# COMPOSITIO MATHEMATICA 

## Relation between two twisted inverse image pseudofunctors in duality theory

Srikanth B. Iyengar, Joseph Lipman and Amnon Neeman

Compositio Math. 151 (2015), 735-764.

# Relation between two twisted inverse image pseudofunctors in duality theory 

Srikanth B. Iyengar, Joseph Lipman and Amnon Neeman


#### Abstract

Grothendieck duality theory assigns to essentially finite-type maps $f$ of noetherian schemes a pseudofunctor $f^{\times}$right-adjoint to $\operatorname{R} f_{*}$, and a pseudofunctor $f^{!}$agreeing with $f^{\times}$when $f$ is proper, but equal to the usual inverse image $f^{*}$ when $f$ is étale. We define and study a canonical map from the first pseudofunctor to the second. This map behaves well with respect to flat base change, and is taken to an isomorphism by 'compactly supported' versions of standard derived functors. Concrete realizations are described, for instance for maps of affine schemes. Applications include proofs of reduction theorems for Hochschild homology and cohomology, and of a remarkable formula for the fundamental class of a flat map of affine schemes.


## Introduction

The relation in the title is given by a canonical pseudofunctorial map $\psi:(-)^{\times} \rightarrow(-)^{!}$between 'twisted inverse image' pseudofunctors with which Grothendieck duality theory is concerned. These pseudofunctors on the category $\mathcal{E}$ of essentially finite-type separated maps of noetherian schemes take values in bounded-below derived categories of complexes with quasi-coherent homology, see $\S \S 1.1$ and 1.2. The map $\psi$, derived from the pseudofunctorial 'fake unit map' id $\rightarrow(-)^{!} \circ \mathrm{R}(-)_{*}$ of Proposition 2.1, is specified in Theorem 2.1.4. A number of concrete examples appear in $\S 3$. For instance, if $f$ is a map in $\mathcal{E}$, then $\psi(f)$ is an isomorphism if $f$ is proper; but if $f$ is, say, an open immersion, so that $f^{!}$is the usual inverse image functor $f^{*}$ whereas $f^{\times}$is right-adjoint to $\mathrm{R} f_{*}$, then $\psi(f)$ is usually quite far from being an isomorphism (see, e.g., Corollaries 3.1.2 and 3.1.3 and Proposition 3.3).

After some preliminaries are covered in §1, the definition of the pseudofunctorial map $\psi$ is worked out at the beginning of $\S 2$. Its good behavior with respect to flat base change is given by Proposition 2.2.

The rest of $\S 2$ shows that under suitable 'compact support' conditions, various operations from duality theory take $\psi$ to an isomorphism. To wit: let $\mathbf{D}_{\mathrm{qc}}(X)$ be the derived category of $\mathcal{O}_{X}$-complexes with quasi-coherent homology, and let RH om ${ }_{X}^{\mathrm{qc}}(-,-)$ be the internal hom in the closed category $\mathbf{D}_{\mathrm{qc}}(X)$ (§1.5). Proposition 2.3.2 states the following.

[^0]
## S. B. Iyengar, J. Lipman and A. Neeman

If $f: X \rightarrow Y$ is a map in $\mathcal{E}$, if $W$ is a union of closed subsets of $X$ to each of which the restriction of $f$ is proper, and if $E \in \mathbf{D}_{\mathrm{qc}}(X)$ has support contained in $W$, then each of the functors $\mathrm{R} \Gamma_{W}(-)$, $E \otimes_{X}^{\mathrm{L}}(-)$ and $\mathrm{RH} \mathrm{Hom}_{X}^{\mathrm{qc}}(E,-)$ takes the map $\psi(f): f^{\times} \rightarrow f^{!}$to an isomorphism.

The proof uses properties of a bijection between subsets of $X$ and 'localizing tensor ideals' in $\mathbf{D}_{\mathrm{qc}}(X)$, reviewed in Appendix A. A consequence is that even for nonproper $f, f^{!}$still has dualizing properties for complexes having support in such a $W$ (Corollary 2.3.3); and there results, for $d=\sup \left\{\ell \mid H^{\ell} f^{!} \mathcal{O}_{Y} \neq 0\right\}$ and $\omega_{f}$ a relative dualizing sheaf, a 'generalized residue map'

$$
\int_{W}: H^{d} \mathrm{R} f_{*} \mathrm{R} \Gamma_{W}\left(\omega_{f}\right) \rightarrow \mathcal{O}_{Y}
$$

Proposition 2.3.5 says that for $\mathcal{E}$-maps $W \xrightarrow{g} X \xrightarrow{f} Y$ of noetherian schemes such that $f g$ is proper, and any $F \in \mathbf{D}_{\mathrm{qc}}(X), G \in \mathbf{D}_{\mathrm{qc}}^{+}(Y)$, the functors $\mathrm{L} g^{*} \boldsymbol{R} \mathcal{H} m_{X}^{\mathrm{qc}}(F,-)$ and $g^{\times} \mathrm{RHom} \mathrm{H}_{X}^{\mathrm{qc}}(F,-)$ both take the map $\psi(f) G: f^{\times} G \rightarrow f^{!} G$ to an isomorphism.

Section 3 gives some concrete realizations of $\psi$. Besides the examples mentioned above, one has that if $R$ is a noetherian ring, $S$ a flat essentially finite-type $R$-algebra, $f: \operatorname{Spec} S \rightarrow \operatorname{Spec} R$ the corresponding scheme-map, and $M$ an $R$-module, with sheafification $\mathcal{M}$, then with $S^{e}:=$ $S \otimes_{R} S$, the map $\psi(f)(\mathcal{M}): f^{\times} \mathcal{M} \rightarrow f^{!} \mathcal{M}$ is the sheafification of a simple $\mathbf{D}(S)$-map

$$
\begin{equation*}
\operatorname{RHom}_{R}(S, M) \rightarrow S \otimes_{S^{\mathrm{e}}}^{\llcorner } \operatorname{RHom}_{R}\left(S, S \otimes_{R} M\right) \tag{0.0.1}
\end{equation*}
$$

described in Proposition 3.2.9. So if $S \rightarrow T$ is an $R$-algebra map with $T$ module-finite over $R$, then, as above, the functors $T \otimes_{S}^{L}-$ and $\operatorname{RHom}_{S}(T,-)$ take (0.0.1) to an isomorphism.

In the case where $R$ is a field, more information about the map (0.0.1) appears in Proposition 3.3: the map is represented by a split $S$-module surjection with an enormous kernel.

In §4, there are two applications of the map $\psi$. The first is to a 'reduction theorem' for the Hochschild homology of flat $\mathcal{E}$-maps that was stated in [AILN10, Theorem 4.6] in algebraic terms (see (4.1.1) below), with only an indication of proof. The scheme-theoretic version appears here in Theorem 4.1.8.

The paper [AILN10] also treats the nonflat algebraic case, where $S^{e}$ becomes a derived tensor product. In fact, we conjecture that the natural home of the reduction theorems is in a more general derived-algebraic-geometry setting.

The special case (4.1.1)' of (4.1.1) gives a canonical description of the relative dualizing sheaf $f^{!} \mathcal{O}_{Y}$ of a flat $\mathcal{E}$-map $f: X \rightarrow Y$ between affine schemes. The proof is based on the known theory of $f^{!}$, which is constructed using arbitrary choices, such as a compactification of $f$ or a factorization of $f$ as smooth $\circ$ finite; but the choice-free formula (4.1.1)' might be a jumping-off point for a choice-free redevelopment of the underlying theory.

The second application is to a simple formula for the fundamental class of a flat map $f$ of affine schemes. The fundamental class of a flat $\mathcal{E}$-map $g: X \rightarrow Y$, a globalization of the Grothendieck residue map, goes from the Hochschild complex of $g$ to the relative dualizing complex $g^{\prime} \mathcal{O}_{Y}$. This map is defined in terms of sophisticated abstract notions from duality theory (see (4.2.1)). But for maps $f: \operatorname{Spec} S \rightarrow \operatorname{Spec} R$ as above, Theorem 4.2.4 says that, with $\mu: S \rightarrow \operatorname{Hom}_{R}(S, S)$ the $S^{\text {e}}$-homomorphism taking $s \in S$ to multiplication by $s$, the fundamental class is isomorphic to the sheafification of the natural composite map

$$
S \otimes_{S^{\mathrm{e}}}^{\mathrm{L}} S \xrightarrow{\mathrm{id} \otimes \mu} S \otimes_{S^{\mathrm{e}}}^{\mathrm{L}^{\mathrm{H}} \operatorname{Hom}_{R}(S, S) \longrightarrow S \otimes_{S^{\mathrm{e}}}^{\mathrm{L}} \mathrm{RHom}_{R}(S, S) . . . . . .}
$$

## RELATION BETWEEN TWO TWISTED INVERSE IMAGE PSEUDOFUNCTORS

## 1. Preliminaries: twisted inverse image functors, essentially finite-type compactification, conjugate maps

1.1 For a scheme $X, \mathbf{D}(X)$ is the derived category of $\mathcal{O}_{X}$-modules, and $\mathbf{D}_{\mathrm{qc}}(X)\left(\mathbf{D}_{\mathrm{qc}}^{+}(X)\right)$ is the full subcategory spanned by the complexes with quasi-coherent cohomology modules (vanishing in all but finitely many negative degrees). We will use freely some standard functorial maps, for instance the projection isomorphism associated to a map $f: X \rightarrow Y$ of noetherian schemes (see, e.g., [Lip09, 3.9.4]):

$$
\mathrm{R} f_{*} E \otimes_{Y}^{\mathrm{L}} F \xrightarrow{\sim} \mathrm{R} f_{*}\left(E \otimes_{X}^{\mathrm{L}} \mathrm{~L} f^{*} F\right) \quad\left(E \in \mathbf{D}_{\mathrm{qc}}(X), F \in \mathbf{D}_{\mathrm{qc}}(Y)\right) .
$$

Denote by $\mathcal{E}$ the category of separated essentially finite-type maps of noetherian schemes. By [Nay09, 5.2 and 5.3], there is a contravariant $\mathbf{D}_{\mathrm{qc}}^{+}$-valued pseudofunctor ( -$)^{\text {! }}$ over $\mathcal{E}$, determined up to isomorphism by the properties:
(i) the pseudofunctor $(-)$ ! restricts over the subcategory of proper maps in $\mathcal{E}$ to a right adjoint of the derived direct-image pseudofunctor;
(ii) the pseudofunctor $(-)^{\text {! }}$ restricts over the subcategory of formally étale maps in $\mathcal{E}$ to the usual inverse-image pseudofunctor $(-)^{*}$;
(iii) for any fiber square in $\mathcal{E}$ :

with $f, g$ proper and $u, v$ formally étale, the base-change map $\beta_{\Xi}$, defined to be the adjoint of the natural composition

$$
\begin{equation*}
\mathrm{R} g_{*} v^{*} f^{!} \xrightarrow{\sim} u^{*} \mathrm{R} f_{*} f^{!} \longrightarrow u^{*}, \tag{1.1.1}
\end{equation*}
$$

is equal to the natural composite isomorphism

$$
\begin{equation*}
v^{*} f^{!}=v^{!} f^{!} \xrightarrow{\sim}(f v)^{!}=(u g)^{!} \xrightarrow{\sim} g^{!} u^{!}=g^{!} u^{*} . \tag{1.1.2}
\end{equation*}
$$

There is in fact a family of base-change isomorphisms

$$
\begin{equation*}
\beta_{\Xi}: v^{*} f^{!} \xrightarrow{\sim} g^{!} u^{*}, \tag{1.1.3}
\end{equation*}
$$

indexed by all commutative $\mathcal{E}$-squares

that are such that in the associated diagram (which exists in $\mathcal{E}$, see [Nay09, § 2.2])


## S. B. Iyengar, J. Lipman and A. Neeman

it holds that $\Xi^{\prime}$ is a fiber square, $w i=v$ and $h i=g$, the map $u$ is flat and $i$ is formally étale, a family that is the unique such one that behaves transitively with respect to vertical and horizontal composition of such $\Xi$ (cf. [Lip09, (4.8.2)(3)]), and satisfies:
(iv) if $\Xi$ is a fiber square with $f$ proper, then the map $\beta_{\Xi}$ is adjoint to the composite map (1.1.1);
(v) if $f$, hence $g$, is formally étale, so that $f^{!}=f^{*}$ and $g^{!}=g^{*}$, then $\beta_{\Xi}$ is the natural isomorphism $v^{*} f^{*} \xrightarrow{\sim} g^{*} u^{*}$; and
(vi) if $u$, hence $v$, is formally étale, so that $u^{*}=u^{!}$and $v^{*}=v^{!}$, then $\beta_{\Xi}$ is the natural isomorphism (1.1.2).
(For further explanation see [Lip09, Theorem 4.8.3] and [Nay09, § 5.2].)
Remark. With regard to condition (vi), if $\Xi$ is any commutative $\mathcal{E}$-diagram with $u$ and $v$ formally étale, then in the associated diagram $i$ is necessarily formally étale [GD67, 17.1.3(iii) and 17.1.4], so that $\beta_{\Xi}$ exists (and can be identified with the canonical isomorphism $v^{!} f^{!} \xrightarrow{\sim} g^{!} u^{!}$).
1.2 For any $\mathcal{E}$-map $f: X \rightarrow Y$, there exists a functor $f^{\times}: \mathbf{D}(Y) \rightarrow \mathbf{D}_{\mathrm{qc}}(X)$ that is bounded below and right-adjoint to $\mathrm{R} f_{*}$. There results a $\mathbf{D}_{\text {qc }}$-valued pseudofunctor $(-)^{\times}$on $\mathcal{E}$, for which the stated adjunction is pseudofunctorial [Lip09, Corollary (4.1.2)]. Obviously, the restriction of $(-)^{\times}$to $\mathbf{D}_{\mathrm{qc}}^{+}$over proper maps in $\mathcal{E}$ is isomorphic to that of $(-)^{!}$. Accordingly, we will identify these two restricted pseudofunctors.
1.3 Nayak's construction of $(-)^{\text {! }}$ is based on his extension [Nay09, Theorem 4.1, p. 536] of Nagata's compactification theorem, to wit, that any map $f$ in $\mathcal{E}$ factors as $p u$ where $p$ is proper and $u$ is a localizing immersion (see below). Such a factorization is called a compactification of $f$.

A localizing immersion is an $\mathcal{E}$-map $u: X \rightarrow Y$ for which every $y \in u(X)$ has a neighborhood $V=\operatorname{Spec} A$ such that $u^{-1} V=\operatorname{Spec} A_{M}$ for some multiplicatively closed subset $M \subseteq A$, see [Nay09, 2.8.8, p.532]. For example, finite-type localizing immersions are just open immersions [Nay09, 2.8.3, p. 531].

Any localizing immersion $u$ is formally étale, so that $u^{!}=u^{*}$.
1.4 Any localizing immersion $u: X \rightarrow Y$ is a flat monomorphism, whence the natural map $\epsilon_{1}: u^{*} \mathrm{R} u_{*} \xrightarrow{\sim} \mathrm{id}_{X}$ is an isomorphism: associated to the fiber square

there is the flat base-change isomorphism $u^{*} \mathrm{R} u_{*} \xrightarrow{\sim} \mathrm{R} p_{2 *} p_{1}^{*}$, and since $u$ is a monomorphism, $p_{1}$ and $p_{2}$ are equal isomorphisms, so that $\mathrm{R} p_{2 *} p_{1}^{*}=\mathrm{id}_{X}$.

That $\epsilon_{1}$ is an isomorphism means that the natural map is an isomorphism

$$
\operatorname{Hom}_{\mathbf{D}(X)}(E, F) \xrightarrow{\sim} \operatorname{Hom}_{\mathbf{D}(Y)}\left(\mathrm{R} u_{*} E, \mathrm{R} u_{*} F\right) \quad(E, F \in \mathbf{D}(X)),
$$

which implies that the natural map $\eta_{2}: \operatorname{id}_{X} \rightarrow u^{\times} \mathrm{R} u_{*}$ is an isomorphism.
Conversely, any flat monomorphism $f$ in $\mathcal{E}$ is a localizing immersion, which can be seen as follows. Using [Nay09, 2.7] and [GD67, 8.11.5.1 and 17.6.1] one reduces to where $f$ is a map of

## RELATION BETWEEN TWO TWISTED INVERSE IMAGE PSEUDOFUNCTORS

affine schemes, corresponding to a composite ring map $A \rightarrow B \rightarrow B_{M}$ with $A \rightarrow B$ étale and $M$ a multiplicative submonoid of $B$. The kernel of multiplication $B \otimes_{A} B \rightarrow B$ is generated by an idempotent $e$, and $B_{M} \otimes_{A} B_{M} \rightarrow B_{M}$ is an isomorphism, so $e$ is annihilated by an element of the form $m \otimes m(m \in M)$. Consequently, $B[1 / m] \otimes B[1 / m] \rightarrow B[1 / m]$ is an isomorphism, and so replacing $B_{M}$ by $B[1 / m]$ reduces the problem further to the case where $A \rightarrow B_{M}$ is a finite-type algebra. Finally, localizing $A$ with respect to its submonoid of elements that are sent to units in $B_{M}$, one may assume further that $f$ is surjective, in which case [GD67, 17.9.1] gives that $f$ is an isomorphism.
1.5 For a noetherian scheme $X$, the functor $\mathrm{id}_{X}^{\times}$specified in $\S 1.2$ is right-adjoint to the inclusion $\mathbf{D}_{\mathrm{qc}}(X) \hookrightarrow \mathbf{D}(X)$. It is sometimes called the derived quasi-coherator.

