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Abstract

We show that every subset of vertices of a directed graph E gives a Morita equivalence between a
subalgebra and an ideal of the associated Leavitt path algebra. We use this observation to prove an
algebraic version of a theorem of Crisp and Gow: certain subgraphs of E can be contracted to a new
graph G such that the Leavitt path algebras of E and G are Morita equivalent. We provide examples to
illustrate how desingularising a graph, and in- or out-delaying of a graph, all fit into this setting.

2010 Mathematics subject classification: primary 16D70.

Keywords and phrases: directed graph, Leavitt path algebra, Morita context, Morita equivalence, graph
algebra.

1. Introduction
Given a directed graph E, Crisp and Gow identified in [11, Theorem 3.1] a type of
subgraph which can be ‘contracted’ to give a new graph G whose C∗-algebra C∗(G)
is Morita equivalent to C∗(E). Crisp and Gow’s construction is widely applicable, as
they point out in [11, Section 4]. It includes, for example, Morita equivalences of the
C∗-algebras of graphs that are elementary-strong-shift-equivalent [5, 12] or are in- or
out-delays of each other [6]. Two of the basic moves discussed in [17] are special
cases of the Crisp–Gow construction.

The C∗-algebra of a directed graph E is the universal C∗-algebra generated by
mutually orthogonal projections pv and partial isometries se associated to the vertices v
and edges e of E, respectively, subject to relations. In particular, the relations capture
the connectivity of the graph. For any subset V of vertices,

∑
v∈V pv converges to a

projection p in the multiplier algebra of C∗(E). (If V is finite, then p is in C∗(E).) Then
the module pC∗(E) implements a Morita equivalence between the corner pC∗(E)p of
C∗(E) and the ideal C∗(E)pC∗(E) of C∗(E). The difficult part is to identify pC∗(E)p
and C∗(E)pC∗(E) with known algebras. The corner pC∗(E)p may not be another graph
algebra, but sometimes it is (see, for example, [10] and [4]). The projection p is called
full when C∗(E)pC∗(E) = C∗(E).
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Now let R be a commutative ring with identity. A purely algebraic analogue of the
graph C∗-algebra is the Leavitt path algebra LR(E) over R. This paper is based on the
very simple observation that every subset V of the vertices of a directed graph E gives
an algebraic version of the Morita equivalence between pC∗(E)p and C∗(E)pC∗(E)
for Leavitt path algebras (see Theorem 3.1). We show that this observation is
widely applicable by proving an algebraic version of Crisp and Gow’s theorem (see
Theorem 4.1). A special case of this result has been very successfully used in both
[2, Section 3] and [14].

If V is infinite, we cannot make sense of the projection p in LR(E), but we can make
sense of the algebraic analogues of the sets pC∗(E), pC∗(E)p and C∗(E)pC∗(E). For
example,

pC∗(E) = span{sµs∗ν : µ, ν are paths in E and µ has range in V}

has analogue

M = spanR{sµsν∗ : µ, ν are paths in E and µ has range in V},

where we also use se and pv for universal generators of LR(E). Theorem 3.1 below
gives a surjective Morita context (M,M∗,MM∗,M∗M) between the R-subalgebra MM∗

and the ideal M∗M of LR(E). The set V is full, in the sense that M∗M = LR(E), if
and only if the saturated hereditary closure of V is the whole vertex set of E (see
Lemma 3.2).

Recently, the first author and Sims proved in [9, Theorem 5.1] that equivalent
groupoids have Morita equivalent Steinberg R-algebras. They then proved that the
graph groupoids of the graphs G and E appearing in Crisp and Gow’s theorem are
equivalent groupoids [9, Proposition 6.2]. Since the Steinberg algebra of a graph
groupoid is canonically isomorphic to the Leavitt path algebra of the graph, they
deduced that the Leavitt path algebras of LR(G) and LR(E) are Morita equivalent.

In particular, we obtain a direct proof of [9, Proposition 6.2] using only elementary
methods. There are two advantages to our elementary approach: it illustrates on
the one hand where we have had to use different techniques from the C∗-algebraic
analogue, and on the other hand where we can just use the C∗-algebraic results already
established.

