

Advances in X-ray Analysis Volumes 1- 39 (1957 – 1995)

Volume 23. Twenty-eighth Annual Conference on Applications of X-ray Analysis, July 30-August 3, 1979

Table of Contents

CONTENTS

FOREWORD.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v
PREFACE .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vii
SOME APPLIC		RF A							_							CE		
ANALYSIS CONTROL C. G.		•	•	•	•		•		•	IN I! •	NG A	AND •	PR •	OCE	SS ·	•	•	1
ANALYSIS OF John F							_						IVE	XR	F.	•	•	15
PORTABLE X- UNDERGROU Mark V	JND	EXP	LOR	ATI								HEIN	кU	SE	IN	AN	٠	19
APPLICATION TO MATERI C. vor	IALS	S AN	IALY	SIS	5.		•		•		•	•	•	SP •	ECT •	ROM	ETEF	27
<i>IN SITU</i> ROO J. Lar					.itc	hir	nsky	,	•	•	•	•	•	•	•	•	•	37
RAPID DETER Ca AND Fe Jacque	e X-	-RAY	FL	UOR				AL I	BY (COMI •	РТО! •	1 S(CAT	TER •	ING	•	•	45
ON SITE DET XRF ANALY F. V.	ZER	ε.	•	•	•	•	•	•	AL U	JTII •	•	ING •	A 1 •	POR'	ГАВ •	LE •	•	57
ROUTINE ENE R. Aue												R II	I C	OAL	•	٠	•	65

APPLICATION OF THE FUNDAMENTAL PARAMETERS MODEL TO ENERGY- DISPERSIVE X-RAY FLUORESCENCE ANALYSIS OF COMPLEX SILICATES	٠	71
ELEMENTAL ANALYSIS OF URANIFEROUS ROCKS AND ORES BY X-RAY SPECTROMETRY	•	77
THE FAST ANALYSIS OF URANIUM ORE BY EDXRF	•	81
MATHEMATICAL METHODS IN XRF		
A COMPREHENSIVE ALPHA COEFFICIENT ALGORITHM G. R. Lachance and F. Claisse	•	87
FUNDAMENTAL-PARAMETERS CALCULATIONS ON A LABORATORY MICROCOMPUTER	•	93
MODIFIED NRLXRF PROGRAM FOR ENERGY DISPERSIVE X-RAY FLUORESCENCE ANALYSIS	•	99
UNUSUAL MATRIX FLUORESCENCE EFFECTS IN X-RAY FLUORESCENCE ANALYSIS	•	111
MONTE CARLO SIMULATION OF SAMPLE SCATTERING EFFECTS FROM HOMOGENEOUS SAMPLES EXCITED BY MONOENERGETIC PHOTONS J. M. Doster and R. P. Gardner	•	117
THE APPLICATION OF DIGITAL FILTERS TO THE ANALYSIS OF Ge AND Si(Li) DETECTOR X-RAY SPECTRA	•	125
XRF APPLICATIONS IN ENVIRONMENTAL ANALYSIS		
X-RAY SPECTROMETRIC DETERMINATION OF SULFATE IN NATURAL WATERS	•	133
APPLICATION OF THE PIXE METHOD IN ATMOSPHERIC AEROSOL INVESTIGATIONS	•	143

COMPUTER CODE	E FOR ANALY	ZING X-RAY	FLU	DRESCENCE	SPECTRA	
OF AIRBORNI	E PARTICULA	TE MATTER.				. 149
E. A. D1	cane, D. G.	Rickel, W.	. J.	Courtney	and T. G.	Dzubay