For any $C \in \mathbf{D}_{\mathrm{qc}}(X)$, the unit map is an isomorphism $C \xrightarrow{\sim} \mathrm{id}_{X}^{\times} C$.
For any complexes $A$ and $B$ in $\mathbf{D}_{\mathrm{qc}}(X)$, set

$$
\begin{equation*}
\operatorname{RH}_{X} \mathrm{q}_{X}^{\mathrm{qc}}(A, B):=\mathrm{id}_{X}^{\times} \operatorname{RH}_{X}(A, B) \in \mathbf{D}_{\mathrm{qc}}(X) . \tag{1.5.1}
\end{equation*}
$$

Then for $A$ in $\mathbf{D}_{\mathrm{qc}}(X)$, the functor $\mathrm{RH} \mathrm{H}_{X}^{\mathrm{q} \mathrm{c}}(A,-)$ is right-adjoint to the endofunctor $-\otimes_{X}^{\mathrm{L}} A$ of $\mathbf{D}_{\mathrm{qc}}(X)$. Thus, $\mathbf{D}_{\mathrm{qc}}(X)$ is a closed category with multiplication given by $\otimes_{X}^{L}$ and internal hom given by RH om ${ }_{X}^{\mathrm{qc}}$.

As above, the canonical $\mathbf{D}(X)$-map $\mathrm{RH}_{X}^{\mathrm{qc}}(A, B) \rightarrow \mathrm{RH}_{X}(A, B)$ is an isomorphism whenever $\mathrm{RH} \operatorname{Hom}_{X}(A, B) \in \mathbf{D}_{\mathrm{qc}}(X)$; for example, whenever $B \in \mathbf{D}_{\mathrm{qc}}^{+}(X)$ and the cohomology sheaves $H^{i} A$ are coherent for all $i$, vanishing for $i \gg 0$ (see [Har66, 3.3, p. 92]).
1.6 For categories $P$ and $Q$, let $\operatorname{Fun}(P, Q)$ be the category of functors from $P$ to $Q$, and let $\operatorname{Fun}^{\mathrm{L}}(P, Q)$ (respectively $\operatorname{Fun}^{\mathrm{R}}(P, Q)$ ) be the full subcategory spanned by the objects that have right (respectively left) adjoints. There is a contravariant isomorphism of categories

$$
\xi: \operatorname{Fun}^{\mathrm{L}}(P, Q) \xrightarrow{\sim} \operatorname{Fun}^{\mathrm{R}}(P, Q)
$$

that takes any map of functors to the right-conjugate map between the respective right adjoints (see, e.g., [Lip09, 3.3.5-3.3.7]). The image under $\xi^{-1}$ of a map of functors is its left-conjugate map. The functor $\xi$ (respectively $\xi^{-1}$ ) takes isomorphisms of functors to isomorphisms.

For instance, for any $\mathcal{E}$-map $f: X \rightarrow Z$ there is a bifunctorial sheafified duality isomorphism, with $E \in \mathbf{D}_{\mathrm{qc}}(X)$ and $F \in \mathbf{D}_{\mathrm{qc}}(Z)$ :

$$
\begin{equation*}
\mathrm{R} f_{*} \mathrm{RH} \mathcal{H o m}_{X}^{\mathrm{qc}}\left(E, f^{\times} F\right) \xrightarrow{\sim} \mathrm{RH} \boldsymbol{H}_{Z}^{\mathrm{qc}}\left(\mathrm{R} f_{*} E, F\right), \tag{1.6.1}
\end{equation*}
$$

right-conjugate, for each fixed $E$, to the projection isomorphism

$$
\mathrm{R} f_{*}\left(\mathrm{~L} f^{*} G \otimes_{X}^{\mathrm{L}} E\right) \stackrel{\sim}{\sim} \otimes_{Z}^{\mathrm{L}} \mathrm{R} f_{*} E .
$$

Likewise, there is a functorial isomorphism

$$
\begin{equation*}
\mathrm{RH} \mathrm{H}_{W}^{\mathrm{qc}}\left(\mathrm{~L} f^{*} G, f^{\times} H\right) \xrightarrow{\sim} f^{\times} \mathrm{RH} o m_{X}^{\mathrm{qc}}(G, H) \tag{1.6.2}
\end{equation*}
$$



## S. B. Iyengar, J. Lipman and A. Neeman

## 2. The basic map

In this section we construct a pseudofunctorial map $\psi:(-)^{\times} \rightarrow(-)^{!}$. The construction is based on the following 'fake unit' map.

Proposition 2.1. Over $\mathcal{E}$ there is a unique pseudofunctorial map

$$
\eta: \mathrm{id} \rightarrow(-)!\circ \mathrm{R}(-)_{*}
$$

whose restriction to the subcategory of proper maps in $\mathcal{E}$ is the unit of the adjunction between $\mathrm{R}(-)_{*}$ and $(-)^{!}$, and such that if $u$ is a localizing immersion then $\eta(u)$ is inverse to the isomorphism $u^{!} \mathrm{R} u_{*}=u^{*} \mathrm{R} u_{*} \xrightarrow{\sim}$ id in §1.4.

The proof uses the next result, in which the occurrence of $\beta_{\Xi}$ is justified by the remark at the end of $\S 1.1$. As we are dealing only with functors between derived categories, we will reduce clutter by writing $h_{*}$ for $\mathrm{R} h_{*}$ ( $h$ any map in $\mathcal{E}$ ).

Lemma 2.1.1. Let $\Xi$ be a commutative square in $\mathcal{E}$ :

with $f, g$ proper and $u, v$ localizing immersions. Let $\phi \Xi: v_{*} g^{!} \rightarrow f^{!} u_{*}$ be the functorial map adjoint to the natural composite map $f_{*} v_{*} g^{!} \xrightarrow{\sim} u_{*} g_{*} g^{!} \rightarrow u_{*}$. Then the following natural diagram commutes.


Proof. Commutativity of subdiagram (1) is clear.
For commutativity of subdiagram (2), drop $v^{*}$ and note the obvious commutativity of the following adjoint of the resulting diagram.


## RELATION BETWEEN TWO TWISTED INVERSE IMAGE PSEUDOFUNCTORS

Showing commutativity of subdiagram (3) is similar to working out [Lip09, Exercise 3.10.4(b)]. (Details are left to the reader.)

Commutativity of subdiagram (4) is given by condition (vi) in §1.1.
Proof of Proposition 2.1. As before, for any map $h$ in $\mathcal{E}$ we abbreviate $\mathrm{R} h_{*}$ to $h_{*}$. Let $f$ be a map in $\mathcal{E}$, and $f=p u$ a compactification. If $\eta$ exists, then $\eta(f):$ id $\rightarrow f^{!} f_{*}$ must be given by the natural composition

$$
\begin{equation*}
\mathrm{id} \xrightarrow{\sim} u^{*} u_{*} \xrightarrow{\text { via unit }} u^{*} p^{!} p_{*} u_{*} \xrightarrow{\sim} f^{!} f_{*}, \tag{2.1.2}
\end{equation*}
$$

so that uniqueness holds.
Let us show now that this composite map does not depend on the choice of compactification.
A morphism $r:(f=q v) \rightarrow(f=p u)$ from one compactification of $f$ to another is a commutative diagram of scheme maps.


If such a map $r$, necessarily proper, exists, we say that the compactification $f=q v$ dominates $f=p u$.

Any two compactifications $X \xrightarrow{u_{1}} Z_{1} \xrightarrow{p_{1}} Y, X \xrightarrow{u_{2}} Z_{2} \xrightarrow{p_{2}} Y$ of a given $f: X \rightarrow Y$ are dominated by a third one. Indeed, let $v: X \rightarrow Z_{1} \times_{Y} Z_{2}$ be the map corresponding to the pair $\left(u_{1}, u_{2}\right)$, let $Z \subseteq Z_{1} \times_{Y} Z_{2}$ be the schematic closure of $v$, so that $v: X \rightarrow Z$ has schematically dense image, and let $r_{i}: Z \rightarrow Z_{i}(i=1,2)$ be the maps induced by the two canonical projections. Since $u=r_{i} v$ is a localizing immersion, therefore, by [Nay09, 3.2, p. 533], so is $v$. Thus, $f=\left(p_{i} r_{i}\right) v$ is a compactification, not depending on $i$, mapped by $r_{i}$ to the compactification $f=p_{i} u_{i}$.

So to show that (2.1.2) gives the same result for any two compactifications of $f$, it suffices to do so when one of the compactifications dominates the other. Thus with reference to the diagram (2.1.3), and keeping in mind that $u^{*}=u^{!}$and $v^{*}=v^{!}$, one need only show that the following natural diagram commutes.


Commutativity of subdiagram (1) is given by Lemma 2.1.1, with $f:=r$ and $g:=\operatorname{id}_{X}$.
Commutativity of (2) is clear.
Commutativity of (3) holds because over proper maps, $(-)^{!}$and $(-)_{*}$ are pseudofunctorially adjoint (see [Lip09, Corollary (4.1.2)]).

Commutativity of (4) and (5) results from the pseudofunctoriality of $(-)^{!}$and $(-)_{*}$.
Thus, (2.1.2) is indeed independent of choice of compactification, so that $\eta(f)$ is well defined.

## S. B. Iyengar, J. Lipman and A. Neeman

Finally, it must be shown that $\eta$ is pseudofunctorial, i.e. for any composition $X \xrightarrow{f} Y \xrightarrow{g} Z$ in $\mathcal{E}$, the next diagram commutes.


Consider therefore a diagram

where $p u$ is a compactification of $f, q v$ of $g$, and $r w$ of $v p$, so that $(q r)(w u)$ is a compactification of $g f$. The problem then is to show commutativity of (the border of) the following natural diagram.


That subdiagram (1) commutes is shown, e.g., in [Lip09, § 3.6, up to (3.6.5)]. (In other words, the adjunction between $(-)^{*}$ and $(-)_{*}$ is pseudofunctorial, see [Lip09, (3.6.7)(d)].)

Commutativity of (2) is the definition of $\eta(v p)$ via the compactification $r w$.
Commutativity of (3) holds by definition of the vertical arrow on its right.
Commutativity of (4) (omitting $u^{*}$ and $u_{*}$ ) is the case $(f, g, u, v):=(r, p, v, w)$ of Lemma 2.1.1.
Commutativity of (5) holds because of pseudofunctoriality of the adjunction between $(-)_{*}$ and $(-)$ ! over proper maps (see §1.2).

Commutativity of (6) is clear.
Commutativity of $(7)$ results from pseudofunctoriality of $(-)^{!}$and $(-)_{*}$.

## RELATION BETWEEN TWO TWISTED INVERSE IMAGE PSEUDOFUNCTORS

Commutativity of (8) is the definition of $\eta(g)$ via the compactification $q v$.
Commutativity of (9) is simple to verify.
This completes the proof of Proposition 2.1.
THEOREM 2.1.4. There is a unique pseudofunctorial map $\psi:(-)^{\times} \rightarrow(-)^{\text {! }}$ whose restriction over the subcategory of proper maps in $\mathcal{E}$ is the identity, and such that for every localizing immersion $u, \psi(u): u^{\times} \rightarrow u^{!}$is the natural composition

$$
u^{\times} \xrightarrow{\sim} u^{*} \mathrm{R} u_{*} u^{\times} \longrightarrow u^{*}=u^{!} .
$$

Proof. Let $f$ be an $\mathcal{E}$-map, and $f=p u$ a compactification. If $\psi$ exists, then $\psi(f): f^{\times} \rightarrow f^{!}$must be given by the natural composition

$$
\begin{equation*}
f^{\times} \xrightarrow{\sim} u^{\times} p^{\times}=u^{\times} p^{!} \rightarrow u^{!} p^{!} \xrightarrow{\sim} f^{!}, \tag{2.1.4.1}
\end{equation*}
$$

so that uniqueness holds.
As for existence, using Proposition 2.1 we can take $\psi(f)$ to be the natural composition

$$
f^{\times} \xrightarrow{\text { via } \eta} f^{!} \mathrm{R} f_{*} f^{\times} \longrightarrow f^{!} .
$$

This is as required when $f$ is proper or a localizing immersion, and it behaves pseudofunctorially, because both $\eta$ and the counit map $\mathrm{R} f_{*} f^{\times} \rightarrow \mathrm{id}$ do.

Remark 2.1.5. Conversely, one can recover $\eta$ from $\psi$ : it is simple to show that for any $\mathcal{E}$-map $f: X \rightarrow Y$ and $E \in \mathbf{D}_{\mathrm{qc}}(X)$, and with $\eta_{2}: \mathrm{id}_{X} \rightarrow f^{\times} \mathrm{R} f_{*}$ the unit map of the adjunction $f^{\times} \dashv \mathrm{R} f_{*}$, one has

$$
\begin{equation*}
\eta(E)=\psi(f)\left(\mathrm{R} f_{*} E\right) \circ \eta_{2}(E) \tag{2.1.5.1}
\end{equation*}
$$

(Notation: $\mathrm{F} \dashv \mathrm{G}$ signifies that the functor F is left-adjoint to the functor G .)
Remark 2.1.6. If $u: X \rightarrow Y$ is a localizing immersion, then the map

$$
u^{\times} \mathrm{R} u_{*} \xrightarrow{\psi(u)} u^{*} \mathrm{R} u_{*} \xrightarrow{\sim} \mathrm{id} .
$$

is an isomorphism, inverse to the isomorphism $\eta_{2}$ in $\S$ 1.4. (The proof is left to the reader.)
Remark 2.1.7. The map $\mathrm{R} u_{*} \psi(u): \mathrm{R} u_{*} u^{\times} \rightarrow \mathrm{R} u_{*} u^{*}$ is equal to the composite

$$
\mathrm{R} u_{*} u^{\times} \xrightarrow{\epsilon_{2}} \operatorname{id} \xrightarrow{\eta_{1}} \mathrm{R} u_{*} u^{*},
$$

where $\epsilon_{2}$ is the counit of the adjunction $\mathrm{R} u_{*} \dashv u^{\times}$and $\eta_{1}$ is the unit of the adjunction $u^{*} \dashv \mathrm{R} u_{*}$.
Indeed, by $\S 1.4$ the counit $\epsilon_{1}$ of the adjunction $u^{*} \dashv \mathrm{R} u_{*}$ is an isomorphism; and since the composite

$$
\mathrm{R} u_{*} \xrightarrow{\eta_{1} \mathrm{R} u_{*}} \mathrm{R} u_{*} u^{*} \mathrm{R} u_{*} \xrightarrow{\mathrm{R} u_{*} \epsilon_{1}} \mathrm{R} u_{*}
$$

is the identity map, therefore $\mathrm{R} u_{*} \epsilon_{1}^{-1}=\eta_{1} \mathrm{R} u_{*}$, as both are the (unique) inverse of $\mathrm{R} u_{*} \epsilon_{1}$; so the next diagram commutes, giving the assertion.


Using the isomorphism $\epsilon_{1}: u^{*} \mathrm{R} u_{*} \xrightarrow{\sim}$ id (respectively, its right conjugate $\eta_{2}:$ id $\xrightarrow{\sim} u^{\times} \mathrm{R} u_{*}$ ), one can recover $\psi(u)$ from $\mathrm{R} u_{*} \psi(u)$ by applying the functor $u^{*}$ (respectively $u^{\times}$), thereby obtaining alternate definitions of $\psi(u)$.

## S. B. Iyengar, J. Lipman and A. Neeman

The next Proposition asserts compatibility of $\psi$ with the flat base-change maps for $(-)^{\text {! }}$ (see (1.1.3)) and for $(-)^{\times}$.

Proposition 2.2. Let $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ be maps in $\mathcal{E}$, with $g$ flat. Let $p: X \times{ }_{Z} Y \rightarrow X$ and $q: X \times{ }_{Z} Y \rightarrow Y$ be the projections. Let $\beta: p^{*} f^{\times} \rightarrow q^{\times} g^{*}$ be the map adjoint to the natural composite map

$$
\mathrm{R} q_{*} p^{*} f^{\times} \xrightarrow{\sim} g^{*} \mathrm{R} f_{*} f^{\times} \rightarrow g^{*} .
$$

Then the following diagram commutes.


Proof. Let $f=\bar{f} u$ be a compactification, so that there is a composite cartesian diagram (with $h$ flat and with $\bar{q} v$ a compactification of $q$ ):


In view of the pseudofunctoriality of $\psi$, what needs to be shown is commutativity of the following natural diagram.


Commutativity of each of the unlabeled subdiagrams is an instance of transitivity of the appropriate base-change map (see, e.g., [Lip09, Theorem (4.8.3)]).

Commutativity of (2) is straightforward to verify.
Subdiagram (1), without $\bar{f} \bullet$, expands naturally as follows (where we have written $u_{*}$ (respectively $v_{*}$ ) for $\mathrm{R} u_{*}\left(\right.$ respectively $\left.\mathrm{R} v_{*}\right)$ ):


Here the unlabeled diagrams clearly commute.

## RELATION BETWEEN TWO TWISTED INVERSE IMAGE PSEUDOFUNCTORS

Commutativity of (3) results from the fact that the natural isomorphism $h^{*} u_{*} \rightarrow v_{*} p^{*}$ is adjoint to the natural composition $v^{*} h^{*} u_{*} \xrightarrow{\sim} p^{*} u^{*} u_{*} \rightarrow p^{*}(\operatorname{see}[\operatorname{Lip} 09,3.7 .2(\mathrm{c})])$.

Commutativity of (4) results from the fact that the base-change map $p^{*} u^{\times} \rightarrow v^{\times} h^{*}$ is adjoint to $v_{*} p^{*} \xrightarrow{\sim} h^{*} u_{*} u^{\times} \rightarrow h^{*}$.

Thus, (1) commutes, and Proposition 2.2 is proved.
2.3 Next we treat the interaction of the map $\psi$ with standard derived functors. Our approach involves the notion of support, reviewed in Appendix A.

