
25

Total inclusive hadron productions

25.1 Heavy quarkonia OZI-violating decays

In the previous chapter, we have studied the QCD jets from the OZI-violating decays of
quarkonia, which occurs through the diagrams in Fig. 25.1.

OZI or Zweig rule [9,254] states that the decays of an heavy resonance involving discon-
nected diagrams such as in the previous figure are suppressed. In QCD, the rate behaves as
α3

s for a spin one and to order α2
s for a spin zero resonance. In the case of the b̄b states:

ϒ → hadrons ∼ Mϒα3
s (Mϒ )

ηb → hadrons ∼ Mηbα
2
s (Mηb ) . (25.1)

The rule works better for heavier and heavier resonances, which can be understood from
a 1/Nc argument [304]. Phenomenologically, a decay of a Q̄ Q resonance into a Q̄ Q pair
should involve a pair of open Q states Q̄q and q̄ Q. As the open Q states are too heavy, there
is not enough phase space for the Q̄ Q resonance to decay into them. An explanation of the
smallness of this width was one of the successes of QCD [305]. In QCD, the evaluation of
the width consists of replacing the sum over hadron states by the gluons. Let’s consider the
1−(3S1) quarkonia states described by the hadronic current:

Jµ

V (x) = Q̄γ µ Q . (25.2)

To lowest order of QCD, one has:

1− → hadrons � 1− → 3g . (25.3)

In this way, the onium decay is very similar to the one of positronium up to an overall
colour factor:

�(V → hadrons) � 64(π2 − 9)

9
CV

|3�1(0)|2
M2

V

α3
s

(
M2

V

)
, (25.4)

where |3�1(0)|2 is the square of the onium wave function at the origin, and is proportional
to the matrix element:

〈V |Q̄γ µ Q|0〉 , (25.5)

256
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Fig. 25.1. Hadronic decays of an heavy quarkonium.

while:

CV = 1

16Nc

∑
abc

d2
abc = 5/18 (25.6)

is the colour factor. The wave function can be also related to the V → e+e− width as:

�(V → e+e−) = 16π Q2
Qα2

M2
V

|3�1(0)|2 . (25.7)

where QQ is the heavy quark charge in units of e. Therefore, one obtains the branching
ratio:

RV ≡ �(V → hadrons)

�(V → e+e−)
= 10(π2 − 9)

81π

α3
s

(
M2

V

)
Q2

Qα2
. (25.8)

Including the next-to-leading order (NLO) corrections, one obtains in the M S scheme:

�(V → e+e−) = �(V → e+e−)L O

[
1 + 4CF

(αs

π

)]
in [306]

�(V → hadrons) = �(V → hadrons)L O

[
1 − (3.8 ± 0.5)

(αs

π

)]
in [307] , (25.9)

and therefore (for n f = 4):

RV = 10(π2 − 9)

81π

α3
s

(
M2

V

)
Q2

Qα2

[
1 − (9.1 ± 0.5)

(αs

π

)]
, (25.10)

which is a huge coefficient correction, and requires an evaluation of the non-trivial next-to-
next-leading order (NNLO) contribution. The situation is much better for the ratio [308]:

Rγ ≡ �(V → γ̇ + hadrons)

�(V → hadrons)
= 36Q2

Q

5

α

αs
(
M2

V

) [
1 + (2.2 ± 0.6)

(αs

π

)]
, (25.11)
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258 V Hard processes in e+e− collisions

where a large cancellation occurs because the leading-order amplitudes for V → 3g and
V → ggγ are of the same nature. The decays of a pseudoscalar 0−(1S0) state in the
M S scheme and, at the subtraction point ν = MP , are [309]:

�(P → γ γ ) = 48π

M2
P

Q4
Qα2|1�0(0)|2

[
1 −

(
5 − π2

4

)
CF

(αs

π

) ]

RP ≡ �(P → hadrons)

�(P → γ γ )
= 2

9Q4
Q

α2
s

(
M2

P

)
α2

[
1 +

(αs

π

) (
17.13 − 8

9
n f

) ]
(25.12)

and also have huge αs corrections. In the BLM scheme [173], where the vacuum polarization
corrections are absorbed into the definition of the QCD coupling (see previous chapter on
the renormalizations), one can decrease the strength of the coefficient:

RBL M
P � 2

9Q4
Q

α2
s (M∗)

α2

[
1 + 2.46

(αs

π

)
(M∗)

]
, (25.13)

but the scale at which the coupling is evaluated becomes too low M∗ � 0.26MP . Another
unclear situation is the possible effect of the analytical continuation from Euclidean (QCD
result) to the time-like (the process) regions (see e.g. [310] for related discussions). These
processes have been used to estimate the value of αs from J/� and ϒ decays [311], after
the inclusions of relativistic and finite mass corrections, and an estimate of higher-order
corrections. The analysis gives:

αs(MZ0 ) = 0.113+0.007
−0.005 , (25.14)

which is comparable with other results, although most probably, the error has been under-
estimated. The result needs to be confirmed by the inclusion of the NNLO terms.

25.2 Alternative extractions of αs from heavy quarkonia

Alternative to these non-relativistic approaches, are the QCD spectral sum rule (QSSR)
analysis which will be discussed in the following chapters. They have also been used to
extract the QCD coupling αs from the leptonic widths [312,155] after the resummation of
Coulombic corrections. However, the result should be affected by the value of the quark
mass and of the non-perturbative terms which are strongly correlated in the sum rule analysis
[3,148,149,313]. The result quoted in [139] is:

αs(MZ0 ) = 0.118 ± 0.006 . (25.15)

Using also QSSR, αs has been extracted from the meson mass-splitting to order αs [313],
with the NLO result:

M2
1 P1

M2
3 P1

� 1 + αs(σ )
[

13

α (exact) = 0.014+0.008
−0.004

] + O(
α2

s

)
, (25.16)
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where σ−1 � 1.3 GeV is the sum rule scale. Using the experimental value M2
1 P1

� 3526.1
GeV, one can deduce:

αs(1.3 GeV) = 0.64+0.36
−0.18 =⇒ αs(MZ0 ) = 0.127 ± 0.009 , (25.17)

in fair agreement with the different predictions given in the next section, although not
included in the ‘world summary table’ (Table VI.1). For a comparison, one can also use
non-perturbative lattice calculations of the ϒ mass splittings. The resulting value of αs(MZ0 )
ranges from 0.105 ± 0.004 (quenched approximation [314]) to 0.1174 ± 0.0024 [315] and
0.1118 ± 0.0017 [316] for two dynamic quarks, indicating that systematic errors are not
under good control. A more conservative lattice result has been adopted to be:

αs(MZ0 ) = 0.115 ± 0.006 , (25.18)

as quoted in the ‘world summary table’ (Table VI.1), given in Part VI [139].

25.3 e+e− → hadrons total cross-section

The inclusive e+e− → hadrons production is the simplest though fundamental deep inelastic
process. The data until LEP energies are shown in Figs. 25.2 and 25.3.

In the one photon approximation (below the Z0 mass), the hadronic production occurs
through the process shown in Fig. 25.4, in which the q̄q pairs interact through QCD forces,
and then exchange and emit gluons in different ways.

However, we do not yet have a good understanding on the way quarks and gluons
hadronize. At short distance x ∼ 1/

√
t , one can use perturbative QCD for predicting the

Fig. 25.2. e+e− → hadrons data at lower energies.
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Fig. 25.3. e+e− → hadrons data at LEP energies.

e–

q

q

Hadrons

e+

γ, Z

Fig. 25.4. e+e− → hadrons inclusive process.

total inclusive productions:

σ (e+e− → hadrons) = σ (e+e− → q̄q + q̄qg + q̄qgg + · · ·) , (25.19)

as the details of the final hadronization is irrelevant for the inclusive sum, because the
probability to hadronize is one owing to the confinement assumption. Technically, one can
consider the two-point function of the electromagnetic hadronic current:

�µν
em(q2) = i

∫
d4xeiqx 〈0|TJµ(x)J ν†(0)|0〉 = −(gµνq2 − qµqν)�em(q2) , (25.20)
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where:

Jµ(x) = 2

3
ū(x)γµu(x) − 1

3
d̄(x)γµd(x) − 1

3
s̄(x)γµs(x) + · · · (25.21)

is the electromagnetic current associated to the quarks u, d, s. . . . Thanks to its analytic-
ity property, �em(q2) obeys the well-known Källen–Lehmann dispersion relation (Hilbert
representation):