2. Preliminaries

A directed graph E = (E0, E1, r, s) consists of countable sets E0 and E1, and range
and source maps r, s : E1 → E0. We think of E0 as the set of vertices, and of E1 as the
set of edges directed by r and s. A vertex v is called an infinite receiver if |r−1(v)| =∞
and is called a source if |r−1(v)| = 0. Sources and infinite receivers are called singular
vertices.

We use the convention established in [16] that a path is a sequence of edges
µ = µ1µ2 · · · such that s(µi) = r(µi+1). We denote the ith edge in a path µ by µi. We say
that a path µ is finite if the sequence is finite and denote its length by |µ|. Vertices are
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regarded as paths of length 0. We denote the set of finite paths by E∗ and the set of
infinite paths by E∞. We usually use the letters x, y for infinite paths. We extend the
range map r to µ ∈ E∗ ∪ E∞ by r(µ) = r(µ1); for µ ∈ E∗, we also extend the source map
s by s(µ) = s(µ|µ|).

Let (E1)∗ := {e∗ : e ∈ E1} be a set of formal symbols called ghost edges. If µ ∈ E∗,
then we write µ∗ for µ∗

|µ| · · ·µ
∗
2µ
∗
1 and call it a ghost path. We extend r and s to the ghost

paths by r(µ∗) = s(µ) and s(µ∗) = r(µ).
Let R be a commutative ring with identity and let A be an R-algebra. A Leavitt

E-family in A is a set {Pv, Se, Se∗ : v ∈ E0, e ∈ E1} ⊂ A, where {Pv : v ∈ E0} is a set of
mutually orthogonal idempotents, and:

(L1) Pr(e)Se = Se = SePs(e) and Ps(e)Se∗ = Se∗ = Se∗Pr(e) for e ∈ E1;
(L2) Se∗S f = δe, f Ps(e) for e, f ∈ E1; and
(L3) for all nonsingular v ∈ E0, Pv =

∑
r(e)=v SeSe∗ .

For a path µ ∈ E∗, we set S µ := S µ1 · · · S µ|µ| . The Leavitt path algebra LR(E) is
the universal R-algebra generated by a universal Leavitt E-family {pv, se, se∗}: that is,
if A is an R-algebra and {Pv, Se, Se∗} is a Leavitt E-family in A, then there exists a
unique R-algebra homomorphism π : LR(E)→ A such that π(pv) = Pv and π(se) = Se

[18, Section 3]. It follows from (L2) that

LR(E) = spanR{sµsν∗ : µ, ν ∈ E∗}.

Remark 2.1. Our definition of the Leavitt path algebra LR(E) as a universal algebra
comes from [18]. Often LR(E) is presented concretely as a quotient of the free algebra
generated by the edges and vertices subject to the relations (L1)–(L3) above. The
relations (L1)–(L3) are formulated to fit our path convention.

3. Subsets of vertices of a directed graph give Morita equivalences

Theorem 3.1. Let E be a directed graph, let R be a commutative ring with identity and
let {pv, se, se∗} be a universal generating Leavitt E-family in LR(E). Let V ⊂ E0 and

M := spanR{sµsν∗ : µ, ν ∈ E∗, r(µ) ∈ V} and M∗ := spanR{sµsν∗ : µ, ν ∈ E∗, r(ν) ∈ V}.

Then:

(1) MM∗ is an R-subalgebra of LR(E);
(2) MM∗ = span{sµsν∗ : r(µ), r(ν) ∈ V} and M∗M is an ideal of LR(E) containing

MM∗;
(3) with actions given by multiplication in LR(E), M is an MM∗–M∗M-bimodule

and M∗ is an M∗M–MM∗-bimodule;
(4) there are bimodule homomorphisms

Ψ : M ⊗M∗M M∗ → MM∗ and Φ : M∗ ⊗MM∗ M → M∗M

such that (MM∗,M∗M,M,M∗,Ψ,Φ) is a surjective Morita context.
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Proof. We have

MM∗ = spanR{pvsµsν∗ sαs∗βpw : v,w ∈ V, α, β, µ, ν ∈ E∗}.