LEMMA 2.3.1. Let $u: X \rightarrow Z$ be a localizing immersion, $\epsilon_{2}: \mathrm{R} u_{*} u^{\times} \rightarrow$ id the counit of the adjunction $\mathrm{R} u_{*} \dashv u^{\times}$, and $\eta_{1}: \mathrm{id} \rightarrow \mathrm{R} u_{*} u^{*}$ the unit of the adjunction $u^{*} \dashv \mathrm{R} u_{*}$. For all $E \in \mathbf{D}_{\mathrm{qc}}(X)$ and $F \in \mathbf{D}_{\mathrm{qc}}(Z)$, the maps $\mathrm{R} u_{*} E \otimes_{Z}^{\mathrm{L}} \eta_{1}(F)$ and $\mathrm{RH} \mathcal{H o m}_{Z}^{\mathrm{qc}}\left(\mathrm{R} u_{*} E, \epsilon_{2}(F)\right)$ are isomorphisms.

Proof. Projection isomorphisms make the map $\mathrm{R} u_{*} E \otimes_{Z}^{L} \eta_{1}$ isomorphic to

$$
\mathrm{R} u_{*}\left(E \otimes_{X}^{\mathrm{L}} u^{*}\right) \xrightarrow{\text { via } u^{*} \eta_{1}} \mathrm{R} u_{*}\left(E \otimes_{X}^{\mathrm{L}} u^{*} \mathrm{R} u_{*} u^{*}\right)
$$

Since $u^{*} \eta_{1}$ is an isomorphism (with inverse the isomorphism $u^{*} \mathrm{R} u_{*} u^{*} \xrightarrow{\sim} u^{*}$ from §1.4), therefore so is $\mathrm{R} u_{*} E \otimes_{Z}^{\mathrm{L}} \eta_{1}$.

Similarly, to show that $\mathrm{RH} \mathcal{H o m}_{Z}^{\mathrm{qc}}\left(\mathrm{R} u_{*} E, \epsilon_{2}\right)$ is an isomorphism, one can use the duality isomorphism (1.6.1) to reduce to noting that $u^{\times} \epsilon_{2}$ is an isomorphism because it is right-conjugate to the inverse of the isomorphism $\mathrm{R} u_{*} \eta_{1}: \mathrm{R} u_{*} u^{*} \mathrm{R} u_{*} \xrightarrow{\sim} \mathrm{R} u_{*}$.

Proposition 2.3.2. Let $f: X \rightarrow Y$ be a map in $\mathcal{E}, W$ a union of closed subsets of $X$ to each of which the restriction of $f$ is proper, and $E \in \mathbf{D}_{\mathrm{qc}}(X)$ a complex with support $\operatorname{supp}(E)$ contained in $W$. Then the functors $\mathrm{R} \Gamma_{W}(-), E \otimes_{X}^{\mathrm{L}}(-)$ and $\mathrm{RHom}{ }_{X}^{\mathrm{qc}}(E,-)$ take $\psi(f): f^{\times} \rightarrow f^{!}$to an isomorphism.

Proof. By Proposition A.3(ii), it is enough to prove that Proposition 2.3.2 holds for one $E$ with $\operatorname{supp}(E)=W$, like $E=\mathrm{R} \Gamma_{W} \mathcal{O}_{X}$ (see Lemma A.4). For such an $E$, Proposition A. 3 shows it enough to prove that $\mathrm{RH} \mathcal{H o m}_{X}^{\mathrm{qc}}(E, \psi(f))$ is an isomorphism.

Let $X \xrightarrow{u} Z \xrightarrow{p} Y$ be a compactification of $f(\S 1.3)$. In view of (2.1.4.1), we need only treat the case $f=u$. In this case it suffices to show, with $\epsilon_{2}$ and $\eta_{1}$ as in Remark 2.1.7, that

$$
\begin{aligned}
\mathrm{RH}_{\mathcal{H}}{ }_{Z}^{\mathrm{qc}}\left(\mathrm{R} u_{*} E, \eta_{1} \epsilon_{2}\right) & \cong \mathrm{R} \mathcal{H o m}_{Z}^{\mathrm{qc}}\left(\mathrm{R} u_{*} E, \mathrm{R} u_{*} \psi(u)\right) \\
& \cong \mathrm{R} u_{*} \mathrm{R} \operatorname{Hom}_{X}^{\mathrm{qc}}\left(u^{*} \mathrm{R} u_{*} E, \psi(u)\right) \\
& \cong \mathrm{R} u_{*} \mathrm{RHom}_{X}^{\mathrm{qc}}(E, \psi(u))
\end{aligned}
$$

is an isomorphism.
Lemma 2.3.1 gives that $\mathrm{RH} \operatorname{Hom}_{Z}^{\mathrm{qc}}\left(\mathrm{R} u_{*} E, \epsilon_{2}\right)$ is an isomorphism. It remains to be shown that $\mathrm{RH} \mathcal{H o m}_{Z}^{\mathrm{qc}}\left(\mathrm{R} u_{*} E, \eta_{1}\right)$ is an isomorphism.

The localizing immersion $u$ maps $X$ homeomorphically onto $u(X)$ (see [Nay09, 2.8.2]), so we can regard $X$ as a topological subspace of $Z$. Let $i: V \hookrightarrow X$ be the inclusion into $X$ of a subscheme such that the restriction $f i=p u i$ is proper. Then $u i$ is proper, and so $V$ is a closed subset of $Z$. Thus, $W=\operatorname{supp}_{X}(E)=\operatorname{supp}_{Z}\left(\mathrm{R} u_{*} E\right)($ see Remark A.5.1) is a union of subsets of $X$ that are closed in $Z$. So Proposition A. 3 can be applied to show that, since, by Lemma 2.3.1, $\mathrm{R} u_{*} E \otimes_{Z}^{\mathrm{L}} \eta_{1}$ is an isomorphism, therefore $\mathrm{RH} \mathcal{H o m}_{Z}^{\mathrm{qc}}\left(\mathrm{R} u_{*} E, \eta_{1}\right)$ is an isomorphism, as required.

## S. B. Iyengar, J. Lipman and A. Neeman

Let $W \subseteq X$ be as in Proposition 2.3.2. Let $\mathbf{D}_{\mathrm{qc}}(X)_{W} \subseteq \mathbf{D}_{\mathrm{qc}}(X)$ be the essential image of $\mathrm{R} \Gamma_{W}(X)$; the full subcategory spanned by the complexes that are exact outside $W$. By Lemma A.1, any $E \in \mathbf{D}_{\mathrm{qc}}(X)_{W}$ satisfies supp $E \subseteq W$. Arguing as in [AJS04, § 2.3] one finds that the two natural maps from $\mathrm{R} \Gamma_{W} \mathrm{R} \Gamma_{W}$ to $\mathrm{R} \Gamma_{W}$ are equal isomorphisms and deduces that the natural map is an isomorphism

$$
\operatorname{Hom}_{\mathbf{D}(X)}\left(E, \mathrm{R} \Gamma_{W} F\right) \xrightarrow{\sim} \operatorname{Hom}_{\mathbf{D}(X)}(E, F) \quad\left(E \in \mathbf{D}_{\mathbf{q c}}(X)_{W}, F \in \mathbf{D}_{\mathbf{q c}}(Y)\right),
$$

with inverse the natural composition

$$
\operatorname{Hom}_{\mathbf{D}(X)}(E, F) \rightarrow \operatorname{Hom}_{\mathbf{D}(X)}\left(\mathrm{R} \Gamma_{W} E, \mathrm{R} \Gamma_{W} F\right) \xrightarrow{\sim} \operatorname{Hom}_{\mathbf{D}(X)}\left(E, \mathrm{R} \Gamma_{W} F\right) .
$$

Corollary 2.3.3. With the preceding notation, $\mathrm{R} f_{*}: \mathbf{D}_{\mathrm{qc}}(X)_{W} \rightarrow \mathbf{D}_{\mathrm{qc}}(Y)$ has as right adjoint the functor $\mathrm{R} \Gamma_{W} f^{\times}$. When restricted to $\mathbf{D}_{\mathrm{qc}}^{+}(Y)$, this right adjoint is isomorphic to $\mathrm{R} \Gamma_{W} f^{!}$.
Proof. For $E \in \mathbf{D}_{\mathrm{qc}}(X)_{W}$ and $G \in \mathbf{D}_{\mathrm{qc}}(Y)$, there are natural isomorphisms

$$
\begin{aligned}
\operatorname{Hom}_{\mathbf{D}(Y)}\left(\mathrm{R} f_{*} E, G\right) & \cong \operatorname{Hom}_{\mathbf{D}(X)}\left(E, f^{\times} G\right) \\
& \cong \operatorname{Hom}_{\mathbf{D}(X)}\left(E, \mathrm{R} \Gamma_{W} f^{\times} G\right) \xrightarrow[\text { Proposition } 2.3 .2]{\sim} \operatorname{Hom}_{\mathbf{D}(X)}\left(E, \mathrm{R} \Gamma_{W} f^{!} G\right)
\end{aligned}
$$

Remark 2.3.4. The preceding corollary entails the existence of a counit map

$$
\bar{\int}_{W}: \mathrm{R} f_{*} \mathrm{R} \Gamma_{W} f^{!} \mathcal{O}_{Y} \rightarrow \mathcal{O}_{Y}
$$

Factoring $f$ over suitable affine open subsets $U$ as $U \xrightarrow{i_{U}} Z \xrightarrow{h_{U}} Y$ where $i_{U}$ is finite and $h_{U}$ is essentially smooth, one gets that $\left.i_{U *} f^{!} \mathcal{O}_{Y}\right|_{U}$ is of the form $\mathrm{RH}^{\prime} m_{Z}\left(\mathrm{R} i_{U *} \mathcal{O}_{X}, \Omega_{h_{U}}^{n}[n]\right)$ for some $n=n_{U}$ such that the sheaf $\Omega_{h_{U}}^{n}$ of relative $n$-forms is free of rank one; and hence local depth considerations imply that there is an integer $d$ such that $H^{-e} f^{!} \mathcal{O}_{Y}=0$ for all $e>d$, while $\omega_{f}:=H^{-d} f^{!} \mathcal{O}_{Y} \neq 0$. This $\omega_{f}$, determined up to isomorphism by $f$, is a relative dualizing sheaf (or relative canonical sheaf) of $f$.

There results a natural composite map of $\mathcal{O}_{Y}$-modules

$$
\begin{aligned}
\int_{W}: H^{d} \mathrm{R} f_{*} \mathrm{R} \Gamma_{W}\left(\omega_{f}\right) & =H^{0} \mathrm{R} f_{*} \mathrm{R} \Gamma_{W}\left(\omega_{f}[d]\right) \\
& \longrightarrow H^{0}\left(\mathrm{R} f_{*} \mathrm{R} \Gamma_{W} f^{!} \mathcal{O}_{Y}\right) \xrightarrow{\text { via } \int_{W}^{-}} H^{0} \mathcal{O}_{Y}=\mathcal{O}_{Y}
\end{aligned}
$$

that generalizes the map denoted 'res ${ }_{Z}$ ' in [Sas04, § 3.1].
A deeper study of this map involves the realization of $\omega_{f}$, for certain $f$, in terms of regular differential forms, and the resulting relation of $\int_{W}$ with residues of differential forms, cf. [HK90a] and [HK90b]. See also $\S 4.2$ below.
Proposition 2.3.5. Let $W \xrightarrow{g} X \xrightarrow{f} Y$ be $\mathcal{E}$-maps such that $f g$ is proper. For any $F \in \mathbf{D}_{\mathrm{qc}}(X)$ and $G \in \mathbf{D}_{\mathrm{qc}}^{+}(Y)$, the maps

$$
\begin{align*}
& g^{\times} \operatorname{RHom}_{X}^{\text {qc }}\left(F, f^{\times} G\right) \xrightarrow{\text { via } \psi} g^{\times} \mathrm{RH}_{\boldsymbol{H}}{ }_{X}^{\mathrm{qc}}\left(F, f^{!} G\right)  \tag{2.3.5.2}\\
& g^{\times} \mathrm{RH}_{\mathcal{H}_{X}}\left(F, f^{\times} G\right) \xrightarrow{\text { via } \psi} g^{\times} \mathrm{RH} \operatorname{Hom}_{X}\left(F, f^{!} G\right)
\end{align*}
$$

are isomorphisms.

## RELATION BETWEEN TWO TWISTED INVERSE IMAGE PSEUDOFUNCTORS

Proof. Since $g^{\times} \mathrm{id}_{X}^{\times} \cong\left(\mathrm{id}_{X} \circ g\right)^{\times}=g^{\times}$, therefore (2.3.5.2) is an isomorphism if and only if so is (2.3.5.2)'. (Recall that RHom ${ }_{X}^{\text {qc }}=\operatorname{id}_{X}^{\times}$RHom $_{X}$.)

As for (2.3.5.2) and (2.3.5.1), note first that the proper map $g$ induces a surjection $g_{2}$ of $W$ onto a closed subscheme $V$ of $X$; so $g=g_{1} g_{2}$ with $g_{1}$ a closed immersion and $g_{2}$ surjective.

Let $X \xrightarrow{u} Z \xrightarrow{p} Y$ be a compactification of $f$. Since $p u g_{1} g_{2}$ is proper, so is $u g_{1} g_{2}$, whence $u g_{1}$ maps $V=g_{2}\left(g_{2}^{-1} V\right)$ homeomorphically onto a closed subset of $Z$, and for each $x \in V$ the natural map $\mathcal{O}_{Z, u g_{1} x} \rightarrow \mathcal{O}_{V, x}$ is a surjection (see [Nay09, §2.8.2]); thus, $u g_{1}$ is a closed immersion, and therefore $f g_{1}=p u g_{1}$ is of finite type, hence, by [GD61, §5.4.3], proper (since $f g_{1} g_{2}$ is).

Since $\mathrm{L} g^{*}=\mathrm{L} g_{2}^{*} \mathrm{~L} g_{1}^{*}$ and $g^{\times}=g_{2}^{\times} g_{1}^{\times}$, it suffices that the proposition hold when $g=g_{1}$, i.e. we may assume that $g: W \rightarrow X$ is a closed immersion. It is enough then to show that (2.3.5.1) and (2.3.5.2) become isomorphisms after application of the functor $g_{*}$.

Via projection isomorphisms, the map

$$
g_{*} \mathrm{~L} g^{*} \mathrm{RH} m_{X}^{\mathrm{qc}}\left(F, f^{\times} G\right) \xrightarrow{g_{*}(2.3 .5 .1)} g_{*} \mathrm{~L}^{*} \mathrm{RH} \text { Hom }_{X}^{\mathrm{qc}}\left(F, f^{!} G\right)
$$

is isomorphic to the map

$$
\begin{equation*}
g_{*} \mathcal{O}_{W} \otimes_{X}^{\mathrm{L}} \mathrm{RH}_{\mathcal{H}} m_{X}^{\mathrm{qc}}\left(F, f^{\times} G\right) \xrightarrow{\text { via } \psi} g_{*} \mathcal{O}_{W} \otimes_{X}^{\mathrm{L}} \mathrm{R} \mathcal{H o m}{ }_{X}^{\mathrm{qc}}\left(F, f^{!} G\right) ; \tag{2.3.5.3}
\end{equation*}
$$

and making the substitution

$$
(f: X \rightarrow Z, E, F) \mapsto\left(g: W \rightarrow X, \mathcal{O}_{W}, \mathrm{RH}^{\mathrm{H}} \mathrm{~m}_{X}^{\mathrm{qc}}\left(F, f^{\times} G\right)\right)
$$

in the isomorphism (1.6.1) leads to an isomorphism between the map

$$
g_{*} g^{\times} \mathrm{RH} \text { Hom }_{X}^{\mathrm{qc}}\left(F, f^{\times} G\right) \xrightarrow{g_{*}(2.3 .5 .2)} g_{*} g^{\times} \mathrm{RH} \text { Hom }_{X}^{\mathrm{qc}}\left(F, f^{!} G\right)
$$

and the map

$$
\begin{equation*}
\mathrm{RH} m_{X}^{\mathrm{qc}}\left(g_{*} \mathcal{O}_{W}, \mathrm{R} \mathcal{H} o m_{X}^{\mathrm{qc}}\left(F, f^{\times} G\right)\right) \xrightarrow{\text { via } \psi} \mathrm{RH}_{\mathcal{H}} m_{X}^{\mathrm{qc}}\left(g_{*} \mathcal{O}_{W}, \mathrm{RH}_{\mathcal{H}}{ }_{X}^{\mathrm{qc}}\left(F, f^{!} G\right)\right) . \tag{2.3.5.4}
\end{equation*}
$$

Via adjunction and projection isomorphisms, (2.3.5.4) is isomorphic to

$$
\begin{equation*}
\mathrm{RH} \mathrm{Hom}_{X}^{\mathrm{qc}}\left(g_{*} \mathrm{~L} g^{*} F, f^{\times} G\right) \xrightarrow{\text { via } \psi} \mathrm{RH} \mathcal{H}_{X}^{\mathrm{qc}}\left(g_{*} \mathrm{~L} g^{*} F, f^{!} G\right) . \tag{2.3.5.5}
\end{equation*}
$$

By Lemma A.1, $\operatorname{supp}\left(g_{*} L g^{*} F\right) \subseteq \operatorname{Supp}\left(g_{*} L g^{*} F\right) \subseteq W$, so Proposition 2.3.2 gives that (2.3.5.5) is an isomorphism, whence so is (2.3.5.4).

Thus (2.3.5.2) is an isomorphism. Also, $\operatorname{supp}\left(g_{*} \mathcal{O}_{W}\right)=\operatorname{Supp}\left(\mathcal{O}_{W}\right)=W$, so Proposition A. 3 shows that (2.3.5.3) is an isomorphism, whence so is (2.3.5.1).