�em(q2) =
∫ ∞

t<

dt

t − q2 − iε

1

π
Im�em(t) + · · · , (25.22)

where · · · represents subtraction terms, which are, in general, polynomial in q2; t< is the
hadronic threshold. Its imaginary (absorptive) part is related to the total cross-section:

σ (e+e− → hadrons) = 4π2α

q2
e2 1

π
Im�em(q2) , (25.23)

where:

−3θ (q)q2 1

π
Im�em(q2) =

∑
�

〈0|Jµ
em(0)|0〉〈0|J †

µ,em(0)|0〉(2π )3δ(4)(q − p�) . (25.24)

Normalized to the e+e− → µ+µ− total cross-section:

σ (e+e− → µ+µ−) = −4π2α2

3q2
, (25.25)

it reads:

Re+e− ≡ σ (e+e− → hadrons)

σ (e+e− → µ+µ−)
= 12π Im�em(t + iε) . (25.26)

It is also convenient, in the perturbative calculation, to relate this quantity to the Adler
D-function [317] defined as:

D(Q2) ≡ −Q2 d

d Q2
�em(Q2) . (25.27)

In this way, one obtains:

R(t) = 1

2iπ

∫ t+iε

−t−iε

d Q2

Q2
D(Q2) , (25.28)

where it is necessary to transform the result into the physical region by taking into account
the effects due to the analytic continuation of the terms of the type:

lnn(−q2/ν2) → (ln(−q2/ν2) + iπ )n . (25.29)

Away from thresholds, one can neglect quark mass corrections, and obtain the perturbative
series in αs , in the M S scheme. To order α4

s , one has:

Re+e− = 3

(
n f∑
1

Q2
i

) [
1 + F2as(t) + F3a2

s (t) + F4a3
s (t)

] + F ′
4a3

s (t)

(∑
i

Qi

)2

, (25.30)
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262 V Hard processes in e+e− collisions

where:

F2 = 1 in [318,319]

F3 = 1.9857 − 0.1153n f in [317,320]

F4 = −6.6368 − 1.2001n f − 0.005n2
f in [321]

F ′
4 = −1.2395 in [321] , (25.31)

where, for, for example, five flavours:

Re+e− = 11

3

[
1 + as(t) + 1.411a2

s (t) − 12.80a3
s (t) + O(

a4
s

)]
. (25.32)

The perturbative uncertainties are of the order a4
s and includes ambiguities related to the

choice of renormalization scale and scheme, which leads to slightly different predictions
for the truncated series. Because of the above functional forms of Re+e− , relative errors in
Re+e− lead to an absolute error in αs of the same size:


Re+e−

Re+e−
∼ 
αs , (25.33)

such that precise measurement of Re+e− still leads to large errors in αs . Re-analysis of
PETRA and TRISTAN data in the c.m. energy range from 20 to 65 GeV, gives at NNLO
[322]:

αs(42.4 GeV) = 0.175 ± 0.028 =⇒ αs(MZ0 ) = 0.126 ± 0.022 . (25.34)

25.4 Z → hadrons

On top of the Z0, LEP experiments have produced a large statistical data sample that allow
a precise measurement of αs . The hadronic Z0 width can be parametrized in a similar
way:

RZ ≡ �(Z0 → hadrons)

�(Z0 → e+e−)
= 3Rew

Z

[
1 +

∑
n≥1

F̃nan
s (MZ0 ) + O

(
m2

f

M2
Z

) ]
, (25.35)

where:

Rew
Z =

∑
i

(
v2

i + a2
i

)
(
v2

e + a2
e

) (1 + δew) (25.36)

contains the underlying Z → ∑
i q̄ i qi decay amplitude, ve is the weak coupling of fermion

to Z0; δew is the weak correction. The QCD correction coefficients F̃n are slightly different
from Fn due to the presence of both vector and axial-vector coupling. Combined LEP results
lead to [68]:

RZ = 20.768 ± 0.024 , (25.37)

https://doi.org/10.1017/9781009290296.034 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.034


25 Total inclusive hadron productions 263

which gives:

αs(MZ0 ) = 0.124 ± 0.004 (exp) ± 0.002 (MH, Mt)
+0.003
−0.001 (QCD) , (25.38)

where the second errors are from those from Mt and from MH ranging from 100 to 1000
GeV. The last errors come from the scheme and scale dependences at NNLO.

