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The observability of error states in Inertial Navigation System/Global Positioning System
(INS/GPS) integration is of great importance. Rank tests or null space tests of the
observability matrix have been adopted by previous works, however, for a time-varying
system with a high-dimension error state vector, it is very difficult to analyse the observability
matrix by these traditional methods. In this paper, the decoupled observability analysis
method is proposed for an 18-dimensional INS/GPS integration system. By reducing the
dimension of coupling error states, several six-dimensional decoupled observability
sub-matrices are obtained, which make the observability analyses easier. The observability
results of error states are obtained by the proposed method. Covariance simulation with
an Extended Kalman filter (EKF) and a flying test were performed which confirmed the
theoretical results.
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1. INTRODUCTION. High precision and continuous geo-referencing infor-
mation including position, velocity and attitude are frequently obtained by Inertial
Navigation System/Global Positioning System (INS/GPS) integration that overcomes
each individual system’s drawbacks and are more and more used in the airborne
direct geo-referencing area (Farrell and Barth, 1999; Bradford and James, 1996;
Farrell et al., 2000; Toth, 2002). In addition to the position error, velocity error,
attitude error and inertial sensor error, lever arm error between the GPS antenna
centre and inertial measurement unit (IMU) sensing centre is an important error
source in INS/GPS integration. Lever arm error can seriously decay position, velocity
and attitude precision of INS/GPS (Xiufeng and Jianye, 2002; Seo et al., 2006).
This cannot always be measured directly under the condition that the IMU is placed
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inside the airplane and the GPS antenna is mounted on the airplane roof. The lever
arm error together with navigation errors and inertial sensor errors are usually
estimated by an Extended Kalman Filter (EKF) in the integration of INS/GPS (Geng
et al., 2010; Hong et al., 2006; Hong et al., 2002; Fang and Gong, 2010; Stakkeland
et al., 2007).
The observability analysis of error states is necessary in designing the filter for the

case that the unobservable error states cannot be estimated accurately. The error states
in the filter should be able to become observable after a set of available measurements.
Typically, the observability of error states is relatively easily analysed during the
period of ground alignment. Here the INS is a time-invariant system, the analytical
observability result can be found in Bar-Itzhack and Berman (1988) and Jiang and Lin
(1992). According to the observability results of ground alignment, multi-position
alignment was adopted to improve observability of misalignment angles in ground
alignment (Lee et al., 1993; Chung et al., 1996). While the INS is a time-varying
system during in-flight alignment (IFA) of INS or INS/GPS integration, the analytical
observability for time-varying systems is rather complicated.
The observability of error states in a time-varying system such as INS IFA or

INS/GPS integration has been widely investigated by previous scholars. Control
theoretical methodologies were adopted in most of these works. The INS was
approximated as a linear constant model in a short time interval, by testing the rank of
stripped observability matrix (SOM), which avoided the complexity of the
observability matrix for a time-varying system and the observability of error states
in a time-varying system were obtained (Goshen-Meskin and Bar-Itzhack, 1992a).
The role of translational motion in improving the observability of error states in IFA
of INS were analysed (Goshen-Meskin and Bar-Itzhack, 1992b). The local
observability concept was employed to portray a system’s observability in a fixed
time interval, which is stronger than the global concepts in that a locally observable
system is sure to be globally observable, but a globally observable system may locally
be unobservable (Chen et al., 1990; Chen, 1991). Null space tests of time-varying
observability matrices obtained the error states’ observability (Hong et al., 2002; Lee
et al., 2005). The translational and angular motion’s role in improving the
observability of error states in alignment and integration of INS/GPS were given.
The instantaneous observability method transformed the observability matrix into an
observable part and an unobservable part (Rhee et al., 2004) and a similar method
was also used for the transfer alignment of INS (Zhilan et al., 2006). Although by
proper matrix transformation of the observability matrix, the complexity of the
observability analysis can be reduced, the method cannot be applied to the universal
manoeuvre in that the universal transformation matrix cannot be obtained for this
mode. Meanwhile the null space test of the observability matrix for an eighteen state
vector system is still very complicated, therefore, to avoid the complexity of high
dimension observability matrices, time derivatives of GPS measurements were used
for observability tests (Hong et al., 2005), which changes the observability test on the
eighteen error states to that of nine error states, errors in attitude, gyro bias, and lever
arm. Compared to the analysis based upon the null space test of observability
matrices, this approach reduces the complexity of the observability matrix.
Additionally, a novel global observability analysis method which started from the
observability definition was proposed, which can be applied to a nonlinear time-
varying system (Tang et al., 2009; Wu et al., 2012).
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From the aforementioned analyses, it is clear that the control theoretical methods
which resorted to null space tests or rank tests of observability matrices are mainly
adopted to obtain the analytical observability of IFA or INS/GPS integration. For a
time-varying system with high-dimensional error states vector, observability analysis
is very complicated. This is because the rank test and null space test of a time-varying
observability matrix is difficult. The effort to reduce the observability matrix’s
dimension by decoupling the error states is an important approach to making
observability analysis easier. Besides, compared with the role of translational motion
in improving the observability of error states in INS, excepting lever arm error, the
analysis of the effect of angular motion in improving the observability of other error
states for INS is not sufficient, especially with the random drift of a gyroscope and the
random bias of an accelerometer. In fact, angular motion will improve the
observability of the random error of the inertial sensor.
One of the main contributions of this paper is to propose the decoupled