Remark 2.3.6 (Added in proof). For an $\mathcal{E}$-map $f$, with compactification $f=p u$, set

$$
(p, u)^{!} G:=u^{!} p^{!} G \quad\left(G \in \mathbf{D}_{\mathbf{q c}}(Y)\right)
$$

It is shown in [Nee14b, §4] that $(p, u)^{!}$depends only on $f$, in the sense that up to canonical isomorphism $(p, u)$ ! is independent of the factorization $f=p u$. (When this paper was written it was known only that $(p, u)^{!} G$ is canonically isomorphic to $f^{!} G$ when $G \in \mathbf{D}_{\mathrm{qc}}^{+}(Y)$.) Likewise, for all $G \in \mathbf{D}_{\mathrm{qc}}(Y)$ the functorial map

$$
\psi(p, u)(G): f^{\times} G \xrightarrow{\sim} u^{\times} p^{\times} G=u^{\times} p^{!} G \xrightarrow{\psi(u) p^{!}} u^{!} p^{!} G=(p, u)^{!} G
$$

depends only on $f$ (see [Nee14b, §8]). So one may set $f^{!}:=(p, u)^{!}$and $\psi(f):=\psi(p, u)$; and then the preceding proof of Proposition 2.3.5 works for all $G \in \mathbf{D}_{\mathrm{qc}}(Y)$.

## S. B. Iyengar, J. Lipman and A. Neeman

## 3. Examples

Corollaries 3.1.1-3.1.3 provide concrete interpretations of the map $\psi(u)$ for certain localizing immersions $u$.

Proposition 3.2 .9 gives a purely algebraic expression for $\psi(f)$ when $f$ is a flat $\mathcal{E}$-map between affine schemes. An elaboration for when the target of $f$ is the Spec of a field is given in Proposition 3.3. The scheme-theoretic results Theorem 2.1.4, Propositions 2.2 and 2.3.5 tell us some facts about the pseudofunctorial behavior of $\psi(f)$; but how to prove these facts by purely algebraic arguments is left open.

Lemma 3.1. Let $f: X \rightarrow Z$ be an $\mathcal{E}$-map, and let $F \in \mathbf{D}_{\mathrm{qc}}(Z)$. The functorial isomorphism $\zeta(F)$ inverse to that obtained by setting $E=\mathcal{O}_{X}$ in (1.6.1) makes the following, otherwise natural, functorial diagram commute.


Proof. Abbreviating $\mathrm{R} f_{*}$ to $f_{*}$ and $\mathrm{L} f^{*}$ to $f^{*}$, one checks that the diagram in question is rightconjugate to the natural diagram, functorial in $G \in \mathbf{D}_{\mathrm{qc}}(Z)$,

whose commutativity is given by [Lip09, 3.4.7(ii)].
Corollary 3.1.1. For any localizing immersion $u: X \rightarrow Z$ and $F \in \mathbf{D}_{\mathrm{qc}}(Z)$, the map $\psi(u)(F)$ from Theorem 2.1.4 is isomorphic to the natural composite map

$$
u^{*} \mathrm{RH} \mathrm{Hom}_{Z}^{\mathrm{qc}}\left(\mathrm{R} u_{*} \mathcal{O}_{X}, F\right) \longrightarrow u^{*} \mathrm{RHom} \mathrm{H}_{Z}^{\mathrm{qc}}\left(\mathcal{O}_{Z}, F\right) \xrightarrow{\sim} u^{*} F .
$$

Proof. This is immediate from Lemma 3.1 (with $f=u$ ).
For the next corollary recall that, when $Z=\operatorname{Spec} R$, the sheafification functor ${ }^{\sim}={ }^{\sim_{R}}$ is an isomorphism from $\mathbf{D}(R)$ to the derived category of quasi-coherent $\mathcal{O}_{Z}$-modules, whose inclusion into $\mathbf{D}_{\mathrm{qc}}(Z)$ is an equivalence of categories [BN93, 5.5, p. 230].

Corollary 3.1.2. In Corollary 3.1.1, if $X=\operatorname{Spec} S$ and $Z=\operatorname{Spec} R$ are affine, so that $u$ corresponds to a flat epimorphic ring homomorphism $R \rightarrow S$, and $M \in \mathbf{D}(R)$, then $\psi(u)\left(M^{\sim}\right)$ is the sheafification of the natural $\mathbf{D}(S)$-map

$$
\operatorname{RHom}_{R}(S, M) \cong S \otimes_{R} \operatorname{RHom}_{R}(S, M) \rightarrow S \otimes_{R}\left(\operatorname{RHom}_{R}(R, M)\right)=S \otimes_{R} M
$$

## RELATION BETWEEN TWO TWISTED INVERSE IMAGE PSEUDOFUNCTORS

Proof. Use the following well-known facts:
(1) $\mathrm{RH}_{\mathcal{H}}^{\mathrm{qc}}\left(A^{\sim}, B^{\sim}\right) \cong \operatorname{RHom}_{R}(A, B)^{\sim} \quad(A, B \in \mathbf{D}(R))$; this results from the sequence of natural isomorphisms, for any $C \in \mathbf{D}(R)$ :

$$
\begin{aligned}
\operatorname{Hom}_{\mathbf{D}(Z)}\left(C^{\sim}, \operatorname{RHom}_{R}(A, B)^{\sim}\right) & \cong \operatorname{Hom}_{\mathbf{D}(R)}\left(C, \operatorname{RHom}_{R}(A, B)\right) \\
& \cong \operatorname{Hom}_{\mathbf{D}(R)}\left(C \otimes_{R}^{\mathrm{L}} A, B\right) \\
& \cong \operatorname{Hom}_{\mathbf{D}(Z)}\left(\left(C \otimes_{R}^{\mathrm{L}} A\right)^{\sim}, B^{\sim}\right) \\
& \cong \operatorname{Hom}_{\mathbf{D}(Z)}\left(C^{\sim} \otimes_{Z}^{\mathrm{L}} A^{\sim}, B^{\sim}\right) \\
& \cong \operatorname{Hom}_{\mathbf{D}(Z)}\left(C^{\sim}, \operatorname{RH}^{\mathrm{H}} \mathrm{H}_{Z}^{\mathrm{qc}}\left(A^{\sim}, B^{\sim}\right)\right) ;
\end{aligned}
$$

(2) $\operatorname{RHom}_{R}(S, M)^{\sim_{R}}=u_{*} \operatorname{RHom}_{R}(S, M)^{\sim_{S}}$;
(3) $u^{*}\left(A^{\sim_{R}}\right)=\left(S \otimes_{R} A\right)^{\sim} \quad(A \in \mathbf{D}(R))$;
(4) for any $N \in \mathbf{D}(S)$, the natural $\mathbf{D}(Z)$-map $u^{*} \mathrm{R} u_{*} N^{\sim_{S}} \rightarrow N^{\sim_{S}}$ is the sheafification of the natural $\mathbf{D}(S)$-map $S \otimes_{R} N \rightarrow N$.

Corollary 3.1.3. Let $R$ be a noetherian ring that is complete with respect to the topology defined by an ideal $I$, let $p: Z \rightarrow$ Spec $R$ be a proper map, and let $X:=\left(Z \backslash p^{-1} \operatorname{Spec} R / I\right) \stackrel{u}{\hookrightarrow} Z$ be the inclusion. For any $F \in \mathbf{D}_{\mathrm{qc}}(Z)$ whose cohomology modules are all coherent, $u^{\times} F=0$.

Proof. Since $u^{*} \mathrm{R} u_{*} u^{\times} F \cong u^{\times} F(\S 1.4)$, it suffices that $\mathrm{R} u_{*} u^{\times} F=0$, that is, by Corollary 3.1.1, that $\mathrm{RH}^{\mathrm{C}} \mathrm{m}_{Z}^{\mathrm{qc}}\left(\mathrm{R} u_{*} \mathcal{O}_{X}, F\right)=0$.

Set $W:=p^{-1} \operatorname{Spec}(R / I)$. There is the following natural triangle.

$$
\mathrm{RH} \boldsymbol{H}_{Z}^{\mathrm{qc}}\left(\mathrm{R} u_{*} \mathcal{O}_{X}, F\right) \rightarrow \mathrm{RH}_{\mathcal{H}}{ }_{Z}^{\mathrm{qc}}\left(\mathcal{O}_{Z}, F\right) \xrightarrow{\alpha} \mathrm{RHom} m_{Z}^{\mathrm{qc}}\left(\mathrm{R} \Gamma_{W} \mathcal{O}_{Z}, F\right) \xrightarrow{+}
$$

It is enough therefore to show that $\alpha$ is an isomorphism.
 the completion of $G$; an $\mathcal{O}_{Z_{/ W}}$-module; and let $\Lambda_{W}$ be the functor given objectwise by $\kappa_{*} G_{/ W}$. The composition of $\alpha$ with the 'Greenlees-May' isomorphism

$$
\mathrm{RHom}{ }_{Z}^{\mathrm{qc}}\left(\mathrm{R} \Gamma_{W} \mathcal{O}_{Z}, F\right) \xrightarrow{\sim} \operatorname{id}_{Z}^{\times} \mathrm{L} \Lambda_{W} F,
$$

given by [AJL97, 0.3] is the map $\operatorname{id}_{Z}^{\times} \lambda$, where $\lambda: F \rightarrow \mathrm{~L}_{W} F$ is the unique map whose composition with the canonical map $\mathrm{L} \Lambda_{W} F \rightarrow \Lambda_{W} F$ is the completion map $F \rightarrow \Lambda_{W} F$. So we need $\operatorname{id}_{Z}^{\times} \lambda$ to be an isomorphism. Hence, the isomorphisms $F=\operatorname{id}_{Z}^{\times} F \xrightarrow{\sim} \operatorname{id}_{Z}^{\times} \kappa_{*} \kappa^{*} F$ in [AJL99, 3.3.1(2)] (where id ${ }_{Z}^{\times}$is denoted $\mathrm{R} Q$ ) and $\lambda_{*}^{*}: \kappa_{*} \kappa^{*} F \xrightarrow{\sim} \mathrm{~L} \Lambda_{W} F$ in [AJL97, 0.4.1] (which requires coherence of the cohomology of $F$ ) reduce the problem to showing that the natural composite map

$$
F \rightarrow \kappa_{*} \kappa^{*} F \xrightarrow{\lambda_{*}^{*}} \mathrm{~L} \Lambda_{W} F \rightarrow \Lambda_{W} F
$$

is the completion map.
By the description of $\lambda_{*}^{*}$ preceding [AJL97, 0.4.1], this amounts to commutativity of the border of the following natural diagram.


Verification of the commutativity is left to the reader.

## S. B. Iyengar, J. Lipman and A. Neeman

3.2 Next we generalize Corollary 3.1.2, replacing $u$ by an arbitrary flat map $f: X=\operatorname{Spec}(S) \rightarrow$ $\operatorname{Spec}(R)=Z$ in $\mathcal{E}$, corresponding to a flat homomorphism of rings $\sigma: R \rightarrow S$. Lemma 3.2.1 gives an expression for $\psi(f)$ for an arbitrary flat $\mathcal{E}$-map $f$, that in the foregoing affine case implies, as shown in Lemma 3.2.8, that for $M \in \mathbf{D}(R)$, and $S^{\mathrm{e}}:=S \otimes_{R} S, \psi(f) M$ is (naturally isomorphic to) the sheafification of the natural composite $\mathbf{D}(S)$-map

$$
\begin{aligned}
\operatorname{RHom}_{R}(S, M) & \xrightarrow{\sim} S \otimes_{S^{\mathrm{e}}}^{\mathrm{L}}\left(S^{\mathrm{e}} \otimes_{S} \operatorname{RHom}_{R}(S, M)\right) \\
& \xrightarrow{\sim} S \otimes_{S^{\mathrm{e}}}\left(S \otimes_{R} \operatorname{RHom}_{R}(S, M)\right) \longrightarrow S \otimes_{S^{\mathrm{e}}}^{\llcorner } \operatorname{RHom}_{R}\left(S, S \otimes_{R} M\right),
\end{aligned}
$$

or, more simply (see Proposition 3.2.9),

$$
\operatorname{RHom}_{R}(S, M) \rightarrow \operatorname{RHom}_{R}\left(S, S \otimes_{R} M\right) \rightarrow S \otimes_{S^{\mathrm{e}}}^{\mathrm{L}} \operatorname{RHom}_{R}\left(S, S \otimes_{R} M\right)
$$

(The expanded notation in Lemma 3.2.8 and Proposition 3.2.9 indicates the $S$-actions involved.)
So let $f: X \rightarrow Z$ be a flat $\mathcal{E}$-map, let $\delta: X \rightarrow X \times_{Z} X$ be the diagonal, and let $\pi_{1}, \pi_{2}$ be the projections from $X \times_{Z} X$ to $X$. There is a base-change isomorphism $\beta^{\prime}=\pi_{2}^{*} f^{!} \xrightarrow{\sim} \pi_{1}^{!} f^{*}$, as in (1.1.3). There is also a base-change map $\beta: \pi_{2}^{*} f^{\times} \rightarrow \pi_{1}^{\times} f^{*}$ as in Proposition 2.2 (with $\left.g=f, p=\pi_{2}, q=\pi_{1}\right)$; this $\beta$ need not be an isomorphism.

The next lemma concerns functors from $\mathbf{D}_{\mathrm{qc}}^{+}(Z)$ to $\mathbf{D}_{\mathrm{qc}}^{+}(X)$.
Lemma 3.2.1. With preceding notation, there is an isomorphism of functors $\nu: L \delta^{*} \pi_{1}^{\times} f^{*} \xrightarrow{\sim} f^{!}$ such that the map $\psi(f): f^{\times} \rightarrow f^{!}$from Theorem 2.1.4 is the composite

$$
f^{\times}=\mathrm{id}_{X}^{*} f^{\times} \cong \mathrm{L} \delta^{*} \pi_{2}^{*} f^{\times} \xrightarrow{\mathrm{L} \delta^{*} \beta} \mathrm{~L} \delta^{*} \pi_{1}^{\times} f^{*} \xrightarrow{\nu} f^{!}
$$

Proof. Consider the diagram, where $\theta$ and $\theta^{\prime}$ are the natural isomorphisms,

$$
\begin{aligned}
& f^{\times} \\
& \psi(f) \underset{\theta}{\sim} \mathrm{L} \delta^{*} \pi_{2}^{*} f^{\times} \xrightarrow{\mathrm{L} \delta^{*} \beta} \mathrm{~L} \delta^{*} \pi_{1}^{\times} f^{*} \\
& f^{!} \underset{\theta^{\prime}}{\sim} \mathrm{L} \delta^{*} \pi_{2}^{*} \psi(f) \mid \\
& \mathrm{L} \delta^{*} \pi_{2}^{*} f^{!} \xrightarrow[\mathrm{L} \delta^{*} \beta^{\prime}]{\sim} \mathrm{L} \delta^{*} \pi_{1}^{!} f^{*}
\end{aligned}
$$

The left square obviously commutes, and the right square commutes by Proposition 2.2. Since $\pi_{1} \delta=\mathrm{id}_{X}$ is proper, Proposition 2.3.5 guarantees that $\mathrm{L} \delta^{*} \psi\left(\pi_{1}\right)$ is an isomorphism, while $\mathrm{L} \delta^{*} \beta^{\prime}$ is an isomorphism since $\beta^{\prime}$ is.

The lemma results, with $\nu:=\left(\theta^{\prime}\right)^{-1} \circ\left(\mathbf{L} \delta^{*} \beta^{\prime}\right)^{-1} \circ \mathbf{L} \delta^{*} \psi\left(\pi_{1}\right)$.
Corollary 3.2.2. The map $\psi(f)$ in Lemma 3.2.1 factors as

$$
f^{\times} \xrightarrow{\eta} \mathrm{R} \pi_{2 *} \pi_{2}^{*} f^{\times} \xrightarrow{\mathrm{R} \pi_{2 *} \beta} \mathrm{R} \pi_{2 *} \pi_{1}^{\times} f^{*} \xrightarrow{\eta} \mathrm{R} \pi_{2 *} \mathrm{R} \delta_{*} \mathrm{~L} \delta^{*} \pi_{1}^{\times} f^{*} \xrightarrow{\sim} \mathrm{~L} \delta^{*} \pi_{1}^{\times} f^{*} \xrightarrow{\nu} f^{!},
$$

where the maps labeled $\eta$ are induced by units of adjunction, and the isomorphism is obtained from $\pi_{2} \delta=\mathrm{id}_{X}$.

Proof. By Lemma 3.2.1 it suffices that the following diagram commute.


## RELATION BETWEEN TWO TWISTED INVERSE IMAGE PSEUDOFUNCTORS

Commutativity of the unlabeled subdiagrams is clear.
Subdiagram (1) (without $f^{\times}$) expands as


Commutativity of subdiagram (2) is given by [Lip09, (3.6.2)]. Verification of commutativity of the remaining two subdiagrams is left to the reader.
3.2.3. We now concretize the preceding results in case $X=\operatorname{Spec}(S)$ and $Z=\operatorname{Spec}(R)$ are affine, so that the flat map $f: X \rightarrow Z$ corresponds to a flat homomorphism $\sigma: R \rightarrow S$ of noetherian rings.

