ζ+ are in the range 150 ∼ 250.

The p.d.f. of the spanwise drifting velocity wad of near-wall dilatational structures is
shown in figure 19. Here, y+

1 = 13 in all cases, and the streamwise advection velocity
of the tracking windows is u+

ad = 17.0. The total number of samples used for statistics
ranges from 4.15 × 106 to 3.32 × 107 in different cases, and points with Rz

ud
(δzmax) <

0.8 are rejected during the statistics. The drifting velocity is concentrated within the
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Figure 19. Probability density function of the drifting velocity wad of near-wall dilatational structures at
different (a) Mach numbers, (b) Reynolds numbers and wall temperatures. 	t+ = 2.5, y+

1 = 13. (a) Case C3,
red; Case C6, blue; Case C8, black. (b) Case C8, black; Case C8-1000, red; Case C8-CW05, blue.

range of w+
ad = [−4, 4], exhibiting a broader distribution compared with the wad of the

solenoidal streaks. The influence of different Mach numbers on the distributions of the
drifting velocity is minor, as shown in figure 19(a). However, the spanwise drifting of
dilatational structures is enhanced with increasing Reynolds numbers and decreasing wall
temperatures in figure 19(b). This result suggests that the spanwise drifting of the near-wall
dilatational structures may not follow the same mechanism as the streak meandering
process.

Velocity fluctuations in the outer region are composed of solenoidal and dilatational
components, while the dilatational components are significantly smaller than the
solenoidal parts in all the cases we discussed, also illustrated in figures 1 and 2. Thus, we
focus solely on the large-scale solenoidal components when considering the outer LSMs.
The window-filtered wall-normal solenoidal velocity ṽs(x0, y2, z0) is used to characterize
the LSMs in the outer region, defined by (4.5). The joint p.d.f. of the wad of near-wall
dilatational structures and the outer ∂ṽs

+/∂z+ at y+
2 = 150 in Case C3 is shown in

figure 20. The white dashed lines are the statistics from the sample points satisfying
u+

H ≥ 0.12, denoting the more active regions of the dilatational structures. They collapse
with the contour levels of the shaded part. It suggests that the continuous wad field obtained
by the PIV method truly represents the drift of the dilatational structures. Although the
joint p.d.f. with elliptical contours is preferentially aligned to the first and third quadrants,
the elliptical shapes of the contours are closer to being circular, compared with the results
from solenoidal streaks in figure 12. This suggests that the influence of outer LSMs on the
dilatational structures is notably weaker than their impact on solenoidal streaks.

To quantify the influence of LSMs on the spanwise drifting of near-wall dilatational
structures, the correlation coefficient R(wad, ∂ṽs/∂z) is adopted, which is defined as

R
(

wad,
∂ṽs

∂z

)
=

∑
wad

(
∂ṽs

∂z

)
[∑

w2
ad

∑ (
∂ṽs

∂z

)2
]1/2 , (5.3)

where the mean value of wad and ∂ṽs/∂z is 0. The distributions of the correlation
R(wad, ∂ṽs/∂z) at different heights y2 are shown in figure 21. As the height y2 increases,
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Figure 20. Joint p.d.f. of the spanwise drift velocity of dilatational structures at y+
1 = 13 and ∂ṽs

+/∂z+ at
y+

2 = 150 in Case C3. Shaded, wad by PIV; white dashed lines, wad from the sample points satisfying u+
H ≥

0.12. Contour levels are 0.1, 0.3, 0.5, 0.7, 0.9 of the maximum probability density, respectively. 	t+ = 2.5 and
	z+ = 214.

30 100 200
y2
+

300 400

0

0.05

0.10

0.15

0.20

R
w

ad
(∂

v
s/

∂
z)



Figure 21. Correlation R(wad, ∂ṽs/∂z) between the spanwise drift velocity wad (y+
1 = 13) and ∂ṽs/∂z at

different heights y+
2 . Case C3, red; Case C6, blue; Case C8, black; Case C8-1000, red dashed; Case C8-CW05,

blue dashed.

the correlation coefficient R gradually increases, reaching a maximum at approximately
y+

2 = 100 ∼ 150 and then decreases. Results at Reτ ≈ 500 are similar, with minor
influences from Mach numbers and wall temperatures. The maximum value of R is
approximately 0.13, corresponding to the nearly circular ellipses observed in figure 20. It
indicates that the influence of LSMs on near-wall dilatational structures is relatively weak
at Reτ ≈ 500. This influence further decreases as Reτ grows to 1000, as shown by the
red dashed line in figure 21. The maximum correlation coefficient is only approximately
0.05, indicating a trivial influence of outer LSMs. In contrast, the spanwise drifting of
dilatational structures is enhanced at Reτ = 1000 in figure 19(b). This suggests that the
influence of outer LSMs is not the primary trigger for the spanwise drifting of dilatational
structures.

