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Abstract

Every poset with 0 is determined by various semigroups of isotone selfmaps which preserve 0. Two
theorems along these lines are given and applied to some recent results concerning relation
semigroups on topological spaces.
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54 H 15.

1. Introduction

To any topological space there correspond various semigroups of maps or
relations which are in a certain sense compatible with the topology. Of particular
interest are those cases where an associated semigroup determines the space up
to homeomorphism (see Gluskin and others (1977)). Schein (1970) has demon-
strated that some results of this type are order theoretic in nature and thus
follow from fairly general theorems on isomorphisms between semigroups of
isotone maps. We will prove here (Theorem 2.2) a slight generalization of Schein
(1970), Theorem 2, which also covers the main results of Magill (1969) and
McAlister (1971).

2. Two isomorphism theorems

Let P be a poset with 0. By &P denote the endomorphism semigroup of
(P, < , 0), that is the semigroup of all isotone maps <p: P -» P such that 0<p = 0.
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The range of a mapping <p is denoted by im <p; if im <p contains exactly two
elements, then <p is called 2-valued. We will say that a subsemigroup S of &p is
sufficient in case it satisfies

(1) for every x E P there exists f £ S such that im f = {0, x),
(2) if x, y E P and x ^ , then there exists a 2-valued map f £ 5 such that

xf ^ O a n d . y f = 0.
We note that every subsemigroup S of &P which is sufficient in the sense of
Schein (1970) is also sufficient in our sense, but not conversely. Instead of (1),
(2) Schein uses the conditions

(1') if x, y G P and.y ^ 0, then there exists £ G S such that im £ = (0, x} and

y£ = x,
(2') if x,y E P and x <^y, then there exists <p G S such that x«p ^ 0 and

y<p = 0 .
Clearly (1') implies (1). If x $y in P, then by (1'), (2') there exist a map <p G S
and a 2-valued map £ G 5 such that xqp£ = x<p ^ 0 and .yep = 0, whence the
2-valued map £ = <p£ gives (2).

In what follows let 5 be a sufficient subsemigroup of &P. For each x E. P we
can pick a map fx G S such that im fx = (0, x). For <p G S, the set /?(<p) = {\p
€z S\<p • \p = 0} is called the right annihilator of <p in S.

2.1. LEMMA. Le/ S be a sufficient subsemigroup of &P.
(i) A map f G 5 is the zero map or 2-valued if and only if for each <p G S either

(ii) For x, y E P, x < y if and only if for all 2-valued maps | G S, $y • £ = 0
implies $x • £ = 0.

(iii) For qp, i/' G S, q> < \p if and only if for all 2-valued maps £, £ G S,
f • \p • £ = 0 implies f • <p • £ = 0.

PROOF. Given any <p, ip G 5, /?(!/-) C R(<p) holds if for each x E P there exists
7 G P with x<p < y$. On the other hand, if <p, f e S such that im f = {O,^}
and there exists x E P with x<p ^ y, then by virtue of (2) we can find a 2-valued
map £ G S for which <p • £ ^ 0 and f • £ = 0; hence /?(f) 2 /?(<p). Taking this
into account, (ii) and (iii) are readily verified. Now to prove (i) let <p, f G 5; if f
is 2-valued, then clearly either <p • f = 0 or <p • f and f have equal images and
hence equal right annihilators. Conversely, if R(£x • f) = R(£) for some x E P,
then the images of $x • f and f must be equal, and so £ is either the zero map or
2-valued.

2.2. THEOREM. Let P and Q be posets with 0 and let S and T be sufficient
subsemigroups of &P and &Q respectively. If F: S —> T is an isomorphism, then
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there exists a unique isomorphism 9: P —» Q such that

(*) F(q>) = 0~l • <p • 9 for all <pG S.

PROOF. Trivially, F(0) = 0 and by 2.1 F restricts to a bijection between the

sets of 2-valued members of S and T respectively. If f G S has the same image

as $x, then /?(f) = R(£x); consequently, the right annihilators of F(J) and F(£x)

in T are equal, and so im /"(£) = im F{$x). Therefore the map 9: P —> Q defined

by im F(HX) = {0, xO) (x G P) is a bijection and thus in view of 2.1 an

isomorphism. For all y G Q and 2-valued maps f G S we have im F(f) =

im 0 - 1 • £ • 0 and further

j / - ( O = 0 « * F i b - t ) • F ( f ) = 0 * * £„- . • S = 0 « * ^ - ' - S - e - 0 .