First, some notation. For a ring $P, \mathbf{M}(P)$ will denote the category of $P$-modules. Forgetting for the moment that $\sigma$ is flat, let $\tau: R \rightarrow T$ be a flat homomorphism of rings. If

$$
\operatorname{Hom}_{\sigma, \tau}: \mathbf{M}(S)^{\mathrm{op}} \times \mathbf{M}(T) \rightarrow \mathbf{M}\left(T \otimes_{R} S\right)
$$

is the obvious functor such that

$$
\operatorname{Hom}_{\sigma, \tau}(A, B):=\operatorname{Hom}_{R}(A, B),
$$

then, since (by flatness of $\tau$ ) any K-injective $T$-complex is K -injective over $R$, there is a derived functor

$$
\operatorname{RHom}_{\sigma, \tau}: \mathbf{D}(S)^{\mathrm{op}} \times \mathbf{D}(T) \rightarrow \mathbf{D}\left(T \otimes_{R} S\right)
$$

such that, with $\left(F \rightarrow J_{F}\right)_{F \in \mathbf{D}(T)}$ a family of K-injective $T$-resolutions, and $E \in \mathbf{D}(S)$,

$$
\operatorname{RHom}_{\sigma, \tau}(E, F):=\operatorname{Hom}_{\sigma, \tau}\left(E, J_{F}\right) .
$$

Set $\operatorname{Hom}_{\sigma}:=\operatorname{Hom}_{\sigma, \mathrm{id}_{R}}$.
Let $p_{1}: T \rightarrow T \otimes_{R} S$ be the $R$-algebra homomorphism with $p_{1}(t)=t \otimes 1$. There is a natural functorial isomorphism in $\mathbf{D}\left(T \otimes_{R} S\right)$ :

$$
\begin{equation*}
\operatorname{RHom}_{\sigma, \tau}(E, F) \xrightarrow{\sim} \operatorname{RHom}_{p_{1}}\left(T \otimes_{R} E, F\right) \quad(F \in \mathbf{D}(T)) . \tag{3.2.4}
\end{equation*}
$$

(For this, just replace $F$ by a K-injective $T$-resolution.)
Let $p_{2}: S \rightarrow T \otimes_{R} S$ be the $R$-algebra map with $p_{2}(s)=1 \otimes s$. Let $\rho_{\tau}: \mathbf{D}(T) \rightarrow \mathbf{D}(R)$ be the restriction-of-scalars functor induced by $\tau$; and define $\rho_{p_{2}}$ analogously. Then, in $\mathbf{D}(S)$,

$$
\operatorname{RHom}_{\sigma}\left(E, \rho_{\tau} F\right)=\rho_{p_{2}} \operatorname{RHom}_{\sigma, \tau}(E, F) \quad(E \in \mathbf{D}(S), F \in \mathbf{D}(T)) .
$$

There results a 'multiplication' map in $\mathbf{D}\left(T \otimes_{R} S\right)$ :

$$
\mu:\left(T \otimes_{R} S\right) \otimes_{S} \operatorname{RHom}_{\sigma}\left(E, \rho_{\tau} F\right) \rightarrow \operatorname{RHom}_{\sigma, \tau}(E, F),
$$

## S. B. Iyengar, J. Lipman and A. Neeman

and hence a natural composition in $\mathbf{D}(S)$

$$
\begin{align*}
\operatorname{RHom}_{\sigma}\left(E, \rho_{\tau} F\right) & \xrightarrow{\sim} S \otimes_{T \otimes_{R} S}^{\mathrm{L}}\left(\left(T \otimes_{R} S\right) \otimes_{S} \operatorname{RHom}_{\sigma}\left(E, \rho_{\tau} F\right)\right) \\
& \xrightarrow{S \otimes_{T \otimes_{R} S}{ }^{\mu}} S \otimes_{T \otimes_{R} S}^{\mathrm{L}} \operatorname{RHom}_{\sigma, \tau}(E, F) . \tag{3.2.5}
\end{align*}
$$

Now, assuming $\sigma$ to be flat, we derive algebraic expressions for $f^{\times}$and $f^{!}$.
Application of the functor $\mathrm{R} \Gamma(Z,-)=\mathrm{RHom}\left(\mathcal{O}_{Z},-\right)$ to item (1) in the proof of Corollary 3.1.2, gives $\operatorname{RHom}_{Z}\left(A^{\sim}, B^{\sim}\right)=\operatorname{RHom}_{R}(A, B)$. Since $(-)^{\sim}: \mathbf{D}(S) \rightarrow \mathbf{D}_{\mathrm{qc}}(X)$ is an equivalence of categories [BN93, 5.5, p. 230], it results from the canonical isomorphism (with $E \in \mathbf{D}(S), M \in \mathbf{D}(R)$ and $\sigma_{*}: \mathbf{D}(S) \rightarrow \mathbf{D}(R)$ the functor given by restricting scalars)

$$
\operatorname{Hom}_{\mathbf{D}(S)}\left(E, \operatorname{RHom}_{\sigma}(S, M)\right) \xrightarrow{\sim} \operatorname{Hom}_{\mathbf{D}(R)}\left(\sigma_{*} E, M\right)
$$

that there is a functorial isomorphism

$$
\begin{equation*}
\varrho(M):\left(\operatorname{RHom}_{\sigma}(S, M)\right)^{\sim} \cong \cong f^{\times}\left(M^{\sim_{R}}\right) \quad(M \in \mathbf{D}(R)) \tag{3.2.6}
\end{equation*}
$$

such that $f_{*} \varrho(M)$ is the isomorphism $\zeta\left(M^{\sim_{R}}\right)$ in Lemma 3.1.
Next, let $\pi_{i}: X \times_{Z} X \rightarrow X(i=1,2)$ be the projection maps, and let $\delta: X \rightarrow X \times{ }_{Z} X$ be the diagonal map. Set $S^{\mathrm{e}}:=S \otimes_{R} S$. Note that if $A \rightarrow B$ is a homomorphism of rings, corresponding to $g: \operatorname{Spec} B \rightarrow \operatorname{Spec} A$, and if $N \in \mathbf{D}(A)$, then

$$
\begin{equation*}
\mathrm{L} g^{*}\left(N^{\sim_{A}}\right)=\left(B \otimes_{A}^{\mathrm{L}} N\right)^{\sim_{B}} . \tag{3.2.7}
\end{equation*}
$$

This follows easily from the fact that the functor $(-)^{\sim_{A}}$ preserves both quasi-isomorphisms and K-flatness of complexes.
Lemma 3.2.8. There is a natural functorial isomorphism of the map

$$
\psi(f) M^{\sim_{R}}: f^{\times} M^{\sim_{R}} \rightarrow f^{!} M^{\sim_{R}} \quad(M \in \mathbf{D}(R))
$$

with the sheafification of the natural composite $\mathbf{D}(S)$-map

$$
\begin{aligned}
\psi(\sigma) M: \operatorname{RHom}_{\sigma}(S, M) & \xrightarrow{\sim} S \otimes_{S^{\mathrm{e}}}^{\mathrm{L}}\left(S^{\mathrm{e}} \otimes_{S} \operatorname{RHom}_{\sigma}(S, M)\right) \\
& \xrightarrow{\sim} S \otimes_{S^{\mathrm{e}}}\left(S \otimes_{R} \operatorname{RHom}_{R}(S, M)\right) \\
& \longrightarrow S \otimes_{S^{\mathrm{e}}}^{\mathrm{R}^{\mathrm{R}} \operatorname{Hom}_{\sigma, \sigma}\left(S, S \otimes_{R} M\right) .}
\end{aligned}
$$

Proof. Using (3.2.6) and (3.2.7), and the fact that sheafification is an equivalence of categories from $\mathbf{D}(S)$ to $\mathbf{D}(\operatorname{Spec} S)$ (see [BN93, 5.5, p. 230]), one translates the definition of the base-change map $\beta$ in Proposition 2.2 to the commutative-algebra context, and finds that

$$
\beta\left(M^{\sim_{R}}\right): \pi_{2}^{*} f^{\times} M^{\sim_{R}} \rightarrow \pi_{1}^{\times} f^{*} M^{\sim_{R}}
$$

is naturally isomorphic to the sheafification of the natural composite $\mathbf{D}\left(S^{e}\right)$-map

$$
S \otimes_{R} \operatorname{RHom}_{\sigma}(S, M) \rightarrow \operatorname{RHom}_{\sigma, \sigma}\left(S, S \otimes_{R} M\right) \xrightarrow{\sim} \operatorname{RHom}_{p_{1}}\left(S^{\mathrm{e}}, S \otimes_{R} M\right)
$$

where the isomorphism comes from (3.2.4) (with $T=S$ ).
Lemma 3.2.1 gives that $\psi(f)$ is naturally isomorphic to the composite

$$
f^{\times} \cong \mathrm{L} \delta^{*} \pi_{2}^{*} f^{\times} \xrightarrow{\mathrm{L} \delta^{*} \beta} \mathrm{~L} \delta^{*} \pi_{1}^{\times} f^{*},
$$

whence the conclusion.

## RELATION BETWEEN TWO TWISTED INVERSE IMAGE PSEUDOFUNCTORS

Here is a neater description of $\psi(\sigma) M$, and hence of $\psi(f) M^{\sim_{R}}$.
Proposition 3.2.9. The map $\psi(\sigma) M$ in Lemma 3.2.8 factors as

$$
\operatorname{RHom}_{\sigma}(S, M) \xrightarrow{\vartheta} \varpi \operatorname{RHom}_{\sigma}\left(S, S \otimes_{R} M\right) \xrightarrow{(3.2 .5)} S \otimes_{S^{\mathrm{e}}}^{\mathrm{L}} \operatorname{RHom}_{\sigma, \sigma}\left(S, S \otimes_{R} M\right),
$$

where $\vartheta$ is induced by the natural $\mathbf{D}(R)$-map $M \rightarrow S \otimes_{R} M$.
Proof. Note that $\vartheta$ is the natural composite $\mathbf{D}(S)$-map

$$
\operatorname{RHom}_{\sigma}(S, M) \rightarrow S \otimes_{R} \operatorname{RHom}_{\sigma}(S, M) \rightarrow \operatorname{RHom}_{\sigma}\left(S, S \otimes_{R} M\right),
$$

recall the description in the proof of Lemma 3.2.8 of the map $\beta$, refer to the factorization of $\psi(f) M^{\sim_{R}}$ coming from Corollary 3.2.2, and fill in the details.

The next corollary follows easily from Proposition 3.2 .9 and (2.1.5.1).
Corollary 3.2.10. For any $N \in \mathbf{D}(S)$, the map $\eta\left(N^{\sim S}\right)$ from Proposition 2.1 sheafifies the natural composite $\mathbf{D}(S)$-map

$$
\begin{aligned}
N \xrightarrow{\vartheta^{\prime}} \operatorname{Hom}_{\sigma}\left(S, S \otimes_{R} N\right) & \xrightarrow{\longrightarrow} \operatorname{Rom}_{\sigma}\left(S, S \otimes_{R} N\right) \\
& \xrightarrow{(3.2 .5)} S \otimes_{S^{\mathrm{e}}}^{\mathrm{R}} \operatorname{Rom}_{\sigma, \sigma}\left(S, S \otimes_{R} N\right),
\end{aligned}
$$

where $\vartheta^{\prime}$ takes $n \in N$ to the map $s \mapsto s \otimes n$.
Using Proposition 2.3.2, we now develop more information about the above map $\psi(\sigma) M$ when $\sigma: k \rightarrow S$ is an essentially finite-type algebra over a field $k$, and $M=k$.

For any $\mathfrak{p} \in \operatorname{Spec} S$, let $I(\mathfrak{p})$ be the injective hull of the residue field $\kappa(\mathfrak{p}):=S_{\mathfrak{p}} / \mathfrak{p} S_{\mathfrak{p}}$. Let $D^{\sigma} \in \mathbf{D}(S)$ be a normalized residual complex, thus a complex of the form

$$
D^{\sigma}:=\cdots 0 \rightarrow I^{-n} \rightarrow I^{-n+1} \rightarrow \cdots \rightarrow I^{0} \rightarrow 0 \cdots
$$

where for each integer $m, I^{-m}$ is the direct sum of the $I(\mathfrak{p})$ as $\mathfrak{p}$ runs through the primes such that $S / \mathfrak{p}$ has dimension $m$. The sheafification of $D^{\sigma}$ is $f^{!} k$, where $f:=\operatorname{Spec} \sigma$ and where we identify $k$ with the structure sheaf of $\operatorname{Spec} k$, see [Har66, ch. VI, § 1].

Proposition 3.3. Under the preceding circumstances, there exists a split exact sequence of $S$-modules

$$
0 \underset{\mathfrak{p} \text { nonmaximal }}{\longrightarrow} J(\mathfrak{p}) \longrightarrow \operatorname{Hom}_{\sigma}(S, k) \xrightarrow{\psi^{0}} I^{0} \longrightarrow 0
$$

such that for each nonmaximal prime $\mathfrak{p}, J(\mathfrak{p})$ is a direct sum of uncountably many copies of $I(\mathfrak{p})$, and in $\mathbf{D}(S), \psi(\sigma) k$ is the composition

$$
\operatorname{RHom}_{\sigma}(S, k)=\operatorname{Hom}_{\sigma}(S, k) \xrightarrow{\psi^{0}} I^{0} \hookrightarrow \mathbf{D}^{\sigma} .
$$

Proof. Since $\operatorname{Hom}_{\sigma}(S, k)$ is an injective $S$-module, there is a decomposition

$$
\operatorname{Hom}_{\sigma}(S, k) \cong \bigoplus_{\mathfrak{p} \in \operatorname{Spec} S} I(\mathfrak{p})^{\mu(\mathfrak{p})}
$$

## S. B. Iyengar, J. Lipman and A. Neeman

where with $\sigma_{\mathfrak{p}}$ the natural composite map $k \xrightarrow{\sigma} S \rightarrow S / \mathfrak{p}, \mu(\mathfrak{p})$ is the dimension of the $\kappa(\mathfrak{p})$-vector space

$$
\begin{aligned}
\operatorname{Hom}_{S_{\mathfrak{p}}}\left(\kappa(\mathfrak{p}), \operatorname{Hom}_{k}(S, k)_{\mathfrak{p}}\right) & =\operatorname{Hom}_{S}\left(S / \mathfrak{p}, \operatorname{Hom}_{\sigma}(S, k)\right) \otimes_{S} S_{\mathfrak{p}} \\
& \cong \operatorname{Hom}_{\sigma_{\mathfrak{p}}}(S / \mathfrak{p}, k) \otimes_{S / \mathfrak{p}} \kappa(\mathfrak{p})
\end{aligned}
$$

In particular, if $\mathfrak{p}$ is maximal (so that $S / \mathfrak{p}=\kappa(\mathfrak{p})$ ), then $\mu(\mathfrak{p})=1$. Thus, $\operatorname{Hom}_{\sigma}(S, k)$ has a direct summand $J^{0}$ isomorphic to $I^{0}$. (This $J^{0}$ does not depend on the foregoing decomposition: it consists of all $h \in \operatorname{Hom}_{\sigma}(S, k)$ such that the $S$-submodule $S h$ has finite length.)

Now since $D^{\sigma}$ is a bounded injective complex, the $\mathbf{D}(S)$-map $\psi(\sigma)$ is represented by an ordinary map of $S$-complexes $\operatorname{Hom}_{\sigma}(S, k) \rightarrow D^{\sigma}$, that is, by a map of $S$-modules $\psi^{0}: \operatorname{Hom}_{\sigma}$ $(S, k) \rightarrow I^{0}$. By Lemma 3.2.8, the sheafification of $\psi(\sigma)$ is $\psi(f) k: f^{\times} k \rightarrow f^{!} k$, and hence Proposition 2.3.2 implies that $\psi^{0}$ maps $J^{0}$ isomorphically onto $I^{0}$. Thus, $\psi^{0}$ has a right inverse, unique up to automorphisms of $I^{0}$; and $\operatorname{Hom}_{\sigma}(S, k)$ is the direct sum of $J^{0}$ and $\operatorname{ker}\left(\psi^{0}\right)$, whence

$$
\underset{\mathfrak{p} \text { nonmaximal }}{\operatorname{ker}\left(\psi^{0}\right)} \cong \bigoplus_{i} I(\mathfrak{p})^{\mu(\mathfrak{p})}
$$

Last, in [Nee14a, Theorem 1.11] it is shown that for nonmaximal $\mathfrak{p}$,

$$
\mu_{\mathfrak{p}}=\operatorname{dim}_{\kappa(\mathfrak{p})}\left(\operatorname{Hom}_{\sigma_{\mathfrak{p}}}(S / \mathfrak{p}, k) \otimes_{S / \mathfrak{p}} \kappa(\mathfrak{p})\right) \geqslant|\# k|^{\aleph_{0}}
$$

with equality if $S$ is finitely generated over $k$.

## 4. Applications

### 4.1 Reduction theorems

At least for flat maps, $\psi:(-)^{\times} \rightarrow(-)^{!}$can be used to prove one of the main results in [AILN10], namely Theorem 4.6 (for which only a hint of a proof is given there). With notation as in $\S 3.2$, and again, $S^{e}:=S \otimes_{R} S$, that Theorem 4.6 asserts the existence of a complex $D^{\sigma} \in \mathbf{D}(S)$, depending only on $\sigma$, and for all $\sigma$-perfect $M \in \mathbf{D}(S)$ (i.e. $M$ is isomorphic in $\mathbf{D}(R)$ to a bounded complex of flat $R$-modules, the cohomology modules of $M$ are all finitely generated over $S$, and all but finitely many of them vanish), and all $N \in \mathbf{D}(S)$, a functorial $\mathbf{D}(S)$-isomorphism

$$
\begin{equation*}
\operatorname{RHom}_{S}\left(M, D^{\sigma}\right) \otimes_{S}^{\llcorner } N \cong S \otimes_{S^{\mathrm{e}}}^{\llcorner } \operatorname{RHom}_{\sigma, \sigma}(M, N) \tag{4.1.1}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
D^{\sigma} \cong S \otimes_{S^{\mathrm{e}}}^{\mathrm{L}} \mathrm{RHom}_{\sigma, \sigma}(S, S) \tag{4.1.1}
\end{equation*}
$$

This explicit description is noteworthy in that the sheafification $\widetilde{D^{\sigma}}$ is a relative dualizing complex $f^{!} \mathcal{O}_{Y}$, where $f:=\operatorname{Spec} \sigma: \operatorname{Spec} S \rightarrow \operatorname{Spec} R$ (see [AIL11, Example 2.3.2] or Lemma 3.2.8); and otherwise-known definitions of $f$ involve choices, of which $f$ ! must be proved independent.

The present proof will be based on the isomorphism in Lemma 4.1 .5 below, ${ }^{1}$ which is similar to (and more or less implied by) the isomorphism in [AILN10, 6.6].