Products of the form sµsν∗ sαs∗β are either zero or of the form sµsγsδ∗ sν∗ = sµγs(νδ)∗ for
some γ, δ ∈ E∗. Thus, it is easy to see that MM∗ is a subalgebra of LR(E) and

MM∗ = spanR{pvsµsν∗ pw : v,w ∈ V, µ, ν ∈ E∗} = span{sµsν∗ : µ, ν ∈ E∗, r(µ), r(ν) ∈ V}.

Similarly, M∗M is an ideal.
To see that MM∗ ⊂ M∗M, take a spanning element sµsν∗ of MM∗. Then r(µ) ∈ V ,

sµsν∗ ∈ M and sµsν∗ = pr(µ) pr(µ)∗ sµsν∗ ∈ M∗M. Thus, MM∗ ⊂ M∗M.
Since the module actions are given by multiplication in LR(E), it is easy to verify

that M is an MM∗–M∗M-bimodule and M∗ is an M∗M–MM∗-bimodule. The function
f : M ×M∗→ MM∗ defined by f (m,n) = mn is bilinear and f (md,n) = f (m,dn) for all
d ∈ M∗M. By the universal property of the balanced tensor product, there is a bimodule
homomorphism Ψ : M ⊗M∗M M∗ → MM∗ with Ψ(m ⊗ n) = f (m, n) = mn. Similarly,
there is a bimodule homomorphism Φ : M∗ ⊗MM∗ M → M∗M such that Φ(n,m) = nm.
Both Ψ and Φ are surjective. Since multiplication in LR(E) is associative, for m,m′ ∈
M, n, n′ ∈ M∗,

mΦ(n ⊗ m′) = mnm′ = Ψ(m ⊗ n)m′ and nΨ(m ⊗ n′) = nmn′ = Φ(n ⊗ m)n′.

Thus, (MM∗,M∗M,M,M∗,Ψ,Φ) is a surjective Morita context. �

In the situation of Theorem 3.1, we say that a subset V of E0 is full if the ideal M∗M
is all of LR(E). We want a graph-theoretic characterisation of fullness, so we want the
algebraic version of [6, Lemma 2.2]. We need some definitions.

For v,w ∈ E0, we write v ≤ w if there is a path µ ∈ E∗ such that s(µ) = w and r(µ) = v.
We say that a subset H of E0 is hereditary if v ∈ H and v ≤ w implies w ∈ H. A
hereditary subset H of E0 is saturated if

v ∈ E0, 0 < |r−1(v)| <∞ and s(r−1(v)) ⊂ H =⇒ v ∈ H.

We denote by ΣH(V) the smallest saturated hereditary subset of E0 containing V . For
a saturated hereditary subset H of E0, we write IH for the ideal of LR(E) generated by
{pv : v ∈ H}.

Lemma 3.2. Let E be a directed graph and let V ⊂ E0. Then V is full if and only if
ΣH(V) = E0.

Proof. Let R be a commutative ring with identity and {pv, se, se∗} a universal generating
Leavitt E-family in LR(E). As in Theorem 3.1, let M = spanR{sµsν∗ : r(µ) ∈ V}.

First suppose that V is full, that is, that M∗M = LR(E). To see that ΣH(V) = E0, fix
v ∈ E0. Then pv ∈ M∗M, and we can write pv as a linear combination

pv =
∑

(α,β)∈F1, (µ,ν)∈F2

rα,β,µ,νsαsβ∗ sµsν∗ ,

where F1, F2 are finite subsets of E∗ × E∗, each rα,β,µ,ν ∈ R and r(β) = r(µ) ∈ V .
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Since ΣH(V) is a hereditary subset containing V , we have s(β), s(µ) ∈ ΣH(V) and
hence ps(β), ps(µ) ∈ IΣH(V). Thus, each summand

sαsβ∗ sµsν∗ = sαps(α)sβ∗ sµps(µ)sν∗ ∈ IΣH(V).