observability analysis method which decouples the observability matrix of an
eighteen-dimensional state vector to several groups of six dimensional states, which
make the observability analysis of error states easier. The other contribution of this
paper is that the relationships between airplane motions and the observability of error
states in INS/GPS integration are given, and especially the role of the angular motion
in improving the lever arm error and the random error of the inertial sensor have been
sufficiently analysed. Also the simulation and flying tests were performed, which
validated the observability analysis results.
The rest of the paper is organized as follows. Section 2 briefly introduces the error

model of the INS/GPS Integration system. Section 3 presents the decoupled
observability analyses method. Section 4 presents the results of the error state
observability analyses. The simulation analyses are reported in Section 5 and the
experimental system and flying test are presented in Section 6. Conclusions are drawn
in Section 7.

2. INS/GPS INTEGRATION ERROR MODEL. This section presents
the error propagation model of INS and the measurement model of the integration of
INS/GPS. The estimation of position error, velocity error, attitude error, gyroscope
drift, accelerometer bias and lever arm error are considered in the error propagation
equations. The linear perturbation equations for the Earth-centred Earth-fixed
(ECEF) frame is

δṖ
δV̇
γ̇
ε̇g
ε̇a
δl̇

2
6666664

3
7777775
=

0 I 0 0 0 0
G −2Ωe

ie −Ce
bF

b 0 Ce
b 0

0 0 −Ωb
ib I 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2
6666664

3
7777775

δP
δV
γ
εg
εa
δl

2
6666664

3
7777775
+W (1)

where δP and δP are the estimated position error and velocity error of INS,
respectively; γ is the attitude error denoted in the b-frame; εg and εa are gyro constant
drift and accelerometer bias denoted in the b-frame, respectively; δl is the lever arm
error; I and 0 are the three dimensional identity matrix and zero matrix, respectively;
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G=∂ge/∂Pe is the gradient of gravity, Ωie
e , Ωib

b and Fb are the skew-symmetric matrices
of ωie

e , ωib
b and f b, respectively, where ωie

e is the earth’s rotation rate denoted in the
e-frame; ωib

b is the angular velocity of b-frame relative to i-frame denoted in the
b-frame, which was measured by gyroscope; ωeb

b is the angular velocity of b-frame
relative to e-frame denoted in the b-frame; f b is the specific force measured by
accelerometers. Cb

e is the coordinate transformation matrix of b-frame with respect to
e-frame. W=[wg

T wa
T]T is the driving noise of INS, wg and wa are the noise of

gyroscopes and accelerometers.
The GPS measurement estimation error can be written as

δP1 = δP − Ce
bL

b
1
γ+ Ce

bδl − v1 (2)

where δP1 is the GPS measurement estimation error. L1
b is the cross-product matrix of

the initial lever arm l 1
b , v1 is the noise in the GPS measurement.

According to Equations (1) and (2), the system model and measurement model for
the integration of INS/GPS is

Ẋ(t) = F(t)X(t) +W(t)
Z(t) = H(t)X(t) + V(t)

�
(3)

where X=[δPT δVT γT εg
T εa

T δlT]T, matrix F is the system equation, which is shown in
(1). H is the measurement equation and

H = [ I 0 −Ce
bL

b
1

0 0 Ce
b] (4)

The maximum singular value of G is in the order of 10−6. The magnitude of ωie
e

is in the order of 10−5, and that of f b is in the order of 10. The magnitude of δP is
in the order of 10−3, that of δV is in the order of 10−4, and that of γ is in the order
of 10−5 in a tactical IMU. The magnitude of εa is in the order of 10−4 and that of εg
is in the order of 10−5 in a tactical IMU. According to the magnitude of each error
item multiplying its coefficient in the error propagation equation imposed on
the error states, the gravity gradient and the angular motion of the earth can be
neglected. A simplified system matrix F denoted as follows can be used for
observability analysis.