Hence the equation (») is true for all 2-valued maps <p G S. Now given <p G S

arbitrary, we infer for 2-valued maps f, £ G 5,

By 2.1 we therefore have /"((jp) = 0" ' • <p • 9 as required. Computing F(£JC) for all

x G P, we see that 0 is the unique isomorphism satisfying (*).

The preceding result generalizes Theorem 2 of Schein (1970). Comparing 2.2

with the results of McAlister (1971), we notice that by 2.1 a surjective homomor-

phism F: S —> T between sufficient semigroups is an isomorphism if and only if

for <p G S, F(«p) = 0 <=> <p = 0.

Let us call a partial map <p on a poset P with domain A isotone if x G A,

y G P, x < y implies y G A and x(p < >><p. A semigroup S of isotone partial

maps on P is called sufficient if for every x G P there exists a constant partial

map {̂  G S with value JC and if for every x ^ y in P there exists a constant

partial map f £ 5 whose domain contains x but not^>.

Since for any poset P with 0 there is an obvious 1-1 correspondence between

the maps <p G &P and the isotone partial maps <p on the poset P — {0} (see

Schein (1970), p. 46), 2.2 may be restated as

2.3. COROLLARY. Let S and T be sufficient semigroups of isotone partial maps on

the posets P and Q respectively. Then every isomorphism F: S —> T is induced by a

unique isomorphism 9: P —> Q.

An isotone map qp on a poset P is called residuated if there is another isotone

map <p+ on P such that x<p+ • <p < x < x<p • <p+ for all x G P. The set Res(/*) of

all residuated maps on P forms a semigroup (under composition). Moreover, if P

is bounded, then Res( / ) ) is a sufficient subsemigroup of &P. This is due to the

https://doi.org/10.1017/S1446788700017924 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017924


456

fact that all maps

Hans-J.

1°
Sb -X I -* {

Bandelt

if x < a,
otherwise

[41

with d , i £ J ' belong to Res(/>) (see Blyth and Janowitz (1972)). Hence from
Theorem 2 of Schein (1970) or the above theorem one may deduce the following

2.4. COROLLARY. Let P and Q be boundedposets. Any isomorphism F: Res(/>)
—» Res((?) is induced by a unique isomorphism 9: P —» Q.

Thus, the semigroup Res(/>) determines the bounded poset P up to isomor-
phism-a fact which was also established by Johnson (1971).

Next we will prove a more general isomorphism theorem for semigroups of
residuated mappings on complete lattices, which is not a consequence of 2.2.
Henceforth let L be a complete lattice. As is well known a map <jp on L is
residuated if and only if <p preserves arbitrary joins (including 0). A subset K of
L is called join dense if every element of L is the join of some elements of K. We
now call a subsemigroup S of Res(L) sufficient if it contains the zero map and
satisfies the following two conditions:

(3) the set (If |f G S 2-valued} is join dense in L,
(4) if x, y G L and x ^ y, then there exists a 2-valued map f G S such that

x£ ¥=0andy£ = 0.
The right annihilator of A C S is the set R(A) = {$ G S\<p- \j/ = 0 for all
<p G A } . Again we begin with a lemma.

2.5. LEMMA. Let S be a sufficient subsemigroup of Res(L). For each x G L put
Ax = {<p G 5|l<p < x}.

(i) For x,y ^ L,x < y if and only if R(Ay) C R(AX).
(ii) A map f G S is 2-valued if and only if f ^ 0 and for each <p G S either

(iii) For (p, xp G S, <p < \p if and only if for all 2-valued maps f, £ G S,
f • \p • I = 0 implies f • <p • £ = 0.

(iv) /I jM&se/ A of S is equal to Ax for some x G L (/" am/ OAI/K // ^ « f/ze /e/f
annihilator of R(A).