It follows that pv ∈ IΣH(V). Thus, v ∈ ΣH(V) and hence E0 ⊂ ΣH(V). The reverse set
inclusion is trivial. Thus, ΣH(V) = E0.

Conversely, suppose that ΣH(V) = E0. To see that V is full, we need to show that
the ideal M∗M is all of LR(E). For this, suppose that I is an ideal of LR(E) containing
MM∗. It suffices to show that LR(E) = I. By Theorem 3.1, M∗M is an ideal of LR(E)
containing MM∗ and, taking I = M∗M, gives LR(E) = M∗M, as needed.

By [18, Lemma 7.6], the subset HI := {v ∈ E0 : pv ∈ I} of E0 is a saturated hereditary
subset of E0. Since I contains MM∗, we have pv ∈ I for all v ∈ V . Thus, V ⊂ HI

and, since HI is a saturated hereditary subset, we get ΣH(V) ⊂ HI . By assumption,
ΣH(V) = E0 and now LR(E) = IE0 = IΣH(V) ⊂ IHI ⊂ I ⊂ LR(E). So, LR(E) = I for any
ideal I containing MM∗. Thus, V is full. �

4. Contractible subgraphs of directed graphs

We start by stating the algebraic version of the result of Crisp and Gow [11,
Theorem 3.1]. For this we need a few more definitions. Our path convention differs
from that used in [11] and we make the appropriate adjustment.

Let E be a directed graph. A finite path α = α1α2 · · ·α|α| in E with |α| ≥ 1 is a cycle if
s(α) = r(α) and s(αi) , s(α j) when i , j. Then E (respectively, a subgraph) is acyclic
if it contains no cycles. An acyclic infinite path x = x1x2 · · · in E is a head if each r(xi)
receives only xi and each s(xi) emits only xi.

If E has a head, we can get a new graph F by collapsing the head down to a source.
This is an example of a desingularisation and hence LR(F) and LR(E) are Morita
equivalent by [1, Proposition 5.2]. Thus, the ‘no-heads’ hypothesis in Theorem 4.1
below is not restrictive.

We thank the referee for pointing us to [15]. Our Theorem 4.1 generalises [15,
Theorem 3.1] to graphs with infinitely many vertices and to commutative rings instead
of fields.

Theorem 4.1. Let R be a commutative ring with identity, let E be a directed graph
with no heads and let {pv, se, se∗} be a universal generating Leavitt E-family in LR(E).
Suppose that G0 ⊂ E0 contains the singular vertices of E. Suppose also that the
subgraph T of E defined by

T 0 := E0\G0 and T 1 := {e ∈ E1 : s(e), r(e) ∈ T 0}

is acyclic. Suppose that:

(T1) each vertex in G0 is the range of at most one infinite path x ∈ E∞ such that
s(xi) ∈ T 0 for all i ≥ 1.

Also, suppose that for each y ∈ T∞:
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(T2) there is a path from r(y) to a vertex in G0;
(T3) |s−1(r(yi))| = 1 for all i; and
(T4) e ∈ E1, s(e) = r(y) =⇒ |r−1(r(e))| <∞.

Let G be the graph with vertex set G0 and one edge eβ for each β ∈ E∗\E0 with
s(β), r(β) ∈ G0 and s(βi) ∈ T 0 for 1 ≤ i < |β|, such that s(eβ) = s(β) and r(eβ) = r(β).
Then LR(G) is Morita equivalent to LR(E).

In words, the new graph G of Theorem 4.1 is obtained by replacing each path β ∈ E∗

with s(β), r(β) in G0 of length at least 1 which passes through T by a single edge eβ,
which has the same source and range as β. Note that the edges e in E with r(e) and
s(e) in G0 remain unchanged.

Let v ∈ E0. As in [11], define

Bv = {β ∈ E∗\E0 : r(β) = v, s(β) ∈ G0 and s(βi) ∈ T 0 for 1 ≤ i < |β|}.