F =

0 I 0 0 0 0
0 0 −Ce

bF
b 0 Ce

b 0
0 0 −Ωb

ib I 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2
6666664

3
7777775

(5)

3. DECOUPLED OBSERVABILITY ANALYSIS METHOD. The
previous observability analysis methods usually resorted to rank tests or null
space tests of the observability matrix. For a high-dimensional system, the rank test
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or null space test of an observability matrix is very difficult. Here the observability
matrix relating to the decoupled error states was obtained. By transforming the
observability matrix of the time-invariant system, six error states are coupled together
at most.
By the Piece-wise Constant System (PWCS) theory, the system is time-

invariant during a short time interval. Fj and Hj are constant at j-th time interval.
The observability matrix at j-th time interval can be denoted as

Q̃j =

Hj

HjFj

HjF2
j

..

.

HjFn−1
j

2
666664

3
777775

(6)

According to Equations (4) and (5), by row transformation, the matrix at the right
part of the equal mark in Equation (6) can be obtained

Q̃′
j =

I 0 −Ce
b(j)Lb(j) 0 0 Ce

b(j)
0 I 0 0 0 0
0 0 −Fb(j) 0 I 0
0 0 −Ωb

eb(j) I 0 0
- - - - - - - - - - - - - - - - - - - - - - - - - - - -

042×18

2
666666664

3
777777775

(7)

According to PWCS, the observability matrix of error states in INS/GPS
integration during the jth time-interval and the (j+n)th time-interval is

Q̃s =

Q̃′
j

Q̃′
j+1

..

.

Q̃′
j+n

2
66664

3
77775 (8)

In Equation (7), from the perspective of row observation, the error states relative to
zero sub-matrices can be decoupled from those relative to non-zero sub-matrices. For
example, from the second row of observability in the matrix in Equation (7), the
velocity error is decoupled from other error states completely. Similarly, from the first
row, the position error δP, the attitude error γ and lever arm error δl are coupled
together. The third row shows that the attitude error γ and accelerometer’s bias εa are
coupled together. The fourth row shows that the attitude error γ and gyroscope’s drift
εg are coupled together.
Also, from the perspective of column observation, the non-zero sub-matrices in

column make those error states relative to non-zero sub-matrices in different rows
couple together. For example, the non-zero sub-matrices in the third column appears
in the first, third and fourth rows, which means that error states including position
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error δP, attitude error γ, gyroscope drift εg, accelerometer bias εa and lever arm error
δl are coupled together. This coupling relationship means the observability matrix can
be reduced to essentially fifteen dimensions.
Actually, for a tactical INS, the first row shows that the lever arm error will impose

on the position error and attitude error. However, the magnitude of attitude error is
too small to affect the estimation precision of lever arm error and position error.
Therefore, the observability matrix in Equation (7) can be simplified as

Q̃′′
j =

I 0 0 0 0 C e
b(j)

0 I 0 0 0 0
0 0 −Fb(j) 0 I 0
0 0 −Ωb

eb(j) I 0 0
- - - - - - - - - - - - - - - - - - - - - - -

042×18

2
6666664

3
7777775

(9)

Thus, from Equation (8), the non-zero sub-matrices in the first row of the
observability matrix is completely different from that in the second to fourth rows,
which means that the position error δP and lever arm error δl relative to non-zero
matrices in first row are decoupled from the attitude error γ, gyroscope drift εg and
accelerometer bias εa.
From the aforementioned analysis, the observability matrices for decoupled error

states in INS/GPS integration during the jth time-interval and the (j+n)th time-
interval are:

(a) The observability matrix for position error δP and lever arm error δl is

Q̃16 =

I Ce
b(j)

I Ce
b(j + I )

..

. ..
.

I Ce
b(j + n)

2
6664

3
7775 (10a)

(b) The observability matrix for attitude error γ, gyroscope’s drift εg and the
accelerometer bias εa is

Q̃345 =

−Fb(j) 0 I
−Ωb

eb(j) I 0
- - - - - - - - - - - - - - - -
−Fb(j + 1) 0 I
−Ωb

eb(j + 1) I 0
- - - - - - - - - - - - - - - -
..
. ..

. ..
.

..

. ..
. ..

.

- - - - - - - - - - - - - - - -
−Fb(j + n) 0 I
−Ωb

eb(j + n) I 0

2
666666666666666664

3
777777777777777775

(10b)
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By row transformation of Q̃345, the equivalent form of Q̃345 can be obtained as

−Fb(j) 0 I
−Fb(j + 1) 0 I
..
. ..

. ..
.

−Fb(j + n) 0 I
- - - - - - - - - - - - - - - -
−Ωb

eb(j) I 0
Ωb

eb(j + 1) I 0
..
. ..

. ..
.

−Ωb
eb(j + n) I 0

2
666666666666664

3
777777777777775

(10c)

Notice that the Fb(j) is the skew-symmetric matrix of specific f b in the jth time-
interval, and rank (Fb(j))=2, therefore, the hypothesis that F=0 or I is a pure
mathematical assumption but did not consider the real condition. Additionally, as the
purpose of this paper is to investigate the observability of a time-varying system, the
hypothesis that F never changed is not reasonable. For the same reason, it is also not
reasonable to assume Ωeb

b , keeps 0 or I at all times.
Due to Fb(j+1)−Fb(j)= Ḟb(j)Δt, and the similar relationship for high-order

derivatives of Fb is also established, the upper part of (10c) can be transformed as

Q̃35 =
Fb 0 I
Ḟb 0 0
..
. ..