OTHER XRF APPLICATIONS

ENERGY DISPERSIVE X-RAY FLUORESCENCE (EDXRF) ANALYSIS AS A RELIABLE NONDESTRUCTIVE INDUSTRIAL TOOL L. E. Miller and H. J. Abplanalp	157
NONDESTRUCTIVE, ENERGY-DISPERSIVE, X-RAY FLUORESCENCE ANALYSIS OF ACTINIDE STREAM CONCENTRATIONS FROM REPROCESSED NUCLEAR FUEL	163
DIRECT DETERMINATION OF NIOBIUM IN URANIUM-NIOBIUM ALLOYS Jack L. Long	177
IN VIVO X-RAY FLUORESCENCE ANALYSIS FOR MEDICAL DIAGNOSIS L. Ahlgren, T. Grönberg, and S. Mattsson	185
EFFECT OF CHEMICAL STATE UPON PHOSPHORUS-L _{2,3} FLUORESCENCE SPECTRA	193
X-RAY STUDY OF THE BAND STRUCTURE IN STANNIC OXIDE A. A. Bahgat and K. Das Gupta	203
ENERGY DISPERSIVE XRF COMPOSITION PROFILING USING CRYSTAL COLLIMATED INCIDENT RADIATION	209
ENERGY DISPERSIVE X-RAY FLUORESCENCE ANALYSIS OF INKS ON PAPER	219
DETERMINATION OF THE THICKNESS OF SiO ₂ -LAYERS ON SI BY X-RAY ANALYSIS AND BY X-RAY PHOTOELECTRON SPECTROSCOPY. Maria F. Ebel, H. Ebel, and J. Wernisch	223
XRF: TECHNIQUES AND INSTRUMENTATION	
THE EFFECTIVE USE OF FILTERS WITH DIRECT EXCITATION OF EDXRF	231

A PLASMA CONTROLLED X-RAY TUBE
 X-RAY FLUORESCENCE ANALYSIS AT ROOM TEMPERATURE WITH AN ENERGY DISPERSIVE MERCURIC IODIDE SPECTROMETER 249 M. Singh, A. J. Dabrowski, G. C. Huth, J. S. Iwanczyk, B. C. Clark, and A. K. Baird
NEW MOLD DESIGN FOR CASTING FUSED SAMPLES
X-RAY IMAGING
USE OF COMPUTERS IN POWDER DIFFRACTION
THE SEARCH-MATCH PROBLEM
A COMPUTER AIDED SEARCH/MATCH SYSTEM FOR QUALITATIVE POWDER DIFFRACTOMETRY
A SECOND DERIVATIVE ALGORITHM FOR IDENTIFICATION OF PEAKS IN POWDER DIFFRACTION PATTERNS
ADVANCES IN THE COMPUTER INDEXING OF POWDER PATTERNS 295 Gordon S. Smith
SPECPLOTAN INTERACTIVE DATA REDUCTION AND DISPLAY PROGRAM FOR SPECTRAL DATA
A MINICOMPUTER AND METHODOLOGY FOR X-RAY ANALYSIS 313 W. Parrish, G. L. Ayers and T. C. Huang
X-RAY DIFFRACTION STRESS (STRAIN) DETERMINATION
FRACTURE SURFACE ANALYSIS OF BALL BEARING STEEL BY X-RAY RESIDUAL STRESS MEASUREMENT
A POSITION-SENSITIVE PROPORTIONAL COUNTER FOR RESIDUAL STRESS MEASUREMENT BY MEANS OF MICROBEAM X-RAYS

xvi

CON	Т	E	Ν	Т	S
0011	•	-			~

STRESS ANALYSIS IN GRAPHITE/EPOXY	331
PROBLEMS ASSOCIATED WITH Kα DOUBLET IN RESIDUAL STRESS MEASUREMENTS	333
INCLINATION OF PRINCIPAL RESIDUAL STRESS AND THE DIRECTION OF CRACKING IN CONTACT-FATIGUED BALL BEARING STEEL Kikuo Maeda, Noriyuki Tsushima, Masatoshi Tokuda, and Hiroshi Muro	341
X-RAY DIFFRACTION IN MATERIALS ANALYSIS	
THE GENERALIZATION AND REFINEMENT OF THE VECTOR METHOD FOR THE TEXTURE ANALYSIS OF POLYCRYSTALLINE MATERIALS Daniel Ruer, Albert Vadon and Raymond Baro	349
THE FITTING OF POWDER DIFFRACTION PROFILES TO AN ANALYTICAL EXPRESSION AND THE INFLUENCE OF LINE BROADENING FACTORS. Allan Brown and J. W. Edmonds	361
QUANTITATIVE PHASE ANALYSIS OF SYNTHETIC SILICON NITRIDE BY X-RAY DIFFRACTION	375
AUTHOR INDEX	381
SUBJECT INDEX	383

.

xvii