Then
⋃

w∈G0 Bw of E∗ corresponds to the set of edges G1 in G.
To prove Theorem 4.1, we apply Theorem 3.1 with V = G0, so that

M = spanR{sµsν∗ : r(µ) ∈ G0}.

Then M∗M is an ideal of LR(E) containing the subalgebra MM∗, and M∗M and
MM∗ are Morita equivalent. We need to show that M∗M = LR(E) and that MM∗

is isomorphic to LR(G). Our proof uses quite a few of the arguments from Crisp
and Gow’s proof of [11, Theorem 3.1]. In particular, Lemma 3.6 of [11] gives a
Cuntz–Krieger G-family in C∗(E) and, since the proof is purely algebraic, it also
gives a Leavitt G-family in LR(E). The universal property of LR(G) then gives a
unique homomorphism φ : LR(G)→ LR(E). Crisp and Gow used the gauge-invariant
uniqueness theorem to show that their C∗-homomorphism is one-to-one. The analogue
here would be the graded uniqueness theorem; however, φ is not graded. Instead,
to show that φ is one-to-one, we adapt some clever arguments from the proof of
[1, Proposition 5.1] in Lemma 4.3 below which uses a reduction theorem.

Theorem 4.2 (Reduction theorem). Let R be a commutative ring with identity, let E be
a directed graph and let {pv, se, se∗} be a universal Leavitt E-family in LR(E). Suppose
that 0 , x ∈ LR(E). There exist µ, ν ∈ E∗ such that either:

(1) for some v ∈ E0 and 0 , r ∈ R, we have 0 , sµ∗ xsν = rpv; or
(2) there exist m, n ∈ Z with m ≤ n, ri ∈ R and a nontrivial cycle α ∈ E∗ such that

0 , sµ∗ xsν =
∑n

i=m risi
α. (If i is negative, then si

α := s|i|α∗ .)

Proof. For Leavitt path algebras over a field, this is proved in [3, Proposition 3.1].
We checked carefully that the same proof works over a commutative ring R with
identity. �

Lemma 4.3. Let R be a commutative ring with identity. Let E and G be directed graphs
and let φ : LR(G)→ LR(E) be an R-algebra ∗-homomorphism. Denote by {pv, se, se∗}

and {qv, te, te∗} universal Leavitt E- and G-families in LR(E) and LR(G), respectively.
Suppose that:
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(1) for all v ∈ G0, φ(qv) = pv′ for some v′ ∈ E0; and
(2) for all e ∈ G1, φ(te) = sβ for some β ∈ E∗ with |β| ≥ 1.

Then φ is injective.

Proof. We follow an argument made in [1, Proposition 5.1]. Let x ∈ kerφ. Aiming for
a contradiction, suppose that x , 0. By Theorem 4.2, there exist µ, ν ∈ G∗ such that
either condition (1) or (2) of the theorem holds.

First, suppose that (1) holds, that is, there exist v ∈ G0 and 0 , r ∈ R such that
0 , tµ∗ xtν = rqv. Using assumption (1), there exists v′ ∈ E0 such that φ(qv) = pv′ . Now

0 = φ(tµ∗ xtν) = φ(rqv) = rφ(qv) = rpv′ .

But rpv′ , 0 since r , 0, giving a contradiction.
Second, suppose that (2) holds, that is, there exist m, n ∈ Z with m ≤ n, ri ∈ R and a

nontrivial cycle α ∈ E∗ such that 0 , tµ∗ xtν =
∑n

i=m riti
α. Since α is a nontrivial cycle, it

has length at least 1. By assumption (2), φ(tα) = sα′ , where α′ is a path in E such that
|α′|E ≥ |α|G ≥ 1. Since φ is an R-algebra ∗-homomorphism,

0 = φ(tµ∗ xtν) = φ
( n∑

i=m

riti
α

)
=

n∑
i=m

riφ(tα)i =

n∑
i=m

risi
α′ .

Since |α′| = k for some k ≥ 1, sα′ has grading k and hence each si
α′ has grading ik.