. ..
.

Fb(n) 0 0

2
6664

3
7775 (10d)

Similarly, due to Ωeb
b (j+1)−Ωeb

b (j)= Ω̇
b
eb (j)Δt and the similar relationship for

high-order derivatives of Ωeb
b is also established. The lower part of (10c) can be

transformed as

Q̃34 =

Ωb
eb I 0

Ω̇
b
eb 0 0

..

. ..
. ..

.

Ωb(n)
eb 0 0

2
66664

3
77775 (10e)

If rank (Q̃35) = 6, then, the conclusion can be made that rank (Q̃345) = 9. Similarly,
if rank (Q̃34) = 6, then rank ((Q̃345) = 9). Therefore, it is reasonable to use (10d) and
(10e) instead of (10b) to investigate the observability of attitude error, gyroscopes drift
and accelerometer bias.

Due to rank(Q̃35) = rank

Fb 0 I
Ḟb 0 0
..
. ..

. ..
.

Fb(n) 0 0

2
6664

3
7775

0
BBB@

1
CCCA = rank

Fb I
Ḟb 0
..
. ..

.

Fb(n) 0

2
6664

3
7775

0
BBB@

1
CCCA , therefore, a
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six-dimensional matrix can be defined as

Q̃′
35 =

Fb I
Ḟ
b

0
..
. ..

.

Fb(n) 0

2
6664

3
7775 (10f)

Q̃
′
35 can be used to investigate the observability of attitude error, gyroscope drift

and accelerometer bias.

Similarly, due to rank(Q̃34) = rank

Ωb
eb I 0

Ω̇
b
eb 0 0
..
. ..

. ..
.

Ωb(n)
eb 0 0

2
66664

3
77775

0
BBBB@

1
CCCCA = rank

Ωb
eb I

Ω̇
b
eb 0

..

. ..
.

Ωb(n)
eb 0

2
66664

3
77775

0
BBBB@

1
CCCCA ,

therefore, a six-dimensional matrix can be defined as

Q̃′
34 =

Ωb
eb I

Ω̇
b
eb 0

..

. ..
.

Ωb(n)
eb 0

2
66664

3
77775 (10g)

Q̃′
34 can be used for investigating the observability of attitude error, gyroscope drift

and accelerometer bias.
Therefore, three six-dimensional observability matrices in Equations (10a), (10f)

and (10g) can be used for investigating the observability of the 18-dimensional error
state vector.
Remark 1: The observability matrix in the PWCS method is eighteen dimensional,

while that in the decoupled observability analysis method is six dimensional. The
reduction of the dimensions of the observability matrix makes the observability
analysis easier.
Remark 2: It is equivalent to determine observability of attitude error γ, gyroscope

drift εg and accelerometer bias εa by judging full column rank of Q̃
′
34 and Q̃

′
35 instead

of Q̃345 because if rank(Q̃
′
34)=6 or rank(Q̃

′
35)=6, then rank(Q̃345)=9, it is reasonable

to decouple the observability matrix in Equation (10b) as that in Equations (10f)
and (10g).

4. OBSERVABILITY PROPERTIES OF INS/GPS INTEGRATION
4.1. The observability characteristics of position error δP and lever arm error δl.

The observability characteristics of position error δP and lever arm error δl can be
obtained by rank test of Q̃16. From Equation (10a), only angular motion can change
the structure of Q̃16. Suppose that the time-interval between different segments is Δt, in
that Cb

e(j+1)−Cb
e(j)=Cb

e(j)(Ωeb
b (j)Δt, by row transformation, the observability matrix
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in Q̃16 can be transformed as

Q̃′
16 =

I 0
0 Ωb

eb

..

. ..
.

0 Ωb(n−3)
eb

2
6664

3
7775 (11)

From Equation (11), no items exist that relate to translational motion, namely, the
translational motion has no impact on improving the observability of position error
δP and lever arm error δl. To make rank(Q̃ ′

16 )=6, there must exist two linear

independent items among ωeb
b , ω̇b

eb , . . ., ω
b(n−3)
eb , due to when ωeb

b ≠0, rank(Ωeb
b )= rank

(Ω̇b
eb)=

. . .= rank(Ωb(n−3)
eb )=2

Theorem 1: For a tactical INS, the sufficient condition of making position error δP
and lever arm error δl observable is that there exist two linear independent items
among ωeb

b , ω̇b
eb, . . ., ω

b(n−3)
eb . The translational motion has no impact on improving the

observability of position error δP and lever arm error δl.
Remark 3: Theorem 1 is easily fulfilled if the direction of ω̇b

eb is different from that of
ωeb
b , namely, two manoeuvre segments where ωeb

b ≠0 and the directions of ωeb
b on two

manoeuvre segments are linearly independent will make the position error δP and
lever arm error δl is observable.
To investigate how manoeuvre improves certain error states’ observability, we

consider a two segment observability matrix in static alignment phase and angular
manoeuvre phase. The observability matrix for position error δP and lever arm error
δl in static alignment or straight flying with constant speed can be shown as