PROOF. If x < y, then ^ x c Ay and hence /?(/*,,) C R{AX). Ux $y, then there
exist ( p , f e S such that lip < x, l<p $y, y • f =£ 0, >;f = 0; hence / ? (^ ) 2
R(AX), proving (i). Since there are 2-valued maps f , 6 S with im £x = (0, x) for
elements x from a join dense subset of L, we can verify (ii) and (iii) in essentially
the same way as the corresponding assertions of 2.1. It remains to check (iv). If

https://doi.org/10.1017/S1446788700017924 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017924


|5 | Isomorphisms of isotone maps 457

ACS, then \p G R(A) if and only if l(p • \p = 0 for all cp G A or equivalently,
xi/< = 0 where x is the join of all l<p (q> E. A). Given <p G S such that l<p *£ x, (4)
provides us with a map £ G 5 which satisfies <jp • f ^ 0 and xf = 0; hence <p is
not in the left annihilator of R(A). We conclude that {<p G 5"|l<p < x} is the left
annihilator of R(A), completing the proof.

2.6. THEOREM. Let L and M be complete lattices and let S and T be sufficient
subsemigroups ofRes(L) andRes(M) respectively. Every isomorphism F: S -+ T is
induced by a unique isomorphism 9: L —» M.

PROOF. By virtue of 2.5 we can define an isomorphism 6: L —> M by
F(AX) = Axe (x £ L) or equivalently, by 1 F(<p) = 1 <p • 9 for all <p G S. Further,
F establishes a bijection between the 2-valued members of S and T respectively.
If S G S is 2-valued, then 1F(£) = 10 l • J • 9 and for all x G L,

<=> (p • f = 0 for all <p G Ax

<-> x f = 0 ** x£ • 9 = 0.

Hence F(f) = 9'1 • £ • 9. An application of 2.5 settles the equation F(<p) = 0~' •
qp • 0 for all <p G S, and we are done.

For a complete lattice L, let 2(L) be the semigroup of all residuated maps <p
on L such that x<p < x for all x G L. By virtue of Lemma 4 of Schreiner (1973),
2(L) is a sufficient subsemigroup of Res(L) if and only if L is completely
distributive. Hence 2.6 implies

2.7. COROLLARY. Let L and M be completely distributive complete lattices. Any
isomorphism F: S(L)-» 2(M) w induced by a unique isomorphism 9: L—>M.

3. Sufficient semigroups of relations

A binary relation p on a set X can be thought of as a mapping p on the power
set of X: Ap = Ap = {x G X\{a, x) G p for some a E: A), A <Z X. Thus to any
relation semigroup there naturally corresponds a semigroup of isotone maps.
Therefore the results of the preceding section immediately apply to semigroups
of relations. %x and ^ will denote the semigroups of all relations on X and all
dense relations on X respectively; a relation p G %x is called dense whenever
Xp = Xp-1 = X (Schein (1970)).
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Let 5 be a subsemigroup of %x such that 0 e S . Put

5s = {A C Ar|>4 X 5 G S for some 0 ^ f i C l ) ,

§j = ( 8 C X\A X 5 G S for some 0 = ,̂4 C A"}.

If S satisfies the conditions
(5) for all x G X, {x} G §s,
(6) for every 5 6 § s and x £ 5 there exists ^ G fs such that x EL A and

^ n B = 0,
then S is called a sufficient subsemigroup of 9>x.

A semigroup of dense relations is never sufficient in the preceding sense.
Instead, we call a subsemigroup 5 of 6^x sufficient if X X X G 5 and S satisfies
(5) and (6) for the associated sets

<5's = {A Q X\A XXKJXXBELSIOT some B QX},

§s = {B Q X\A X X u X X B G 5 for some A QX}.

If 5 is a sufficient subsemigroup of %x or 6i)x, then the semigroup S of all p:
§ 5 —> § 5 or p: §^ —> § j (p G S) is a sufficient subsemigroup of &P, where P
denotes the poset (§s, c , 0 ) or (g£, D , X X A'), respectively. Now, from 2.2
one obtains without difficulty

3.1. THEOREM. Let S and T be sufficient subsemigroups of <S>X and %Y (or> ^x
and tyy), then for every isomorphism F: S —» T there exists a unique bijection a:
X -+ Y such that F(p) = a1 • p • a for all p G S.