Thus, each term in the sum
∑n

i=m risi
α′ is in a distinct graded component. But, since

sα′ , 0, we must have ri = 0 for all i. Thus,
∑n

i=m riti
α = 0, which is a contradiction. In

either case, we obtained a contradiction to the assumption that x , 0. Thus, x = 0 and
φ is injective. �

Proof of Theorem 4.1. Let {pv, se, se∗} be a universal Leavitt E-family in LR(E). We
apply Theorem 3.1 with V = G0 to get a surjective Morita context between MM∗ and
M∗M.

Since M and M∗ ⊂ LR(E), we have M∗M ⊂ LR(E). To see that LR(E) ⊂ M∗M, let
sµsν∗ ∈ LR(E). We may assume that s(µ) = s(ν), for otherwise sµsν∗ = 0. If s(µ) ∈ G0,
then the Leavitt E-family relations give sµsν∗ = sµss(µ)∗ ss(µ)sν∗ ∈ M∗M and we are done.
So, suppose that s(µ) ∈ T 0. Then the graph-theoretic [11, Lemma 3.4(c)] implies that
Bs(µ) , ∅. Suppose first that Bs(µ) is finite. It then follows from the first part of [11,
Lemma 3.6] that s(µ) is a nonsingular vertex. The second part of [11, Lemma 3.6]
implies that for any Cuntz–Krieger E-family {Pv, Se, Se∗} in C∗(E),

Ps(µ) =
∑
β∈Bs(µ)

SβSβ∗ ;

the proof is purely algebraic and works for any Leavitt E-family in LR(E). Thus,

sµsν∗ = sµps(µ)sν∗ =
∑
β∈Bs(µ)

sµsβsβ∗ sν∗ =
∑
β∈Bs(µ)

sµβss(β)∗ ss(β)s(νβ)∗ ∈ M∗M.
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Next suppose that Bs(µ) is infinite. Since s(µ) ∈ T 0 and Bs(µ) is infinite, the graph-
theoretic [11, Lemma 3.4(d)] implies that there exists x ∈ T∞ such that s(µ) = r(x). By
assumption (T2), there is a path α ∈ E∗ with r(α) ∈ G0 such that s(α) = r(x) = s(µ).
Now

sµsν∗ = sµps(µ)sν∗ = sµsα∗ sαsν∗ ∈ M∗M.

Thus, LR(E) = M∗M. (We could have used Lemma 3.2 to prove that LR(E) = M∗M, as
Crisp and Gow do, but this seemed easier.)

Next we show that LR(G) and M∗M are isomorphic. For v ∈ G0 and β ∈
⋃

w∈G0 Bw,
define

Qv = pv, Teβ = sβ and Te∗β = sβ∗ .

Then {Qv, Te, Te∗} is a Leavitt G-family in LR(E); again this follows as in the proof of
[11, Theorem 3.1]. To see what is involved, we briefly step through this. Relations
(L1) follow immediately from the relations for {pv, se, se∗}. To see that (L2) holds,
let γ, β ∈

⋃
w∈G0 Bw. Then Te∗βTeγ = sβ∗ sγ. By the graph-theoretic [11, Lemma 3.4(a)],

neither γ nor β can be a proper extension of the other. Thus,

Te∗βTeγ = sβ∗ sγ = δβ,γps(β) = δeβeγQs(eβ)

and (L2) holds.
To see that (L3) holds, let v ∈ G0 be a nonsingular vertex. Then Bv is finite and

nonempty because it is equinumerous with r−1
G (v). Using the algebraic analogue of

[11, Lemma 3.6] again,

Qv = pv =
∑
β∈Bv

sβsβ∗ =
∑

eβ∈r−1
G (v)

TeβTe∗β .

Thus, (L3) holds and {Qv,Te,Te∗} is a Leavitt G-family in LR(E).
Now let {qv, te, te∗} be a universal Leavitt G-family in LR(G). The universal property

of LR(G) gives a unique homomorphism φ : LR(G)→ LR(E) such that for v ∈ G0,
β ∈

⋃
w∈G0 Bw,

φ(qv) = Qv = pv, φ(teβ) = Teβ = sβ and φ(te∗β) = Te∗β = sβ∗ .