Q̃
a
16 =

I Ce
b

0 0

� �
(12)

A simple angular manoeuvre after the static alignment phase or straight flying with
constant speed phase is given as ωebx

b ≠0, ωeby
b =0, ωebz

b =0. Thus, under this condition,
the observability matrix is

Q̃
a
16 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −ωb

ebx
0 0 0 0 ωb

ebx 0

2
6666664

3
7777775

(13)

Before angular manoeuvre, rank(Q̃
b
16 )=3, namely, there exist three unobservable

error states in the group of position error and lever arm error when the INS is in static
alignment or straight flying with constant speed. While after angular manoeuvre, rank
(Q̃

a
16)=5, and the first three columns in Equation (13) correspond to the position error

δP, that is to say, if the airplane experiences the angular manoeuvre after the static
alignment phase or straight flying with constant speed phase, the position error will be
observable immediately, and two lever arm errors become observable. In Equation
(13), the fourth to sixth columns respond to lever arm error δl. Q̃

a
16=(5, 6)= −ωebx

b ≠0,
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Q̃
a
16 =(6, 5)=ωebx

b ≠0, which means that the angular velocity in the x direction makes
the lever arm error in y and z direction observable.
Theorem 2: The position error will not be observable until the airplane experiences

the angular manoeuvre. The angular velocity will make lever arm errors that are
perpendicular to its direction observable.
Remark 4: There exist lever arm errors between INS and GPS. If the lever arm error

is unknown, the position error of INS will be estimated with a constant lever arm error
when the INS is static or straight flying with constant speed. Without angular
manoeuvre, a constant lever arm error will not be eliminated from the position error.
However, with a known lever arm model, the position error is observable in that the
position error is the measurement. This is the difference of position error’s
observability between known lever arm and unknown lever arm.

4.2. The observability characteristics of attitude error γ and accelerometer bias
εa.. Rewrite equation Q̃′

35

Q̃ ′
35 =

Fb I
Ḟ
b

0
..
. ..

.

Fb(n) 0

2
6664

3
7775 (14)

From Equation (14), to make the attitude error γ and accelerometer bias εa become
observable, rank(Q̃′

35)=6 must be satisfied, if there exist n-order time derivatives of f b,

there must exist two linear independent items between ḟ b, . . . , f b
(n)

, because

rank(Fb) = rank(Ḟb) = · · · = rank(Fb(n) ) = 2.
Theorem 3: For a tactical INS, the sufficient condition of making attitude error γ

and accelerometer bias εa observable is that there exist two linear independent items
among ḟ b, . . . , f b

(n)
.

Remark 5: Theorem 3 is easily fulfilled if ḟ b = 0, f̈ b = 0, and the direction of f̈ b is
different from that of ḟ b, namely, the direction of ḟ b must change twice to make the
attitude error and accelerometer bias observable; an ‘s’-shape or ‘8’-shape manoeuvre
can meet this requirement.
To investigate how translational manoeuvre improves certain error states’

observability, we consider a two segment observability matrix in the static alignment
phase and translational manoeuvre phase. The observability matrix for attitude error γ
and accelerometer bias εa in static alignment or straight flying with constant speed can
be shown as

Q̃b
35 = Fb 1

0 0

� �
(15)

A simple translational manoeuvre after the static alignment phase or straight flying
with constant speed phase is given as ḟ bx = 0 , ḟ by = 0 , ḟ bz = 0 . Thus, under this
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condition, the observability matrix for this manoeuvre is

Q̃
a
35 =

0 −f bz f by 1 0 0
f bz 0 −f bx 0 1 0
−f by f bx 0 0 0 1
0 0 0 0 0 0
0 0 −ḟ bx 0 0 0
0 ḟ bx 0 0 0 0

2
6666664

3
7777775

(16)

Before a translational manoeuvre, rank(Q̃
b
35 )=3, namely, there exist three

unobservable error states in the group of attitude error γ and accelerometer bias εa
when the INS is in static alignment or straight flying with constant speed. While after a
translational acceleration manoeuvre, rank(Q̃

a
35 )=5, that is to say, if the airplane

changes its acceleration after a static alignment phase or straight flying with constant
speed phase, two observable error states among attitude error γ and accelerometers
bias εa will be increased. In Equation (13), the second and third columns respond to
attitude error γ. Q̃

a
35(5, 3) = −ḟ bx = 0 , Q̃

a
35(6, 2) = ḟ bx = 0 , which means that the

changing translational acceleration in the x direction makes the attitude error in y and
z directions observable. Furthermore, from the observation of the first three rows of
Q̃

a
35, the observable attitude in y and z directions will make the accelerometer bias in

the x direction observable; for that the attitude error in x direction is unobservable and
the accelerometer bias in y and z directions will be unobservable.
Theorem 4: The changing translational acceleration makes the attitude error that is

perpendicular to its direction observable, and the accelerometer bias that is parallel to
its direction will be observable, too. Constant acceleration has no impact on
improving the attitude error.