25.5 Inclusive semi-hadronic τ decays

The QCD evaluation of the inclusive semi-hadronic process:

τ → ντ + hadrons (25.39)

is diagramatically similar to the e+e− → hadrons process. One puts all possible gluon and
q̄q corrections to the QCD diagram in Fig. 25.5 and computes the sum of all partonic
subprocesses. As in e+e−, one considers the two-point correlator:

�
µν

L (q2) = i
∫

d4xeiqx 〈0|TJµ

L (x)J ν†
L (0)|0〉

= −(gµνq2 − qµqν)�(1)
L (q2) + qµqν)�(0)

L (q2) , (25.40)

associated with the charged current:

Jµ

L = ūγ µ(1 − γ5)(d cos θC + s sin θC ) , (25.41)

q

q

Hadrons

τ

ντ  

Fig. 25.5. τ → ντ + hadrons inclusive process.

https://doi.org/10.1017/9781009290296.034 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.034


264 V Hard processes in e+e− collisions

Fig. 25.6. Sum of the vector and axial-vector spectral functions from tau-decay.

where u, d and s are quark fields and θC is the Cabibbo angle. In terms of which, one can
express the inclusive semi-hadronic branching ratio:

Rτ ≡ �(τ → ντ + hadrons)

�(τ → ντ eνe)

= 12π

∫ M2
τ

0

ds

M2
τ

(
1 − s

M2
τ

)2 {(
1 + 2s

M2
τ

)
Im �

(1)
L + Im �

(0)
L

}
, (25.42)

where [16]:

Mτ = (
1777.00+0.30

−0.27

)
MeV . (25.43)

We have seen, in Part I of this book, that, in the naı̈ve parton model, one expects:

Rτ = Nc . (25.44)

We show in Fig. 25.6 the V + A spectral function measured by ALEPH.
In Fig. 14.5, we show its isovector component and a comparison with the e+e− data, and

in Fig. 25.7, we show the difference between the vector and axial-vector spectral function.
The experimental data either from the τ -lifetime:

R�
τ ≡

�τ −
∑
e,µ

�τ−→�

�τ−→�

(25.45)
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Fig. 25.7. Difference between the vector and axial-vector spectral functions from tau-decay.

or/and from the τ -leptonic branching ratios:

RB
τ ≡ 1 − Be − Bµ

Be
(25.46)

have the present average [323]:

Rτ = 3.649 ± 0.014 . (25.47)

This experimental value is indeed a good evidence for the existence of colour but it is
20% higher than the quark-parton model estimate, such that one (a priori) can expect that
QCD perturbative and/or non-perturbative corrections can resolve this discrepancy. From
the expression of the width, it is clear that Rτ in Eq. (25.45) cannot be calculated directly
from QCD for s ≤ �2. However, exploiting the analyticity of the correlators �(J ) and the
Cauchy theorem, one can express Rτ as a contour integral in the complex s-plane running
counter-clockwise around the circle of radius |s| = M2

τ shown in Fig. 25.8:

Rτ = 6iπ
∮

|s|=M2
τ

ds

M2
τ

(
1 − s

M2
τ

)2 {(
1 + 2s

M2
τ

)
�

(1)
(s) + �

(0)
(s)

}
. (25.48)

One should notice the existence of the double zero at s = M2
τ , which suppresses the un-

certainties near the time-like axis. As |s| = M2
τ � �2, one can use the standard operator

product expansion (OPE) à la SVZ [1] (as will be discussed in the following chapters) for
the estimate of the correlators. In this way, one can express the QCD expression of the decay
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Im(s)

M2

Re(s)

τ

Fig. 25.8. Integration contour in the complex s-plane used to get Eq. (25.48).

width as [324] (hereafter referred to as BNP [325]):

Rτ = 3(|Vud |2 + |Vus |2) SEW {1 + δEW + δ(0) + δN P} , (25.49)

where:

|Vud | � 0.9753 ± 0.0006, and |Vus | � 0.221 ± 0.003 , (25.50)

are the CKM mixing angles, while the Cabibbo angle is defined as:

sin2 θC ≡ |Vus |2
|Vud |2 + |Vus |2

. (25.51)