Let $f: X \rightarrow Z$ be an arbitrary map in $\mathcal{E}$. Let $Y:=X \times_{Z} X$, and let $\pi_{1}$ and $\pi_{2}$ be the projections from $Y$ to $X$. For $M, N \in \mathbf{D}_{\mathrm{qc}}(X)$ there are natural maps

$$
\begin{align*}
\pi_{1}^{*} \mathrm{RH} \operatorname{Hom}_{X}^{\mathrm{qc}}\left(M, f^{!} \mathcal{O}_{Z}\right) \otimes_{Y}^{L} \pi_{2}^{*} N & \longrightarrow \mathrm{RH}_{\boldsymbol{H}}^{\mathrm{qc}}\left(\pi_{1}^{*} M, \pi_{1}^{*} f^{!} \mathcal{O}_{Z}\right) \otimes_{Y}^{L} \pi_{2}^{*} N \\
& \longrightarrow \mathrm{RH}_{Y}^{\mathrm{qc}}\left(\pi_{1}^{*} M, \pi_{1}^{*} f^{!} \mathcal{O}_{Z} \otimes_{Y}^{\mathrm{L}} \pi_{2}^{*} N\right) . \tag{4.1.2}
\end{align*}
$$

[^1]
## RELATION BETWEEN TWO TWISTED INVERSE IMAGE PSEUDOFUNCTORS

The first of these is the unique one making the following otherwise natural diagram (whose top left entry is in $\mathbf{D}_{\mathrm{qc}}(Y)$ ) commute:


In [AJL11, §5.7] it is shown that for perfect $\mathcal{E}$-maps $e: X \rightarrow Z$ (that is, $e$ has finite flat dimension), the functor $e^{!}: \mathbf{D}_{\mathrm{qc}}^{+}(Z) \rightarrow \mathbf{D}_{\mathrm{qc}}^{+}(X)$ extends pseudofunctorially to a functor, still denoted by $e^{!}$, from $\mathbf{D}_{\mathrm{qc}}(Z)$ to $\mathbf{D}_{\mathrm{qc}}(X)$ such that

$$
\begin{equation*}
e^{!} F=e^{!} \mathcal{O}_{Z} \otimes_{X}^{L} \operatorname{Le}^{*} F \quad\left(F \in \mathbf{D}_{\mathbf{q c}}(X)\right) \tag{4.1.4}
\end{equation*}
$$

For proper $e$, the extended $e^{!}$is still right-adjoint to $R e_{*}$ (see [AJL11, proof of Proposition 5.9.3]).

The complex $M \in \mathbf{D}(X)$ is perfect relative to $f$ (or simply $f$-perfect) if $M$ has coherent cohomology and has finite flat dimension over $Z$. In particular, the map $f$ is perfect if and only if $\mathcal{O}_{X}$ is $f$-perfect.
Lemma 4.1.5. If the $\mathcal{E}$-map $f: X \rightarrow Z$ is flat and $M \in \mathbf{D}(X)$ is $f$-perfect, then for $N \in \mathbf{D}_{\mathrm{qc}}(X)$, the composite map (4.1.2) is an isomorphism.

Proof. It holds that $\mathrm{RHom} m_{X}\left(M, f^{!} \mathcal{O}_{Z}\right) \in \mathbf{D}_{\mathrm{qc}}(X)$ and $\mathrm{RH} \operatorname{Hom}_{Y}\left(\pi_{1}^{*} M, \pi_{1}^{*} f^{!} \mathcal{O}_{Z}\right) \in \mathbf{D}_{\mathrm{qc}}(Y)$ (see the proof of [AILN10, 6.6]); and so the vertical arrows in (4.1.3) are isomorphisms. So is the bottom arrow in (4.1.3) (see, e.g., $[\operatorname{Lip} 09,(4.6 .6)])$. Hence, the first map in (4.1.2) is an isomorphism.

As for the second, from the flatness of $f$ it follows that $\pi_{1}^{*} M$ is $\pi_{2}$-perfect, and that there is a base-change isomorphism (cf. (1.1.3))

$$
\begin{equation*}
\pi_{1}^{*} f^{!} \mathcal{O}_{Z} \xrightarrow{\sim} \pi_{2}^{!} \mathcal{O}_{X} \tag{4.1.6}
\end{equation*}
$$

The conclusion follows then from [AILN10, 6.6] (with $g:=\pi_{2}, E^{\prime}=\mathcal{O}_{X}, F^{\prime}=N$, and with RHom replaced throughout by RH Hom $^{\text {qc }}$ ), in whose proof we can replace the duality isomorphism (5.9.1) there by (1.6.1) in this paper, and use the definition (4.1.4) of $e^{!}$for any finite-flat-dimensional map $e$ in $\mathcal{E}$ (for instance $g, h$ and $i$ in [AILN10, 6.6]), thereby rendering unnecessary the boundedness condition in [AILN10, 6.6] on the complex $F^{\prime}$. (In this connection, note that if $e=h i$ with $h$ smooth and $i$ a closed immersion then $i$ is perfect [Ill71, 3.6, p. 246].)

For $f: X \rightarrow Z$ a flat $\mathcal{E}$-map and $M \in \mathbf{D}_{\mathrm{qc}}(X)$ set

$$
M^{\vee}:=\mathrm{RH} \mathcal{H}_{X}^{\mathrm{q}}\left(M, f^{!} \mathcal{O}_{Z}\right),
$$

and consider the composite map, with $N \in \mathbf{D}_{\mathrm{qc}}^{+}(X)$,

$$
\begin{equation*}
\mathrm{RH} \mathrm{Hom}_{Y}^{\mathrm{qc}}\left(\pi_{1}^{*} M, \pi_{2}^{\times} N\right) \longrightarrow \mathrm{RH} \boldsymbol{H}_{Y}^{\mathrm{qc}}\left(\pi_{1}^{*} M, \pi_{2}^{!} N\right) \xrightarrow{\sim} \pi_{1}^{*} M^{\vee} \otimes_{Y}^{\mathrm{L}} \pi_{2}^{*} N \tag{4.1.7}
\end{equation*}
$$

where the first map is induced by $\psi\left(\pi_{2}\right)$, and the isomorphism on the right is obtained by inverting that given by Lemma 4.1.5 and then replacing $\pi_{1}^{*} f^{!} \mathcal{O}_{Z} \otimes_{Y}^{L} \pi_{2}^{*} N$ by the isomorphic object $\pi_{2}^{!} N$ (see (4.1.4) and (4.1.6)). Remark 6.2 of [AILN10] authorizes replacement in (4.1.7) of $M$ by $M^{\vee}$, and recalls that the natural map is an isomorphism $M \xrightarrow{\sim} M^{\vee \vee}$; thus, one obtains the composite map

$$
\begin{equation*}
\mathrm{RH} m_{Y}^{\mathrm{qc}}\left(\pi_{1}^{*} M^{\vee}, \pi_{2}^{\times} N\right) \longrightarrow \mathrm{RH} o m_{Y}^{\mathrm{qc}}\left(\pi_{1}^{*} M^{\vee}, \pi_{2}^{!} N\right) \xrightarrow{\sim} \pi_{1}^{*} M \otimes_{Y}^{\llcorner } \pi_{2}^{*} N . \tag{4.1.7}
\end{equation*}
$$

## S. B. Iyengar, J. Lipman and A. Neeman

Theorem 4.1.8. If $M \in \mathbf{D}_{\mathrm{qc}}(X)$ is $f$-perfect, and $N \in \mathbf{D}_{\mathrm{qc}}^{+}(X)$, then application of $\mathrm{L} \delta^{*}$ (respectively $\delta^{!}$) to the composite (4.1.7) (respectively (4.1.7) ${ }^{\vee}$ ) produces an isomorphism

$$
\begin{aligned}
\text { (respectively }) & \mathrm{L} \delta^{*} \mathrm{RH} \operatorname{Hom}_{Y}^{\mathrm{qc}}\left(\pi_{1}^{*} M, \pi_{2}^{\times} N\right) \\
\sim \delta^{!}\left(\pi_{1}^{*} M \otimes_{Y}^{\llcorner } \pi_{2}^{*} N\right) & \sim \otimes_{X}^{\mathrm{L}} N \\
& \mathrm{RH} \text { Hom }_{X}^{\mathrm{qc}}\left(M^{\vee}, N\right) .
\end{aligned}
$$

Proof. By Proposition 2.3.5, application of $\mathrm{L} \delta^{*}$ to the first map in (4.1.7) produces an isomorphism. Similarly, in view of (1.6.2), applying $\delta^{\times}\left(=\delta^{!}\right)$to the first map in (4.1.7) ${ }^{\vee}$ produces an isomorphism.

Remark 4.1.9. Using Remark 2.3.6 for the first map in (4.1.7), one can extend Theorem 4.1.8 to all $N \in \mathbf{D}_{\mathrm{qc}}(X)$. This results immediately from the fact, given by [Nee14b, Proposition 7.11], that if $e=p u$ is a compactification of a perfect $\mathcal{E}$-map $e: X \rightarrow Z$ then the following natural map is an isomorphism:

$$
e^{!} N: \underset{(4.1 .4)}{ } e^{!} \mathcal{O}_{Z} \otimes_{X}^{\mathrm{L}} \mathrm{~L} e^{*} N \cong u^{*}\left(p^{\times} \mathcal{O}_{Z} \otimes_{X}^{\mathrm{L}} \mathrm{~L} p^{*} N\right) \rightarrow u^{*} p^{\times} N \quad\left(N \in \mathbf{D}_{\mathrm{qc}}(Z)\right)
$$

Remark 4.1.10. The first isomorphism in Theorem 4.1.8 is a globalization (for flat $f$ and cohomologically bounded-below $N$ ) of [AILN10, Theorem 4.6]. Indeed, let $\sigma: R \rightarrow S$ be an essentially finite-type flat homomorphism of noetherian rings, $f=\operatorname{Spec}(\sigma), S^{\mathrm{e}}:=S \otimes_{R} S$ and $p_{i}: S \rightarrow S^{\mathrm{e}}(i=1,2)$ the canonical maps. Let $M, N, D^{\sigma} \in \mathbf{D}(S)$, where $M$ is $\sigma$-perfect and $D^{\sigma}$ is a relative dualizing complex, sheafifying to $\widetilde{D^{\sigma}}=f^{!} \mathcal{O}_{Z}$ (see [AIL11, Example 2.3.2]). Set $X:=\operatorname{Spec} S, Z:=\operatorname{Spec} R, Y:=X \times_{Z} X$, and let $\delta: X \rightarrow Y$ be the diagonal. Then (as the cohomology of $M$ is bounded and finitely generated over $S$ ) $\delta_{*}\left(\widetilde{M}^{\vee} \otimes_{X}^{L} \widetilde{N}\right)$ sheafifies $\operatorname{RHom}_{S}\left(M, D^{\sigma}\right) \otimes_{S}^{L} N \in \mathbf{D}\left(S^{e}\right)$, and, with notation as in $\S 3.2, \delta_{*} \mathrm{~L} \delta^{*} \mathrm{RH} \mathcal{H}_{Y}\left(\pi_{1}^{*} M, \pi_{2}^{\times} N\right)$ sheafifies

$$
\begin{aligned}
S \otimes_{S^{\mathrm{e}}}^{\mathrm{L}} \operatorname{RHom}_{S^{\mathrm{e}}}\left(M \otimes_{S} S^{\mathrm{e}}, \operatorname{RHom}_{p_{2}}\left(S^{\mathrm{e}}, N\right)\right) & \cong S \otimes_{S^{\mathrm{e}}}^{\mathrm{L}} \operatorname{RHom}_{p_{2}}\left(M \otimes_{S} S^{\mathrm{e}}, N\right) \\
& \cong S \otimes_{S^{\mathrm{e}}}^{\mathrm{R}} \operatorname{Rom}_{p_{2}}\left(M \otimes_{R} S, N\right) \\
& \cong S \otimes_{S^{\mathrm{e}}}^{\mathrm{R}} \operatorname{RHom}_{\sigma, \sigma}(M, N) .
\end{aligned}
$$

Thus, in this situation, application of $\delta_{*}$ to Theorem 4.1.8 gives the existence of a functorial isomorphism (4.1.1) (that should be closely related to, if not identical to, that in [AILN10, 4.6]).
Remark 4.1.11. Let $f$ be as in Lemma 4.1.5, and let $\delta: X \rightarrow Y:=X \times{ }_{Z} X$ be the diagonal map. Keeping in mind the last paragraph of $\S 1.5$ above, one checks that the reduction isomorphism [AILN10, Corollary 6.5]

$$
\begin{equation*}
\delta^{!}\left(\pi_{1}^{*} M \otimes_{X}^{\llcorner } \pi_{2}^{*} N\right) \xrightarrow{\sim} \mathrm{RH}^{2} m_{X}\left(M^{\vee}, N\right) \tag{4.1.11.1}
\end{equation*}
$$

is inverse to the second isomorphism in Theorem 4.1.8. (In [AILN10], see the proof of Corollary 6.5, and the last four lines of the proof of Theorem 6.1 with $\left(X^{\prime}, Y^{\prime}, Y, Z\right)=(Y, X, Z, X)$, $E=\mathcal{O}_{Y}$, and $(g, u, f, v)=\left(\pi_{2}, f, f, \pi_{1}\right)$, so that $\nu=\gamma=\operatorname{id}_{X}$.)

In the affine case, with assumptions on $\sigma, M$ and $N$ as above, 'desheafification' of (i.e. applying derived global sections to) (4.1.11.1) produces a functorial isomorphism

$$
\mathrm{RHom}_{S^{\mathrm{e}}}\left(S, M \otimes_{R}^{\mathrm{L}} N\right) \xrightarrow{\sim} \mathrm{RHom}_{S}\left(\mathrm{RHom}_{S}\left(M, D^{\sigma}\right), N\right)
$$

with the same source and target as that in [AILN10, Theorem 1, p. 736]. (We suspect, but do not know, that the two isomorphisms are the same; at least up to sign.)

## RELATION BETWEEN TWO TWISTED INVERSE IMAGE PSEUDOFUNCTORS

4.2 In this section we review, from the perspective afforded by results in this paper, some known basic facts about integrals, residues, and fundamental classes. The description is mostly in abstract terms. What will be new is a direct concrete description of the fundamental class of a flat essentially finite-type homomorphism $\sigma: R \rightarrow S$ of noetherian rings (Theorem 4.2.4).

Let $I \subset S$ be an ideal such that $S / I$ is a finite $R$-module, and let $\Gamma_{I}$ be the subfunctor of the identity functor on $S$-modules $M$ given objectwise by

$$
\Gamma_{I}(M):=\left\{m \in M \mid I^{n} m=0 \text { for some } n>0\right\}
$$

There is an obvious map from the derived functor $\mathrm{R} \Gamma_{I}$ to the identity functor on $\mathbf{D}(S)$.
In view of the isomorphism (3.2.6), one can apply derived global sections in Remark 2.3.4 to obtain, in the present context, the following diagram, whose rectangle commutes. In this diagram, $\sigma_{*}: \mathbf{D}(S) \rightarrow \mathbf{D}(R)$ is the functor given by restricting scalars; and $\omega_{\sigma}$ is a canonical module of $\sigma$ (that is, an $S$-module whose sheafification is a relative dualizing sheaf of $f:=\operatorname{Spec} \sigma$, as in Remark 2.3.4, where the integer $d$ is defined as well); and $D^{\sigma}$ is, as in Remark 4.1.10, a relative dualizing complex.


If $\sigma$ is Cohen-Macaulay and equidimensional, the natural map is an isomorphism $\omega_{\sigma}[d] \xrightarrow{\sim} D^{\sigma}$; and application of $\mathrm{H}^{0}$ to the preceding diagram produces a commutative diagram of $R$-modules


This shows that an explicit description of $(\operatorname{via} \psi)^{-1}$ is more or less the same as an explicit description of $\int_{I}$; and so, when $I$ is a maximal ideal, of residues. 'Explicit' includes the realization of the relative canonical module $\omega_{\sigma}$ in terms of regular differential forms (cf. Remark 2.3.4).

Such a realization comes out of the theory of the fundamental class $\mathbf{c}_{f}$ of a flat $\mathcal{E}$-map $f$, as indicated below. This $\mathbf{c}_{f}$ is a key link between the abstract duality theory of $f$ and its canonical reification via differential forms. It may be viewed as an orientation, compatible with essentially étale base change, in a suitable bivariant theory on the category of flat $\mathcal{E}$-maps [AJL14].