4.3. The observability characteristics of attitude error γ and gyroscope drift εg.
Rewrite equation Q̃ ′

34

Q̃ ′
34 =

Ωb
eb I

Ω̇b
eb 0

..

. ..
.

Ωb(n)
eb 0

2
66664

3
77775 (17)

Similar to Sub-Section 4.2, suppose there exist n-order time derivatives of Ωeb
b , the

sufficient condition of making attitude error γ and gyroscope drift εg observable is that
there exist two linear independent items among Ω̇

b
eb, . . . ,Ω

b(n)
eb , because rank(Ωb

eb) =
rank(Ω̇b

eb) = · · · = rank(Ωb(n)
eb ) = 2.

Theorem 5: For a tactical INS, the sufficient condition of making attitude error γ
and gyroscope drift εg observable is that there exist two linear independent items
among Ω̇b

eb, . . . ,Ω
b(n)
eb .

Remark 6: Theorem 5 is easily fulfilled if Ω̇b
eb = 0, Ω̈b

eb = 0, and the direction of Ω̈b
eb

is different from that of Ω̇b
eb, namely, the direction of Ω̇b

eb must change twice to make
the attitude error γ and gyroscope drift εg observable, constant angular velocity has no
impact on improving the observability of attitude error and gyroscope drift.
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The observability matrix for attitude error γ and accelerometer bias εa in static
alignment or straight flying with constant speed can be shown as

Q̃
b
34 = Ωb

eb I
0 0

� �
(18)

A simple translational manoeuvre after the static alignment phase or straight flying
with constant speed phase is given as ω̇b

ebx = 0,−ω̇b
eby = 0, ω̇b

ebz = 0. The observa-
bility matrix for this manoeuvre is

Q̃
a
34 =

0 −ωb
ebz ωb

eby 1 0 0
ωb

ebz 0 −ωb
ebx 0 1 0

−ωb
eby ωb

ebx 0 0 0 1
0 0 0 0 0 0
0 0 −ω̇b

ebx 0 0 0
0 −ω̇b

ebx 0 0 0 0

2
6666664

3
7777775

(19)

Before the angular manoeuvre, rank(Q̃
b
34 )=3, namely, there exist three unobser-

vable error states in the group of attitude error γ and gyroscope drift εgwhen the INS is
in static alignment or straight flying with constant speed. While after the angular
acceleration manoeuvre, rank(Q̃

a
34 )=5, that is to say, if the airplane changes its

angular acceleration after the static alignment phase or straight flying with constant
speed phase, two observable error states among attitude error γ and gyroscope drift εg
will be increased. In Equation (19), the second and third columns correspond to
attitude error γ. Q̃

a
34(5, 3) = −ω̇b

ebx = 0, Q̃
a
34(6, 2) = −ω̇b

ebx = 0, which means that
the changing angular acceleration in the x direction makes the attitude error in y and
z directions observable. Furthermore, from the observation of the first three rows of
Q̃

a
34, the observable attitude in y and z directions will make the gyroscope drift in the

x direction observable; for that the attitude error in the x direction is unobservable,
the gyroscopes drift in the y and z directions will be unobservable.
Theorem 6: The changing angular acceleration makes the attitude error that is

perpendicular to its direction observable, and the gyroscope drift that is parallel to its
direction will be observable, too. Constant angular velocity has no impact on
improving the attitude error and gyroscope drift.
Theorem 7: Under changing angular acceleration or changing translational

acceleration, the attitude error will be observable, thus, by Q̃345 in Equation (10b),
the accelerometer bias and gyroscope drift are observable.