SEW = 1.0194 and δEW = 0.0010 are LO and NLO electroweak corrections [326,327].
Based on the SVZ-Operator Product Expansion [1],1 these non-perturbative corrections
have been estimated to be small by BNP [325]:

δN P � −(0.7 ± 0.4)% (25.52)

A direct measurement of these effects from τ decay gives [33,328]:

δN P ≡
∑
D≥4

(
cos2 θcδ

(D)
ud + sin2 θcδ

(D)
us

) � −(0.5 ± 0.7)% , (25.53)

and from the most recent analysis from e+e− data [329] (reprinted article):2

δN P � −(2.8 ± 0.6)10−2 , (25.54)

1 Here and in the rest of this section, we anticipate the discussions of the SVZ expansion and of the QCD condensates in Part VII,
which the reader may consult for understanding the origin of the non-perturbative corrections.

2 This result has been obtained by combining the fitted value of non-perturbative corrections in the vector channel with the
theoretical estimate which relates the vector and axial-vector terms.
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confirm the previous estimate of BNP. The smallness of these non-perturbative effects
are related to the fact that within the SVZ expansion the numerical leading contribution
behaves as (�/Mτ )6, while the radiative corrections are relatively large at the τ mass.
These properties indeed show that τ decay is a good laboratory ( or a lucky process as
stated by Gabriele Veneziano) for extracting αs . The perturbative QCD correction δ(0) gives
the dominant contribution, and can then be used to determine αs at the τ -mass scale.
It reads:

δ
(0)
B N P =

∑
n=1

(Kn + gn) an
τ ,

= aτ +
(

K2 − 19

24
β1

)
a2

τ

+
(

K3 − 19

12
K2β1 − 19

24
β2 + 265 − 24π2

288
β2

1

)
a3

τ + O(
a4

τ

)
, (25.55)

where, here:

aτ ≡ ᾱs(Mτ )

π
. (25.56)

Kn are the coefficients appearing in the D-function given in Eq. (25.31), which, for n = 3
flavours read:

K1 ≡ F2 = 1 , K2 ≡ F3 = 1.63982 , K3 ≡ F4 = 6.37101 , (25.57)

while gn are induced by the contour integral and depend on Km≤n and on βm≤n . For n = 3
flavours, one has:

g2 = 3.5626, g3 = 19.9949 , (25.58)

and

δ
(0)
B N P = aτ + 5.2023a2

τ + 26.366a3
τ + O(

a4
τ

)
, (25.59)

while a bold-guess of

K4 ≈ K3(K3/K2) ≈ 25 , (25.60)

confirmed by the estimate [178] (K4 ≈ 27.5) based on PMS [176] and ECH [177] renor-
malization invariant schemes, from the large β limit of QCD [330,331,154] (K4 ≈ 24.8)
and from an experimental measurement [332] (K4 ≈ 29 ± 5) gives [323]:

g4 ≈ 78 , (25.61)

which indicates that gn are larger than the corresponding Kn coefficients, and implies a
sizeable renormalization scale dependence [333,334]. As observed in [333], these large
corrections come from the running along the circle s = M2

τ exp(iφ) (0 ≤ φ ≤ 2π ), which
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leads to the imaginary logarithm log(−s/M2
τ ) = i(φ − π ), which are large in some parts

of the integration range, and leads to the small convergence radius aτ ≤ 0.11. Using this
remark, [333,335] deduce that the series is more convergent if one expands it in terms of
the contour coupling A(n):

A(n)(aτ ) = 1

2iπ

∮
|s|=M2

τ

ds

s

(
1 − 2

s

M2
τ

+ 2
s3

M6
τ

− s4

M8
τ

)
an

τ (s) , (25.62)

such that:

δ(0) =
∑
n≥1

Kn A(n)(aτ ) , (25.63)

where the QCD series is more convergent and the renormalization scale dependence is very
small [336]. The error in the truncation of the perturbative series can be estimated from the
last known term of the series [337]. In this way, one can deduce the conservative estimate
[323,338]:

δtrunc � (25 ± 50)a4
τ (25.64)

where the factor 2 has been included in the estimate of the error. In this way, the estimate
of the error is about the effect of K3 A(3), which appears to be conservative enough, and
is, therefore, realistic. This result agrees with the one (though slightly larger) from the
renormalons effect within an optimized PMS renormalization scheme, which has been
estimated to be [339] (see also [340]):

δren � 0.01 , (25.65)

for a typical value of αs(Mτ ) = 0.33. It also agrees with the fit from the e+e− data of the
1/M2

τ contribution [329,341]:

δ1/M2
τ ≈ 0.01 , (25.66)

confirmed later on from other channels [161] (hereafter referred to as CNZ). The existence
of the small D = 2 dimension term beyond the usual OPE expansion may be justified from
the short distance linear term of the QCD potential and from monopole studies [162] as
we shall see in the following chapters. The fit from e+e− data does not allow the existence
of an eventual huge contribution from the quark constituent mass advocated sometimes in
the literature, due to the small value of the contribution obtained from the fit as well as
to the opposite sign compared with the expected contribution from the known coefficient
of the quark mass. Indeed, the result of the fit would correspond to a tachyonic mass naturally
interpreted as the one of tachyonic gluon by [161]. These results indicate that those obtained
from a naı̈ve resummation of the QCD series [331,154], [342–344] may be an overestimate
of the true error.
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Table 25.1. Values of αs from Rτ .

Pert. Theory ALEPH OPAL

FOPT 0.322 ± 0.005 (exp) ± 0.019 (th) 0.324 ± 0.006 (exp) ± 0.013 (th)
CIPT 0.345 ± 0.007 (exp) ± 0.017 (th) 0.348 ± 0.010 (exp) ± 0.019 (th)
RCFT ∼ 0.306 ± 0.005 (exp) ± 0.011 (th)

Estimates of some other sources of the errors can be found in [338]. For a typical value
of Rτ = 3.56 ± 0.03, these errors have been classified as follows for αs(MZ ):

0.0003 electroweak

0.0010 Mτ → MZ

0.0005 RS-dependence

0.0009 µ-dependence

0.0005 quark masses

0.0009 SVZ condensates

0.0014 truncation of the PT series at α4
s

or UV renormalon and 1/M2
τ . (25.67)

Adding them in quadrature, the total theoretical error is expected to be:


αs(MZ ) � 0.0023 , (25.68)

which is reflected in Table 25.1 above. The most extensive determinations of αs from
τ -decays are based on recent sutudies from LEP, making use of the large amount of
statistical data available at LEP-1. Measurements of the vector and axial-vector differ-
ential hadronic mass distributions of τ -decays have been performed by the ALEPH and
OPAL collaborations [33,328], which allow a simultaneous measurement of αs and the
non-perturbative corrections, where, as mentioned earlier, these latter are found to be small.
At NNLO corrections, the resulting values of αs from recent measurements [33] are given
in Table 25.1, corresponding to the different structure of the perturbative series:

� FOPT: naı̈ve perturbative expansion in terms of αs(Mτ ) given in BNP.
� CIPT: contour-improved perturbation theory where δ(0) is expressed as a contour integral in the

complex-s plane.
� RCPT: renormalon chain-improved perturbation theory, where the leading terms of the β-functions

are resummed by insertion of renormalon chains (gluon lines with fermion loop insertions) as will
be seen in the next section.

The resulting mean value from the two experiments and from the different structure of
perturbative series is:

αs(Mτ ) = 0.323 ± 0.005 (exp) ± 0.030 (th) , (25.69)

https://doi.org/10.1017/9781009290296.034 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.034


270 V Hard processes in e+e− collisions

at Mτ = (1777.00+0.30
−0.27) MeV, which shows that FOPT gives the mean theoretical values.

Runned to MZ0 , and taking account of the different threshold effects, this value gives:

αs(MZ0 ) = 0.1181 ± 0.0007 (exp) ± 0.0030 (th) , (25.70)

which is in excellent agreement with the direct measurement at the Z0 peak and with a
similar error bar. This agreement of the two determinations of αs in two extreme regime
from Mτ to MZ0 provides a beautiful test of the QCD prediction of the running coupling
behaving as 1/ log, which is a very significant experimental verification of asymptotic
freedom.