Furthermore, a deeper examination is warranted to ascertain the influence of outer
dilatational structures on the spanwise drift of near-wall dilatational structures. To this
end, we used the correlation coefficient R(wad, ∂ṽd/∂z) as a quantitative measure of this
effect, as defined in (5.3). Figure 22 displays the correlation R(wad, ∂ṽd/∂z) across various
heights y2. The maximal absolute value of R is observed near the wall, roughly 0.1. With an
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Figure 22. Correlation R(wad, ∂ṽd/∂z) between the spanwise drift velocity wad (y+
1 = 13) and ∂ṽd/∂z at

different heights y+
2 . Case C3, red; Case C6, blue; Case C8, black; Case C8-1000, red dashed; Case C8-CW05,

blue dashed.

increase in the height y2, R progressively approaches zero. This indicates that large-scale
dilatational structures centred approximately at y = h have trivial effects on the spanwise
drift of near-wall dilatational structures across all cases.

6. Summary and conclusions

The influence of outer large-scale motions (LSMs) on near-wall structures has been
investigated in compressible turbulent channel flows. To separate the compressibility
effects, this study decomposes the velocity fluctuations into the rotational, solenoidal
component and the potential, dilatational component, by employing the Helmholtz
decomposition method. The impacts of outer LSMs on the near-wall solenoidal streaks
and dilatational structures are considered separately.

The majority of velocity fluctuations in the flow field are contributed by the
solenoidal velocity fluctuations, characterized by flow structures including near-wall
streaks elongated in the streamwise direction and large-scale structures in the outer region.
Their scales, streamwise advection velocities and spanwise meandering characteristics
closely resemble those in the incompressible turbulent flows. In compressible flows, the
footprint of LSMs penetrating deep into the near-wall region is also observed, with this
effect intensifying as the Reynolds number increases. We track the near-wall solenoidal
streaks using the particle image velocimetry (PIV) method. Results indicate that the
solenoidal streaks drift in the spanwise direction, with velocities of approximately ±uτ ,
regardless of Mach numbers, Reynolds numbers and wall temperatures. The distribution
range of streak drifting velocity is not affected by compressibility, and its magnitude
can still be measured using wall units. The drifting velocities in the near-wall region
show correlations with the outer wall-normal velocity at large scales. This suggests that
in compressible turbulent flows, the outer LSMs still drive the spanwise drifting of the
near-wall solenoidal streaks, consistent with the mechanism found in incompressible
flows (Zhou et al. 2022). We also examine the spanwise density of near-wall solenoidal
streaks, while the correlations between streak density and outer LSMs are nearly zero. The
gathering of solenoidal streaks induced by outer LSMs remains trivial in compressible
flows.

Furthermore, the dilatational velocity fluctuations characterize the compressibility
effects, corresponding to two main types of flow structures. One consists of small-scale
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fluctuations alternating along the streamwise direction in the near-wall region, with
a scale of approximately λ+x × λ+z = O(100) × O(400). The other comprises isolated
large-scale parts located from the outer region to the channel centre, characterized by
a scale of approximately λx × λz = O(h) × O(2h). The streamwise advection velocity
of the dilatational structures exhibits significant differences from the solenoidal streaks.
The near-wall advection velocity remains at 16 ∼ 18uτ in different cases, with trivial
influence from Mach number, Reynolds number and wall temperature conditions. We
obtain the spanwise drifting velocity of near-wall dilatational structures by employing
the PIV method with two-dimensional tracking windows. The spanwise drifting of the
near-wall dilatational structures follows a mechanism distinct from the streak meandering
process. The drifting velocity is concentrated within the range of [−4uτ , 4uτ ], notably
larger than the drifting velocity of solenoidal streaks. Furthermore, neither outer LSMs nor
large-scale dilatational structures serve as the primary triggers for the spanwise drifting of
dilatational structures.
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