PROOF. By 2.2, F is induced by an isomorphism <p: §s —» §T (qp: Q's —* Q'T,
respectively). Then the bijection a: A"—> Y defined by {xa} = (x}<p (x G A")
induces <p, whence F(p) = a ' • p • a for all p G S.

A subsemigroup S of ®^ which contains all relations {(x, x)} (x G X) is
called a triform semigroup by Magill (1969) or an r-semigroup on X by
McAlister (1971). Hence 3.1 generalizes Theorem 2.2 of Magill (1969); and since
a surjective homomorphism F: S —> T between sufficient subsemigroups of 9>x

and $ y is an isomorphism in case F(p) = 0 «=> p = 0 (p G S), 3.1 also estab-
lishes McAlister (1971), Theorem 6.

The typical application of 3.1 is the production of various isomorphism
theorems for relation semigroups on topological spaces. To illustrate this point
we will have a brief look at semigroups of continuous relations. A relation p on a
topological space X is called continuous if Ap'1 is open whenever A is an open
set in X, Ap'1 is closed whenever A is a closed set in X, and if {x}p is compact
for all x G X. The set C(X) of all continuous relations on A" is a subsemigroup
of 9>x (see Bednarek and Norris (1977)). Evidently, <3CiX) is the set of all clopen
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sets and SC(^) is the set of all compact sets in X. Thus, whenever A' is a
O-dimensional Hausdorff space, C(X) is a sufficient subsemigroup of ^>x.
Applying 3.1, we can therefore improve Theorem 4.7 of Bednarek and Norris
(1977):

3.2 COROLLARY. Let X and Y be O-dimensional Hausdorff spaces. Then every
isomorphism F: C(X) —> C(Y) is induced by a unique homeomorphism a: X —> Y.

PROOF. The bijection a given by 3.1 induces a bijection between the sets of
clopen sets in X and Y respectively, and thus is a homeomorphism.

The analogous isomorphism theorem, of qourse, holds for the semigroups of
all continuous dense relations. All this may also be derived from Theorem 2 of
Schein (1970). His Theorem 1 settles another case which is not attainable by our
results. Call a relation p G ^ wide if A>~' = X; for a topological space X let
CW(A") denote the semigroup of all continuous wide relations on X. By^C(A')
denote the set of all non-empty compact sets in X. CW(A") corresponds to the
semigroup CW(X) of all p: %(X) -> %(X), p E CW(Ar). Since for every clopen
set A and compact sets Bx C B2 in X, the relation A X B, u (X — A) X B2 is
continuous and wide, for any O-dimensional Hausdorff space X, CW(A') is a
sufficient subsemigroup of the semigroup of all isotone maps on %(X) in the
sense of Schein (1970). Hence we arrive at the following result which partially
answers a question of Bednarek and Norris (1977).

3.3. PROPOSITION. Let X and Y be O-dimensional Hausdorff spaces. Then every
isomorphism F: CW(Ar)->CW(y) is induced by a unique homeomorphism a:
X-+Y.

PROOF. From Schein (1970), Theorem 1 we infer that F must either be
induced by an isomorphism or a dual isomorphism between %{X) and %(Y).
Since the latter case is obviously impossible, we finally get the desired homeo-
morphism a as in 3.2.

The requirement for a subsemigroup 5 of 9>x that all singletons be in @s (or
^s) is not always necessary to prove a theorem analogous to 3.1. For, consider a
locally compact O-dimensional space X. The lattice tx of all compact open sets
in A' is a generalized Boolean lattice whose Stone space is homeomorphic to X
(see Gratzer (1978)). Because of the Stone duality any isomorphism between
such lattices &x and £y is induced by a unique homeomorphism a: X —» Y.
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Hence 2.2 implies

3.4. COROLLARY. Let X and Y be locally compact 0-dimensional spaces. Then
every isomorphism between the semigroups of all compact open relations on X and
Y is induced by a unique homeomorphism of X onto Y.

For compact 0-dimensional spaces 3.4 specializes to the isomorphism theorem
for the semigroups of all clopen relations on Boolean spaces, which was proved
by Bednarek and Magill (1976).
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