5. SIMULATION RESULTS. To investigate the observability of error
states, covariance analysis is employed in this section, and a flying trail which
included different manoeuvre styles was simulated.
In the simulation, INS output data is at 100Hz and a DGPS position was used for

measurement. The integration of INS/GPS was executed with an EKF. The signal
noises of both GPS and the IMU were assumed to be Gaussian white. The standard
deviation (STD) of the noise in the GPS position measurement denoted in the
tangential frame was [0·05, 0·05, 0·05] in metres. Bias and the STD of the
accelerometer noise were [0·0001; 0·0001; 0·0001] and 0·0005 in m/s2, respectively.
Drift and the STD of gyro drift noise were [0·01; 0·01; 0·01] and 0·02 in °/h,
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respectively. The lever arm between GPS antenna and IMU are 3, -2, 3 metres in right,
forward and upward directions, respectively.
The flying trail of the airplane in the simulation is given in Figure 1. The initial yaw,

pitch and roll of the aircraft is 0,0,0 in degrees, respectively, and the initial latitude,
longitude, and height are 39·5°, 116·5°, 100 metres, respectively. The aircraft remained
static for 100 seconds; after that, it accelerates with constant acceleration of 3 m/s2 for
40 seconds; then the aircraft takes off with pitch changing with time for 100 seconds.
The aircraft flies to the specified altitude of 6000 metres, it makes roll manoeuvres,
then it flies with constant velocity. The aircraft’s attitude, attitude rate and its specific
force are shown in Figures 2 to 4.
FromFigure 4, it can be seen that the estimation of attitude error did not converge in

the first 100 seconds, at this time period of the simulation, the airplane was static, which
confirms that the attitude error is not observable when the INS is static. The estimation
of yaw error and pitch error begin to converge after 100 s, while the roll error does not
converge until after 140 s. From Figure 3, the specific force in the forward direction
changing with time from 100 s, according to Theorems 3 and 4, which will help improve
the yaw and pitch estimation. Similarly, the specific force in the upward direction
changes from 140 s, which will help improve the estimation of pitch and roll. Therefore,
the estimation of attitude error in Figure 4 proved Theorems 3 and 4 well.
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Figure 2. Attitude rate.
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In Figure 5, the red dashed line is the true lever arm and the blue solid line is the
lever arm estimation value. It is shown that the lever arm estimation was not improved
before 140 s. From Figure 2, at this time period of the simulation, the airplane did not
experience any angular manoeuvre. The lever arm estimation began to converge in the
forward and upward directions from 140 s while that in the right direction did not
converge until after 240 s. According to Theorems 1 and 2, the changing angular
velocity will improve the observability of lever arm error. From Figure 2, the angular
velocity changes in the right direction from 140 s to 240 s, while it changes in the
forward direction from 240 s to 300 s, which accounts for the lever arm estimation
results. Therefore, the estimation of lever arm in Figure 5 proved Theorems 1 and
2 well.
From Figure 6, it is shown that the estimation of accelerometer bias in the right

and forward directions did not converge in the first 100 s, while that in upward
direction converged. At this time period of the simulation, the airplane was static,
which shows that the accelerometer bias in the upward direction is observable. This
phenomenon is because the airplane’s upward direction is parallel to the gravity
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Figure 3. Specific force.
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direction, therefore, the specific force in right and forward directions will be zero,
the observability matrix Q̃b

35 in Equation (16) will become Q̃b′
35 =

0 −f bz 0 1 0 0
f bz 0 0 0 1 0
0 0 0 0 0 0

0 0

2
664

3
775 . Thus, the accelerometer bias in the upward direction

which corresponds to Q̃
b′

35(3, 6) is decoupled from the attitude error and accelerometer
bias in the right and forward directions. The accelerometer bias in the forward
direction came to converge from 100 s, while that in the right direction converges from
140 s. From Figure 3, the specific force in the forward direction changed from 100 s,
according to Theorem 4, which will help improve the estimation of accelerometer bias
in the forward direction. Although the specific force in the right direction did not
change until after 240 s, from Figure 4, yaw error starts to converge from 100 s while
roll error converges from140 s. According to Theorem 7, the observable yaw and roll
error will help improve the accelerometer bias observability in the right direction.
In this simulation, the observable roll error is more helpful to estimate the right
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Figure 5. Lever arm estimation.
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Figure 6. STD of accelerometers constant bias.
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accelerometer bias than the yaw error. The accelerometer bias estimation in Figure 5
proved Theorems 3, 4 and 7 well.
From Figure 7, it is shown that the estimation of gyroscope drift in the upward

direction started to converge from 300 s. In Figure 2, the yaw rate changes from 300 s,
according to Theorems 5 and 6, the angular velocity in the upward direction will
help improve the estimation of gyroscope drift in the upward direction. While the
estimation of gyroscope drift in the right direction started to converge from 100 s, the
gyroscope drift coupling with attitude error perpendicular to its direction, in Figure 4,
it is seen that the yaw and roll estimation started to converge from 100 s and 140 s,
respectively. According to Theorem 7, the observable attitude error will help improve
the gyroscope drift estimation, which accounts for why the gyroscope drift in the right
direction started to converge from 100 s. Similarly, the gyroscope drift in the forward
direction starts to converge from 100 s, and the yaw and pitch start to converge from
100 s, which confirms Theorems 5, 6 and 7.