Given a flat $\mathcal{E}$-map $f: X \rightarrow Z$, with $\pi_{1}$ and $\pi_{2}$ the projections from $Y:=X \times{ }_{Z} X$ to $X$, and $\delta: X \rightarrow Y$ the diagonal map, let $\mathbf{c}_{f}$ be, as in [AJL14, Example 2.3], the natural composite $\mathbf{D}(X)$-map

$$
\begin{equation*}
\mathrm{L} \delta^{*} \delta_{*} \mathcal{O}_{X} \xrightarrow{\sim} \mathrm{~L} \delta^{*} \delta_{*} \delta^{!} \pi_{1}^{!} \mathcal{O}_{X} \longrightarrow \mathrm{~L} \delta^{*} \pi_{1}^{!} \mathcal{O}_{X} \underset{(1.1 .3)}{\sim} \mathrm{L} \delta^{*} \pi_{2}^{*} f^{!} \mathcal{O}_{Z} \xrightarrow{\sim} f^{!} \mathcal{O}_{Z} \tag{4.2.1}
\end{equation*}
$$

Let $\mathcal{J}$ be the kernel of the natural surjection $\mathcal{O}_{Y} \rightarrow \delta_{*} \mathcal{O}_{X}$. Using a flat $\mathcal{O}_{Y}$-resolution of $\delta_{*} \mathcal{O}_{X}$ one gets a natural isomorphism of $\mathcal{O}_{X}$-modules

$$
\Omega_{f}^{1}=\mathcal{J} / \mathcal{J}^{2} \cong \mathcal{T o r}_{1}^{\mathcal{O}_{Y}}\left(\delta_{*} \mathcal{O}_{X}, \delta_{*} \mathcal{O}_{X}\right)=H^{-1} \mathbf{L} \delta^{*} \delta_{*} \mathcal{O}_{X}
$$

## S. B. Iyengar, J. Lipman and A. Neeman

whence a map of graded-commutative $\mathcal{O}_{X}$-algebras, with $\Omega_{f}^{i}:=\wedge^{i} \Omega_{f}^{1}$,

$$
\begin{equation*}
\bigoplus_{i \geqslant 0} \Omega_{f}^{i} \rightarrow \bigoplus_{i \geqslant 0} \mathcal{T o r}_{i}^{\mathcal{O}_{Y}}\left(\delta_{*} \mathcal{O}_{X}, \delta_{*} \mathcal{O}_{X}\right)=\bigoplus_{i \geqslant 0} H^{-i} \mathbf{L} \delta^{*} \delta_{*} \mathcal{O}_{X} \tag{4.2.2}
\end{equation*}
$$

In particular one has, with $d$ as above, a natural composition

$$
\gamma_{f}: \Omega_{f}^{d} \rightarrow H^{-d} \mathbf{L} \delta^{*} \delta_{*} \mathcal{O}_{X} \xrightarrow{\text { via } \mathbf{c}_{f}} H^{-d} f^{!} \mathcal{O}_{Z}=: \omega_{f} .
$$

(In the literature, the term 'fundamental class' often refers to this $\gamma_{f}$ rather than to $\mathbf{c}_{f}$.) When $f$ is essentially smooth, this map is an isomorphism, as is $\omega_{f} \rightarrow f^{!} \mathcal{O}_{Z}$. (The proof uses the known fact that there exists an isomorphism $\Omega_{f}^{d} \xrightarrow{\sim} f^{!} \mathcal{O}_{Z}$, but does not reveal the relation between that isomorphism and $\gamma_{f}$, see [AJL14, 2.4.2, 2.4.4].) It follows that if $f$ is just generically smooth, then $\gamma_{f}$ is a generic isomorphism. For example, if $X$ is a reduced algebraic variety over a field $k$, of pure dimension $d$, with structure map $f: X \rightarrow \operatorname{Spec} k$, then one deduces that $\omega_{f}$ is canonically represented by a coherent sheaf of meromorphic $d$-forms, the sheaf of regular $d$-forms, containing the sheaf $\Omega_{f}^{d}$ of holomorphic $d$-forms, with equality over the smooth part of $X$.

From $\gamma_{f}$ and the above $\int_{I}$ one deduces a map

$$
\mathrm{H}_{I}^{d} \Omega_{\sigma}^{d} \rightarrow R
$$

that generalizes the classical residue map.
Theorem 4.2.4 below provides a direct concrete definition of the fundamental class of a flat essentially-finite-type homomorphism $\sigma: R \rightarrow S$ of noetherian rings.

First, some preliminaries. As before, set $S^{\mathrm{e}}:=S \otimes_{R} S$, let $p_{1}: S \rightarrow S^{\mathrm{e}}$ be the homomorphism such that for $s \in S, p_{1}(s)=s \otimes 1$, and $p_{2}: S \rightarrow S^{\mathrm{e}}$ such that $p_{2}(s)=1 \otimes s$.

Let $f: \operatorname{Spec} S=: X \rightarrow Z:=\operatorname{Spec} R$ be the scheme map corresponding to $\sigma$. Let $\pi_{1}$ and $\pi_{2}$ be the projections (corresponding to $p_{1}$ and $p_{2}$ ) from $X \times_{Z} X$ to $X$.

Let $\mathrm{Hom}_{\sigma, \sigma}$ and $\mathrm{Hom}_{p_{1}}$ be as in §3.2.3.
For an $S$-complex $F$, considered as an $S^{\mathrm{e}}$-complex via the multiplication map $S^{\mathrm{e}} \rightarrow S$, let $\mu_{F}: F \rightarrow \operatorname{Hom}_{\sigma, \sigma}(S, F)$ be the $S^{\mathrm{e}}$-homomorphism taking $f \in F$ to the map $s \mapsto s f$.

For an $S$-complex $E$, there is an obvious $S^{\mathrm{e}}$-isomorphism

$$
\operatorname{Hom}_{\sigma, \sigma}(S, E) \xrightarrow{\sim} \operatorname{Hom}_{p_{1}}\left(S^{\mathrm{e}}, E\right) .
$$

Taking $E$ to be a K-injective resolution of $F$ (over $S$, and hence, since $\sigma$ is flat, also over $R$ ), one gets the isomorphism in the following statement.

Lemma 4.2.3. Let $F \in \mathbf{D}(S)$ have sheafification $F^{\sim} \in \mathbf{D}(X)$. The sheafification of the natural composite $\mathbf{D}\left(S^{\mathrm{e}}\right)$-map

$$
\xi(F): F \xrightarrow{\mu_{F}} \operatorname{Hom}_{\sigma, \sigma}(S, F) \longrightarrow \operatorname{RHom}_{\sigma, \sigma}(S, F) \xrightarrow{\sim} \operatorname{RHom}_{p_{1}}\left(S^{\mathrm{e}}, F\right)
$$

is the natural composite (with $\epsilon_{2}$ the counit map)

$$
\begin{equation*}
\delta_{*} F^{\sim} \xrightarrow{\sim} \delta_{*} \delta^{\times} \pi_{1}^{\times} F^{\sim} \xrightarrow{\epsilon_{2}} \pi_{1}^{\times} F^{\sim} . \tag{4.2.3.1}
\end{equation*}
$$

Proof. The sheafification of $\operatorname{RHom}_{p_{1}}\left(S^{\mathrm{e}}, F\right)$ is $\pi_{1}^{\times} F^{\sim}$, see (3.2.6). Likewise, with $m: S^{\mathrm{e}} \rightarrow S$ the multiplication map, and $G \in \mathbf{D}\left(S^{\mathrm{e}}\right)$, one has that $\delta^{\times} G^{\sim s^{e}}$ is the sheafification of $\mathrm{RHom}_{m}(S, G)$; and Lemma 3.1 implies that $\epsilon_{2}$ is the sheafification of the 'evaluation at 1 ' map

$$
\mathrm{ev}: \operatorname{RHom}_{m}\left(S, \operatorname{RHom}_{p_{1}}\left(S^{\mathrm{e}}, F\right)\right) \rightarrow \operatorname{RHom}_{p_{1}}\left(S^{\mathrm{e}}, F\right)
$$

## RELATION BETWEEN TWO TWISTED INVERSE IMAGE PSEUDOFUNCTORS

Moreover, one checks that the isomorphism $\delta_{*} F^{\sim} \xrightarrow{\sim} \delta_{*} \delta^{\times} \pi_{1}^{\times} F^{\sim}$ is the sheafification of the natural isomorphism $F \xrightarrow{\sim} \operatorname{RHom}_{m}\left(S, \operatorname{RHom}_{p_{1}}\left(S^{\mathrm{e}}, F\right)\right)$.

Under the allowable assumption that $F$ is K-injective, one finds then that (4.2.3.1) is the sheafification of the map $\xi^{\prime}(F): F \rightarrow \operatorname{Hom}_{p_{1}}\left(S^{\mathrm{e}}, F\right)$ that takes $f \in F$ to the map $\left[s \otimes s^{\prime} \mapsto s s^{\prime} f\right]$. It is simple to check that $\xi^{\prime}(F)=\xi(F)$.

Theorem 4.2.4. Let $\sigma: R \rightarrow S$ be a flat essentially finite-type map of noetherian rings, and $f: \operatorname{Spec} S \rightarrow \operatorname{Spec} R$ the corresponding scheme map. Let $\mu: S \rightarrow \operatorname{Hom}_{\sigma, \sigma}(S, S)$ be the $S^{\mathrm{e}}$-homomorphism taking $s \in S$ to multiplication by $s$. Then the fundamental class $\mathbf{c}_{f}$ given by (4.2.1) is naturally isomorphic to the sheafification of the natural composite map

$$
S \otimes_{S^{\mathrm{e}}}^{\mathrm{L}} S \xrightarrow{\mathrm{id} \otimes \mu} S \otimes_{S^{\mathrm{e}}}^{\mathrm{L}^{\mathrm{Hom}}} \operatorname{Hom}_{\sigma, \sigma}(S, S) \longrightarrow S \otimes_{S^{\mathrm{e}}}^{\mathrm{L}} \mathrm{RHom}_{\sigma, \sigma}(S, S) .
$$

Proof. It suffices to show that the map in Theorem 4.2 .4 sheafifies to a map isomorphic to the canonical composite map

$$
\begin{equation*}
\mathrm{L} \delta^{*} \delta_{*} \mathcal{O}_{X} \xrightarrow{\sim} \mathrm{~L} \delta^{*} \delta_{*} \delta^{!} \pi_{1}^{!} \mathcal{O}_{X} \longrightarrow \mathrm{~L} \delta^{*} \pi_{1}^{!} \mathcal{O}_{X} \tag{4.2.4.1}
\end{equation*}
$$

(see (4.2.1), in which the last two maps are isomorphisms).
Applying pseudofunctoriality of $\psi$ (Theorem 2.1.4) to $\mathrm{id}_{X}=\pi_{1} \delta$, one sees that the map in (4.2.4.1) factors as

$$
\mathrm{L} \delta^{*} \delta_{*} \mathcal{O}_{X} \rightarrow \mathrm{~L} \delta^{*} \delta_{*} \delta^{\times} \pi_{1}^{\times} \mathcal{O}_{X} \rightarrow \mathrm{~L} \delta^{*} \pi_{1}^{\times} \mathcal{O}_{X} \xrightarrow{\sim} \mathrm{~L} \delta^{*} \pi_{1}^{!} \mathcal{O}_{X}
$$

where the isomorphism is from Proposition 2.3.5. Thus, the conclusion follows from Lemma 4.2.3.

Example 4.2.5. Let $T$ be a finite étale $R$-algebra. The (desheafified) fundamental class $\mathbf{c}_{R \rightarrow T}$ is the $\mathbf{D}(T)$-isomorphism from $T \otimes_{T^{\mathrm{e}}}^{\llcorner } T=T$ to $T \otimes_{T^{\mathrm{e}}}^{\mathrm{e}} \operatorname{Hom}_{R}(T, T) \cong \operatorname{Hom}_{R}(T, R)$ taking 1 to the trace map (cf. [AJL14, Example 2.6]).

If $S$ is an essentially étale $T$-algebra (for instance, a localization of $T$ ), then there is a canonical identification of $\mathbf{c}_{R \rightarrow S}$ with $\left(\mathbf{c}_{R \rightarrow T}\right) \otimes_{T} S$. (This fact results from [AJL14, 2.5 and 3.1], but can be proved more directly.) However, $\mathbf{c}_{R \rightarrow S}$ depends only on $R \rightarrow S$, not on $T$.

## Appendix A. Supports

The goal of this appendix is to establish some basic facts, used repeatedly in $\S 2.3$, about the relation between subsets of a noetherian scheme $X$ and 'localizing tensor ideals' in $\mathbf{D}_{\mathrm{qc}}(X)$.
Notation. Let $X$ be a noetherian scheme. For any $x \in X$, let $\mathcal{O}_{x}$ be the stalk $\mathcal{O}_{X, x}$, let $\kappa(x)$ be the residue field of $\mathcal{O}_{x}$, let $\widetilde{\kappa(x)}$ be the corresponding sheaf on $X_{x}:=\operatorname{Spec} \mathcal{O}_{x}$, a quasi-coherent, flasque sheaf, let $\iota_{x}: X_{x} \rightarrow X$ be the canonical (flat) map, a localizing immersion, and let

$$
k(x):=\iota_{x *} \widetilde{\kappa(x)}=\mathrm{R}_{\iota_{x *}} \widetilde{\kappa(x)},
$$

a quasi-coherent flasque $\mathcal{O}_{X}$-module whose stalk at a point $y$ is $\kappa(x)$ if $y$ is a specialization of $x$, and 0 otherwise.

For $E \in \mathbf{D}(X)$, we consider two notions of the support of $E$ :

$$
\begin{aligned}
\operatorname{supp}(E) & :=\left\{x \in X \mid E \otimes_{X}^{L} k(x) \neq 0 \in \mathbf{D}(X)\right\}, \\
\operatorname{Supp}(E) & :=\left\{x \in X \mid E_{x} \neq 0 \in \mathbf{D}\left(\mathcal{O}_{x}\right)\right\} .
\end{aligned}
$$

## S. B. Iyengar, J. Lipman and A. Neeman

Let $\mathbf{D}_{\mathrm{c}}(X)\left(\mathbf{D}_{\mathrm{c}}^{+}(X)\right)$ be the full subcategory of $\mathbf{D}(X)$ spanned by the complexes with coherent cohomology modules (vanishing in all but finitely many negative degrees). For affine $X$ and $E \in \mathbf{D}_{\mathrm{c}}^{+}(X)$ the next lemma appears in [Fox79, p. 158].

Lemma A.1. For any $E \in \mathbf{D}_{\mathrm{qc}}(X)$,

$$
\operatorname{supp}(E) \subseteq \operatorname{Supp}(E) ;
$$

and equality holds whenever $E \in \mathbf{D}_{\mathrm{c}}(X)$.
Proof. For $E \in \mathbf{D}_{\mathrm{qc}}(X)$, there is a projection isomorphism

$$
E \otimes_{X}^{\mathrm{L}} k(x) \cong \mathrm{R} \iota_{x *}\left(\iota_{x}^{*} E \otimes_{X_{x}}^{\mathrm{L}} \widetilde{\kappa(x)}\right) .
$$

Applying $\iota_{x}^{*}$ to this isomorphism, and recalling from $\S 1.4$ that $\iota_{x}^{*} \mathrm{R} \iota_{x *}$ is isomorphic to the identity, we get

$$
\iota_{x}^{*}\left(E \otimes_{X}^{\mathrm{L}} k(x)\right) \cong \iota_{x}^{*} E \otimes_{X_{x}}^{\mathrm{L}} \widetilde{\kappa(x)} .
$$

These two isomorphisms tell us that $E \otimes_{X}^{L} k(x)$ vanishes in $\mathbf{D}_{\mathrm{qc}}(X)$ if and only if $\iota_{x}^{*} E \otimes_{X_{x}}^{\mathrm{L}} \widetilde{\kappa(x)}$ vanishes in $\mathbf{D}_{\mathrm{qc}}\left(X_{x}\right)$.

Moreover, $\iota_{x}^{*} E \otimes_{X_{x}}^{\mathrm{L}} \widetilde{\kappa(x)}$ is the sheafification of $E_{x} \otimes_{\mathcal{O}_{x}}^{\mathrm{L}} \kappa(x) \in \mathbf{D}\left(\mathcal{O}_{x}\right)$, and so its vanishing in $\mathbf{D}\left(X_{x}\right)$ (i.e. its being exact) is equivalent to that of $E_{x} \otimes_{\mathcal{O}_{x}}^{\llcorner } \kappa(x)$ in $\mathbf{D}\left(\mathcal{O}_{x}\right)$. Thus,

$$
x \in \operatorname{supp}(E) \Longleftrightarrow E_{x} \otimes_{\mathcal{O}_{x}}^{\mathrm{L}} \kappa(x) \neq 0
$$

It follows that if $x \in \operatorname{supp}(E)$, then $E_{x} \neq 0$, that is to say, $x \in \operatorname{Supp}(E)$. So for all $E \in \mathbf{D}_{\text {qc }}(X)$ we have $\operatorname{supp}(E) \subseteq \operatorname{Supp}(E)$.

Now suppose $E \in \mathbf{D}_{\mathbf{c}}(X)$ and $x \notin \operatorname{supp}(E)$, i.e. $E_{x} \otimes_{\mathcal{O}_{x}}^{\mathrm{L}} \kappa(x)=0$. Let $K$ be the Koszul complex on a finite set of generators for the maximal ideal of the local ring $\mathcal{O}_{x}$. It is easy to check that the full subcategory of $\mathbf{D}\left(\mathcal{O}_{x}\right)$ consisting of complexes $C$ such that $E_{x} \otimes_{\mathcal{O}_{x}}^{\mathrm{L}} C=0$ is a thick subcategory. It contains $\kappa(x)$, and hence also $K$, since the $\mathcal{O}_{x}$-module $\bigoplus_{i \in \mathbb{Z}} \mathrm{H}^{i}(K)$ has finite length, see [DGI06, 3.5]. Thus, $E_{x} \otimes_{\mathcal{O}_{x}}^{\perp} K=0$ in $\mathbf{D}\left(\mathcal{O}_{x}\right)$; and since the cohomology of $E_{x}$ is finitely generated in all degrees, [FI03, 1.3(2)] gives $E_{x}=0$. Thus, $x \notin \operatorname{Supp}(E)$; and so $\operatorname{supp}(E) \supseteq \operatorname{Supp}(E)$.

A localizing tensor ideal $\mathcal{L} \subseteq \mathbf{D}_{\mathbf{q c}}(X)$ is a full triangulated subcategory of $\mathbf{D}_{\mathbf{q c}}(X)$, closed under arbitrary direct sums, and such that for all $G \in \mathcal{L}$ and $E \in \mathbf{D}_{\mathrm{qc}}(X)$, it holds that $G \otimes_{X}^{L}$ $E \in \mathcal{L}$.

The next proposition is proved in [Nee92, § 2] in the affine case; and in [AJS04] (where localizing tensor ideals are called rigid localizing subcategories) the proof is extended to noetherian schemes. (Use e.g., Corollary 4.11 and the bijection in Theorem 4.12 of [AJS04].)

Proposition A.2. Let $\mathcal{L} \subseteq \mathbf{D}_{\mathrm{qc}}(X)$ be a localizing tensor ideal. A complex $E \in \mathbf{D}_{\mathrm{qc}}(X)$ is in $\mathcal{L}$ if and only if so is $k(x)$ for all $x$ in $\operatorname{supp}(E)$.