If v ∈ G0, we have pv = svsv∗ ∈ MM∗; if β ∈ Bw for some w ∈ G0, then r(β) is in
G0 and sβ = sβss(β)∗ and sβ∗ = ss(β)sβ∗ ∈ MM∗. It follows that the range of φ is
contained in MM∗. That φ is onto MM∗ again follows from work of Crisp and Gow.
They take a nonzero spanning element sµsν∗ ∈ MM∗ and use the graph-theoretic [11,
Lemma 3.4(b)], the algebraic [11, Lemma 3.6] and assumptions (T1)–(T4) to show
that sµsν∗ is in the range of φ. Thus, φ is onto.

Finally, φ satisfies the hypotheses of Lemma 4.3 and hence is one-to-one. Thus, φ
is an isomorphism of LR(G) onto MM∗. �

Remark 4.4. A version of Theorem 3.1 should hold for the Kumjian–Pask algebras
associated to locally convex or finitely aligned k-graphs [7, 8]. But the challenge
would be to formulate an appropriate notion of contractible subgraph in that setting.
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Figure 1. The graph E of Example 5.1.

Figure 2. The collapsed graph F of Example 5.1.

Figure 3. The graph F of Example 5.2.

5. Examples

As mentioned in the introduction, the setting of Theorem 4.1 includes many known
examples. We found it helpful to see how some concrete examples fit.

Example 5.1. An infinite path x = x1x2 · · · in a directed graph is collapsible if x has no
exits except at r(x), the set r−1(r(xi)) of edges is finite for every i and r−1(r(x)) = {x1}

(see [16, Ch. 5]). Consider the row-finite directed graph E shown in Figure 1.
The infinite path x = x1x2 · · · is collapsible. When we collapse x to the vertex v0,

as described in [16, Proposition 5.2], we get the graph F in Figure 2 with an infinite
receiver at v0.

This fits the setting of Theorem 4.1. Take G0 = {vi : i ≥ 0}. Then T is the subgraph
defined by T 0 = {s(xi) : i ≥ 1} and T 1 = {xi : i ≥ 2}, and T contains none of the singular
vertices {vi : i ≥ 2} of E, is acyclic and satisfies the conditions (T1)–(T4). Thus, F is
the graph G described in the theorem.

Example 5.2. Consider the directed graph F in Figure 3 with source w and infinite
receiver v.

An example of a Drinen–Tomforde desingularisation [13] of F is the row-finite
graph E′ with no sources on the left in Figure 4: a head has been added at the source
w of F and each edge from w to v in F has been replaced with paths as shown.
(This desingularisation is an example of an out-delay.) Since we are interested in
Morita equivalence, we delete the head at w to get the graph E on the right in Figure 4.

Set T 0 = E0\{v,w} and T 1 = {e ∈ E1 : s(e), r(e) ∈ T 0}. Then the subgraph T contains
none of the singularities of E, is acyclic and satisfies conditions (T1)–(T4) of
Theorem 4.1. The graph F we started with is the graph G of Theorem 4.1.
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Figure 4. The desingularised graphs E′ (left) and E (right) of Example 5.2.

Figure 5. The in-delayed graph ds(E) of Example 5.3.

Example 5.3. Consider again the graph F of Example 5.2. Label the infinitely many
edges from w to v by ei for i ≥ 1. This time we will consider the in-delayed graph
ds(E) given by the Drinen source-vector ds : E0 ∪ E1 → N ∪ {∞} (see [6, Section 4])
to be the function defined by ds(ei) = i − 1 for i ≥ 1, ds(v) = 0 and ds(w) = ∞. Then
the in-delayed graph ds(E) given by ds, as described in [6], is shown in Figure 5.

Now take T 0 = ds(E)0\{v0,w0}. Then T 0 contains none of the singular vertices of
ds(E) and the corresponding subgraph T is acyclic. There are no infinite paths in
ds(E) and hence conditions (T1)–(T4) of Theorem 4.1 hold trivially. The graph G of
the theorem is again the graph F that we started out with.
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