6. MEASUREMENT SYSTEM AND FLYING TEST RESULTS.
The theoretical deduction and simulation described in the previous sections shows that
manoeuvring plays an important role in improving the observability of error states. In
this section, flying tests were carried out to verify the theoretical deduction and
simulation.
The integration of INS/GPS can provide precise position, velocity, and attitude

information to an airborne remote sensing load such as synthetic aperture radar
(SAR) and charge-coupled device (CCD) array cameras for motion compensation.
During June and July 2011, flying tasks were executed to investigate the area
where the earthquake occurred in Wen Chuan, Sichuan province, China in 2008.
The measurement system used in the experiments consists of a “Citation-II” airplane,
laser gyro IMU, POS computer system (PCS), and NovAtel DL-V3 GPS receiver.
Position measurement was obtained by the NovAtel dual-frequency carrier-phase
differential GPS receiver with a position precision of less than 5 cm. Angular rate
was measured by laser gyroscopes with random drift of 0·01°/h, the acceleration
was measured by quartz flexible accelerometers with random bias of less than 50 μg.
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Figure 7. STD of gyroscope drift.
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To obtain the differential GPS data, a NovAtel receiver base was placed in the centre
of the mapping area. The IMU data was measured at 100Hz and the real-time GPS
was measured at 1 Hz, while the off-line differential GPS was acquired at 20 Hz. The
measurement system is shown in Figure 8.
The IMU was mounted inside the airplane while the GPS was placed on the roof of

the airplane, the true lever arm between GPS antenna centre and IMU sensing centre
was -0·0113, 0·7048, 1·3890 in metres in right, forward and upward directions,
respectively, and the lever arm was measured by a laser total station instrument made
by the Leica company with measurement precision of less than 1 mm.
In the experiment on 28 June 2011, the airplane remained static for 900 s to

complete static initial alignment, then the airplane took off. Before entering the
mapping area, the airplane made an “8” shape manoeuvre to enhance the
observability of system, then flew straight and level to fulfil remote sensing/mapping.
The track of the airplane in the first 3600 s is shown in Figure 9.
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Figure 12. Lever arm estimation.
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The attitude and its rate are shown in Figures 10 and 11.
The lever arm estimation error is shown in Figure 12, the initial value of lever arm

was set as 1, 1, 1 in metres in right, forward, and upward directions, respectively.
From Figure 12 and Table 1, it can be seen that the lever arm estimation started to

converge from 1000 s to 1350 s when the airplane was taking off; during this time-
span, the attitude rate changed sharply and the lever arm estimation precision came to
less than 10 cm. Then, the lever arm estimation precision improved further from 1650 s
to 1900 s. During this time-span, the airplane took the ‘8’ shape manoeuvre, which has
been shown to improve the estimation of lever arm effectively. The estimation
precision of lever arm came to be less than 3 cm. The estimation of lever arm proved
Theorems 1 and 2.
From Figure 14, it is shown that the estimation of attitude error converges in the

same way as in the simulation. The estimation of attitude error did not converge
from 1000 s, since the airplane only started to take off after the first 1000 s of static
alignment, the attitude rate as well as specific force (Figure 13) changed quickly in
three directions, which makes the estimation of attitude converge quickly. Therefore,
the observability of attitude error in Figure 14 proved Theorems 3 and 4 well.
From Figure 15, it can be seen that the estimation of accelerometer bias converges

in the same way as in the simulation. The estimation of accelerometer bias in right and
forward directions started to converge from 1000 s, while that in the upward direction
converged from the static stage. The accelerometers bias estimation in Figure 15
proved Theorems 3, 4 and 7 well.
From Figure 16, it can be seen that the estimation of gyroscope drift converges in

the same manner as in the simulation. The estimation of gyroscope drift in the right
and forward directions started to converge from 1000 s, while that in the upward
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Figure 13. Specific force.

Table 1. Estimation of lever arm in flying experiment at 3600 s.

Right (m) Forward (m) Upward (m)

True value −0·0113 0·7048 1·3890
Estimation value −0·0425 0·6813 1·3993
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direction converged slowly, which accounts for the fact that the observability of
gyroscope drift in the upward direction is more affected by angular rotation in the
upward direction. The gyroscope drift estimation in Figure 16 proved Theorems 5, 6
and 7 well.
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Figure 15. STD of accelerometer bias error.
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Figure 14. STD of attitude error.
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7. CONCLUSIONS. The decoupled observability analysis method in INS/
GPS integration was proposed in this paper, which changes the observability test on
the 18 error states to that on six error states, which makes the observability analysis
easier. The observability of error states include position error, velocity error, attitude
error, gyroscope drift, accelerometer bias and lever arm error and are analysed by the
decoupled observability method. Compared to previous studies, the conclusion that
the attitude error as well as gyroscope drift and accelerometer bias were not only
affected by linear motion but also affected by angular motion was drawn in this paper.
The simulation and flying test proved the analysis result.
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