For closed subsets of affine schemes the next result is part of [DG02, Proposition 6.5].
Proposition A.3. Let $E \in \mathbf{D}_{\mathrm{qc}}(X)$ be such that $W:=\operatorname{supp}(E)$ is a union of closed subsets of $X$.

## RELATION BETWEEN TWO TWISTED INVERSE IMAGE PSEUDOFUNCTORS

(i) For any $F \in \mathbf{D}_{\mathrm{qc}}(X)$,

$$
\begin{aligned}
E \otimes_{X}^{L} F=0 & \Longleftrightarrow \mathrm{RH}_{\mathcal{H}_{X}}(E, F)=0 \\
& \Longleftrightarrow \mathrm{RHom}_{X}^{\mathrm{qc}}(E, F)=0 \\
& \Longleftrightarrow \mathrm{R} \Gamma_{W} F=0 .
\end{aligned}
$$

(ii) For any morphism $\phi \in \mathbf{D}_{\mathrm{qc}}(X)$,

$$
\begin{aligned}
E \otimes_{X}^{L} \phi \text { is an isomorphism } & \Longleftrightarrow \mathrm{RH} o m_{X}(E, \phi) \text { is an isomorphism } \\
& \Longleftrightarrow \mathrm{RH} m_{X}^{\mathrm{cc}}(E, \phi) \text { is an isomorphism } \\
& \Longleftrightarrow \mathrm{R} \Gamma_{W} \phi \text { is an isomorphism. }
\end{aligned}
$$

Proof. Let $\mathcal{L} \subseteq \mathbf{D}_{\mathrm{qc}}(X)$ (respectively $\mathcal{L}^{\prime} \subseteq \mathbf{D}_{\mathrm{qc}}(X)$ ) be the full subcategory spanned by the complexes $C$ such that $C \otimes_{X}^{\mathrm{L}} F=0$ (respectively $\operatorname{RHom}_{X}(C, F)=0$ ). It is clear that $\mathcal{L}$ is a localizing tensor ideal; and using the natural isomorphisms (with $G \in \mathbf{D}_{\mathrm{qc}}(X)$ ),

$$
\begin{align*}
& \operatorname{RHom}_{X}\left(\bigoplus_{i \in I} C_{i}, F\right) \cong \prod_{i \in I} \operatorname{RHom}_{X}\left(C_{i}, F\right),  \tag{A.3.1}\\
& \operatorname{RHom}_{X}\left(G \otimes_{X}^{\mathrm{L}} C, F\right) \cong \operatorname{RHom}_{X}\left(G, \mathrm{RHom}_{X}(C, F)\right)
\end{align*}
$$

one sees that $\mathcal{L}^{\prime}$ is a localizing tensor ideal too.
We claim that when $E$ is in $\mathcal{L}$ it is also in $\mathcal{L}^{\prime}$. For this it is enough, by Proposition A.2, that for any $x \in W, k(x)$ be in $\mathcal{L}^{\prime}$. By [Tho97, Lemma 3.4], there is a perfect $\mathcal{O}_{X}$-complex $C$ such that $\operatorname{Supp}(C)$ is the closure $\overline{\{x\}}$. We have

$$
\operatorname{supp}(C)=\operatorname{Supp}(C)=\overline{\{x\}} \subseteq W,
$$

where the first equality holds by Lemma A. 1 and the inclusion holds because $W$ is a union of closed sets. Thus, Proposition A. 2 yields $C \in \mathcal{L}$; and the dual complex $C^{\prime}:=\mathrm{RHom} \mathrm{H}_{X}\left(C, \mathcal{O}_{X}\right)$ is in $\mathcal{L}^{\prime}$, because $\mathrm{RH}^{\prime} m_{X}\left(C^{\prime}, F\right) \cong C \otimes_{X}^{\llcorner } F=0$. Since

$$
x \in \operatorname{supp}(C)=\operatorname{Supp}(C)=\operatorname{Supp}\left(C^{\prime}\right)=\operatorname{supp}\left(C^{\prime}\right)
$$

therefore Proposition A. 2 gives that, indeed, $k(x) \in \mathcal{L}^{\prime}$.
Similarly, if $E \in \mathcal{L}^{\prime}$, then $E \in \mathcal{L}$, proving the first part of part (i).
The same argument holds with $\mathrm{RH} \boldsymbol{H}_{X}^{\text {qc }}$ in place of $\mathrm{RH} \mathrm{Hom}_{X}$. (After that replacement, the isomorphisms (A.3.1) still hold if $\Pi$ is prefixed by $\mathrm{id}_{X}^{\times}$: this can be checked by applying the functors $\operatorname{Hom}_{X}(H,-)$ for all $H \in \mathbf{D}_{\mathrm{qc}}(X)$.)

As for the rest, recall that $\mathrm{R} \Gamma_{W} \mathcal{O}_{X} \in \mathbf{D}_{\mathrm{qc}}(X)$ : when $W$ itself is closed, this results from the standard triangle (with $w: X \backslash W \hookrightarrow X$ the inclusion)

$$
\mathrm{R} \Gamma_{W} \mathcal{O}_{X} \rightarrow \mathcal{O}_{X} \rightarrow \mathrm{R} w_{*} w^{*} \mathcal{O}_{X} \xrightarrow{+}\left(\mathrm{R} \Gamma_{W} \mathcal{O}_{X}\right)[1]
$$

(or from the local representation of $\mathrm{R} \Gamma_{W} \mathcal{O}_{X}$ by a $\xrightarrow{\lim }$ of Koszul complexes); and then for the general case, use that $\Gamma_{W}=\xrightarrow{\lim } \Gamma_{Z}$ where $Z$ runs through all closed subsets of $W$.

By the following lemma, $\overrightarrow{\sup p}\left(\mathrm{R} \Gamma_{W} \mathcal{O}_{X}\right)=W$, so Proposition A. 2 implies that $E \in \mathcal{L}$ if and only if $\mathrm{R} \Gamma_{W} \mathcal{O}_{X} \in \mathcal{L}$, i.e. $E \otimes_{X}^{\mathrm{L}} F=0$ if and only if $\mathrm{R} \Gamma_{W} \mathcal{O}_{X} \otimes_{X}^{L} F=0$.

The last part of (i) results then from the standard isomorphism $\mathrm{R} \Gamma_{W} \mathcal{O}_{X} \otimes_{X}^{L} F \cong \mathrm{R} \Gamma_{W} F$ (for which see, e.g., [AJL97, 3.1.4(i) or 3.2.5(i)] when $W$ itself is closed, then pass to the general case using $\Gamma_{W}=\underline{\longrightarrow} \Gamma_{Z}$. And applying part (i) to the third vertex of a triangle based on $\phi$ gives part (ii).

## S. B. Iyengar, J. Lipman and A. Neeman

Lemma A.4. If $W$ is a union of closed subsets of $X$, then $\operatorname{supp}\left(R \Gamma_{W} \mathcal{O}_{X}\right)=W$.
Proof. As seen a few lines back, $\left(\mathrm{R} \Gamma_{W} \mathcal{O}_{X}\right) \otimes_{X}^{\mathrm{L}} k(x) \cong \mathrm{R} \Gamma_{W} k(x)$ for any $x \in X$. As $k(x)$ is flasque, the canonical map $\Gamma_{W} k(x) \rightarrow \mathrm{R} \Gamma_{W} k(x)$ is an isomorphism. The assertion is then that $\Gamma_{W} k(x) \neq 0 \Longleftrightarrow x \in W$ (i.e. $\overline{\{x\}} \subset W$ ), which is easily verified since $k(x)$ is constant on $\overline{\{x\}}$ and vanishes elsewhere.

Lemma A.5. Let $u: W \rightarrow X$ be a localizing immersion, and $F \in \mathbf{D}_{\mathrm{qc}}(X)$. The following conditions are equivalent:
(i) $\operatorname{supp}(F) \subseteq W$;
(ii) the canonical map is an isomorphism $F \xrightarrow{\sim} \mathrm{R} u_{*} u^{*} F$;
(iii) $F \cong \mathrm{R} u_{*} G$ for some $G \in \mathbf{D}_{\mathrm{qc}}(W)$.

Proof. As in Remark 2.1.7, the canonical map $\mathrm{R} u_{*} G \rightarrow \mathrm{R} u_{*} u^{*} \mathrm{R} u_{*} G$ is an isomorphism, whence (iii) $\Rightarrow$ (ii); and the converse implication is trivial.

Next, if $x \notin W$, then $\overline{\{x\}} \cap W=\phi$ : to see this, one reduces easily to the case in which $u$ is the natural map Spec $A_{M} \rightarrow \operatorname{Spec} A$, where $M$ is a multiplicatively closed subset of the noetherian ring $A$ (see $\S 1.3$ ). Since $k(x)$ vanishes outside $\overline{\{x\}}$, it follows that $u^{*} k(x)=0$ whenever $x \notin W$. Using the projection isomorphism $\mathrm{R} u_{*} G \otimes_{X}^{\mathrm{L}} k(x) \cong \mathrm{R} u_{*}\left(G \otimes_{W}^{\mathrm{L}} u^{*} k(x)\right)$, one sees then that (iii) $\Rightarrow$ (i).

The complexes $F \in \mathbf{D}_{\mathrm{qc}}(X)$ satisfying condition (i) span a localizing tensor ideal. So do those $F$ satisfying condition (iii): the full subcategory $\mathbf{D}_{3} \subseteq \mathbf{D}_{\mathrm{qc}}(X)$ spanned by them is triangulated, as one finds by applying $\mathrm{R} u_{*} u^{*}$ to a triangle based on a $\mathbf{D}_{\mathrm{qc}}(X)$-map $\mathrm{R} u_{*} G_{1} \rightarrow \mathrm{R} u_{*} G_{2} ; \mathbf{D}_{3}$ is closed under direct sums (since $\mathrm{R} u_{*}$ respects direct sums, see [Nee96, Lemma 1.4], whose proof, in view of the equivalence of categories mentioned above just before Corollary 3.1.2, applies to $\left.\mathbf{D}_{\mathrm{qc}}(X)\right)$; and $\mathbf{D}_{3}$ is a tensor ideal since $\mathrm{R} u_{*} G \otimes_{X}^{\mathrm{L}} E \cong \mathrm{R} u_{*}\left(G \otimes_{W}^{\mathrm{L}} u^{*} E\right)$ for all $E \in \mathbf{D}_{\mathrm{qc}}(X)$. So Proposition A. 2 shows that for the implication (i) $\Rightarrow$ (iii) we need only treat the case $F=k(x)$.

Since $\operatorname{supp}(k(x))=x$ (see, e.g., [AJS04, 4.6 and 4.7]), it suffices now to note that if $x \in W$ then $\mathcal{O}_{W, x}=\mathcal{O}_{X, x}$, so the canonical map $\iota_{x}: W_{x}=X_{x} \rightarrow X$ in the definition of $k(x)$ (near the beginning of Appendix A) factors as $X_{x} \rightarrow W \xrightarrow{u} X$, whence $k(x)=\mathrm{R} \iota_{x *} \widetilde{\kappa(x)}$ satisfies condition (iii).

Remark A.5.1. With $u$ as in A.5, one checks that if $x \in W$, then (with self-explanatory notation) $u^{*} k(x)_{X}=k(x)_{W}$. Also, as above, if $x \notin W$, then $u^{*} k(x)_{X}=0$. So for $E \in \mathbf{D}_{\mathbf{q c}}(W)$,

$$
\mathrm{R} u_{*} E \otimes_{X}^{\mathrm{L}} k(x)_{X} \cong \mathrm{R} u_{*}\left(E \otimes_{W}^{\llcorner } u^{*} k(x)_{X}\right) \cong \begin{cases}0 & \text { if } x \notin W \\ \mathrm{R} u_{*}\left(E \otimes_{W}^{\llcorner } k(x)_{W}\right) & \text { if } x \in W\end{cases}
$$

and since for $F \in \mathbf{D}_{\mathrm{qc}}(W),\left[0=F \cong u^{*} \mathrm{R} u_{*} F\right] \Longleftrightarrow\left[\mathrm{R} u_{*} F=0\right]$, therefore

$$
\operatorname{supp}_{X}\left(\mathrm{R} u_{*} E\right)=\operatorname{supp}_{W}(E)
$$

## References

AIL11 L. L. Avramov, S. B. Iyengar and J. Lipman, Reflexivity and rigidity for complexes, II: Schemes, Algebra Number Theory 5 (2011), 379-429.
AILN10 L. L. Avramov, S. B. Iyengar, J. Lipman and S. Nayak, Reduction of derived Hochschild functors over commutative algebras and schemes, Adv. Math. 223 (2010), 735-772.

## Relation between two twisted inverse image pseudofunctors

AJL97 L. Alonso Tarrío, A. Jeremías López and J. Lipman, Local homology and cohomology on schemes, Ann. Sci. Éc. Norm. Supér. 30 (1997), 1-39.
AJL99 L. Alonso Tarrío, A. Jeremías López and J. Lipman, Duality and flat base change on formal schemes, Contemporary Mathematics, vol. 244 (American Mathematical Society, Providence, RI, 1999), 3-90.
AJL11 L. Alonso Tarrío, A. Jeremías López and J. Lipman, Bivariance, Grothendieck duality and Hochschild homology I: Construction of a bivariant theory, Asian J. Math. 15 (2011), 451-497.
AJL14 L. Alonso Tarrío, A. Jeremías López and J. Lipman, Bivariance, Grothendieck duality and Hochschild homology II: the fundamental class of a flat scheme-map, Adv. Math. 257 (2014), 365-461.

AJS04 L. Alonso Tarrío, A. Jeremías López and M. J. Souto Salorio, Bousfield localization on formal schemes, J. Algebra 278 (2004), 585-610.
BN53 M. Bökstedt and A. Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), 209-234.

DG02 W. G. Dwyer and J. P. C. Greenlees, Complete modules and torsion modules, Amer. J. Math. 124 (2002), 199-220.
DGI06 W. G. Dwyer, J. P. C. Greenlees and S. B. Iyengar, Finiteness in derived categories of local rings, Comment. Math. Helv. 81 (2006), 383-432.
Fox79 H. B. Foxby, Bounded complexes of flat modules, J. Pure Appl. Algebra 15 (1979), 149-172.
FI03 H. B. Foxby and S. B. Iyengar, Depth and amplitude for unbounded complexes, in Commutative algebra and its interaction with algebraic geometry (Grenoble-Lyon, 2001), Contemporary Mathematics, vol. 331 (American Mathematical Society, Providence, RI, 2003), 119-137.
Gro71 A. Grothendieck, Formule de Lefschetz, in Cohomologie l-adique et Fonctions L (SGA 5), Lecture Notes in Mathematics, vol. 589 (Springer, New York, 1971), 73-137.
GD61 A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique II, Étude gobale élémentaire de quelques classes de morphisme, Publications Mathématiques, vol. 8 (Institut des Hautes Études Scientifiques, Paris, 1961).
GD67 A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique IV, Étude locale des schémas et des morphismes of schémas, Publications Mathématiques, vols. 28 and 32 (Institut des Hautes Études Scientifiques, Paris, 1966/67).
Har66 R. Hartshorne, Residues and duality, Lecture Notes in Mathematics, vol. 20 (Springer, New York, 1966).

HK90a R. Hübl and E. Kunz, Integration of differential forms on schemes, J. Reine Angew. Math. 410 (1990), 53-83.

HK90b R. Hübl and E. Kunz, Regular differential forms and duality for projective morphisms, J. Reine Angew. Math. 410 (1990), 84-108.
Ill71 L. Illusie, Conditions de finitude relative, in Théorie des Intersections et Théorème de RiemannRoch (SGA 6), Lecture Notes in Mathematics, vol. 225 (Springer, New York, 1971), 222-273.

Lip09 J. Lipman, Notes on derived categories and Grothendieck Duality, in Foundations of Grothendieck duality for diagrams of schemes, Lecture Notes in Mathematics, vol. 1960 (Springer, New York, 2009), 1-259.
Nay09 S. Nayak, Compactification for essentially finite type maps, Adv. Math. 222 (2009), 527-546.
Nee92 A. Neeman, The chromatic tower for $\mathbf{D}(R)$, Topology 31 (1992), 519-532.
Nee96 A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), 205-236.
Nee14a A. Neeman, The decomposition of $\operatorname{Hom}_{k}(S, k)$ into indecomposable injectives, Acta Math. Vietnam., to appear.

Nee14b A. Neeman, An improvement on the base-change theorem and the functor $f^{!}$, Preprint (2014), arXiv:1406.7599.
Sas04 P. Sastry, Base change and Grothendieck duality for Cohen-Macaulay maps, Compositio Math. 140 (2004), 729-777.
Tho97 R. Thomason, The classification of triangulated subcategories, Compositio Math. 105 (1997), 1-27.

Srikanth B. Iyengar s.b.iyengar@unl.edu
Department of Mathematics, University of Nebraska, Lincoln, NE 68588, USA
Joseph Lipman jlipman@purdue.edu
Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
Amnon Neeman Amnon.Neeman@anu.edu.au
Centre for Mathematics and its Applications, Mathematical Sciences Institute Australian National University, Canberra, ACT 0200, Australia


[^0]:    Received 26 July 2013, accepted in final form 26 June 2014, published online 19 November 2014.
    2010 Mathematics Subject Classification 14F05, 13D09 (primary), 13D03 (secondary).
    Keywords: Grothendieck duality, twisted inverse image pseudofunctors, Hochschild derived functors, relative perfection, relative dualizing complex, fundamental class.

    This article is based on work supported by the National Science Foundation under Grant No. 0932078000, while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring semester of 2013. The first author was partially supported by NSF grant DMS 1201889 and a Simons Fellowship.
    This journal is © Foundation Compositio Mathematica 2014.

[^1]:    ${ }^{1}$ After [AILN10] appeared, Leo Alonso and Ana Jeremías informed us that Lemma 4.1.5 is an instance of [Gro71, p. 123, (6.4.2)] (whose proof, however, is not given in detail).