25.5.1 Running of αs below the τ -mass

The analysis of the running of αs from the inclusive distribution of τ -decays [345] and from
e+e− → hadrons data [346,329] has been extended to a lower mass below Mτ , where one
does not find any deviation from the one expected from QCD. We show in Fig. 25.9 the
comparison of the theoretical prediction (FOPT) and ALEPH measurements of Rτ,V +A for
different values of the τ -mass.

In Fig. 25.10, one shows the running of αs(s0) below 3 GeV2 using FOPT. The other
structures of PT series (CIPT and RCPT) show the same behaviour [33].

3.2

3.4

3.6

3.8

4

4.2

0.5 1 1.5 2 2.5 3

Data (exp. err.)

Theory (theo. err.)

s0 (GeV2)

R
τ,

V
+

A
(s

0
)

ALEPH

Fig. 25.9. Rτ,V +A as a function of the τ mass s0. The theoretical predictions is from FOPT.
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Table 25.2. Values of αs from different
observables in τ -decays.

Observables αs

(
M2

τ

)
Rτ,V = 1.78 ± 0.03 0.35 ± 0.05
Rτ,A = 1.67 ± 0.03 0.34 ± 0.05
Rτ,excl = 3.58 ± 0.05 0.34 ± 0.04

Fig. 25.10. Running of αs from the theoretical predictions of Rτ,V +A from FOPT to four-loop RGE
evolution for two and three flavours. The shaded band is the data.

25.6 Some other τ -like processes

25.6.1 αs from other τ widths

One can also extend the previous analysis in order to extract the value of αs from the
vector, axial-vector and from the sum of the exclusive modes by applying a SU (2) isospin
rotation [347]. This analysis has been done in [338] using the compilation of data in [346].
The analysis and predictions are summarized in Table 25.2 from [338] where one should
remark that the errors in each separate channel are larger than in the total inclusive mode,
which comes from the fact that the non-perturbative contributions have larger errors in
each separate vector and axial-vector channel than in the sum. Indeed, from [338], one can
deduce the sum of the non-perturbative terms in each channel at the τ mass:

δV
N P � (2.4 ± 1.3)10−2, δA

N P � −(4.4 ± 2.1)10−2 . (25.71)

The larger error from the exclusive modes is mainly due to the data. These different
determinations are consistent with each others. In Fig. 25.11, we show the behaviour of
the vector and axial-vector components of τ decays versus an hypothetical heavy lepton of
mass

√
s0.
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Fig. 25.11. Behaviour of Rτ,V/A versus the τ mass s0. The theoretical prediction is from FOPT.

One can again notice that the pQCD prediction is in very good agreement with the data
for a value of s0 above 1 GeV2, confirming that the determination of αs from τ decays is
robust.

25.6.2 αs from e+e− → I = 1 hadrons data

We have discussed that the vector component of the τ decay can provide an estimate of αs

although the accuracy is less than in the case of the total inclusive mode. Equivalently, one
can use the e+e− data into the vector spectral function using an isospin rotation [347] in
order to estimate αs . In this way, the decay width reads [346]:

Rτ,V ≡ 3 cos2 θc

2πα2
SEW

∫ M2
τ

0
ds

(
1 − s

M2
τ

)2 (
1 + 2s

M2
τ

)
s

M2
τ

σe+e−→ I=1 . (25.72)

This quantity has been used for studying the mass dependence of the prediction on αs .
Therefore, it can provide an independent test on the reliability of the result from τ decays
and a test of the isospin symmetry. The value of αs obtained in this way [346,338,329],
at the observed value of the τ mass, is given in Table 25.2. From this analysis we con-
clude that the e+e− data give a value of αs compatible with the one from τ decay
data. We show in Fig. 25.12, the behaviour of Rτ,1 versus the value of the τ mass using
FOPT.
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R
τ,

V
 (

M
)

M (GeV)

Fig. 25.12. Rτ,V versus the hypothetical τ mass M using e+e− data. The shaded region is the theoretical
predictions corresponding to the choice of parameters discussed in the text.

There is a good agreement between the data and the theory above 1.2 GeV. The shaded area
between the two dashed curves corresponds to the theoretical predictions forαs(M2

τ ) = 0.33.
The bigger allowed region at low value of M is due to the uncertainty in the leading non-
perturbative contribution taken to be:

δD=6
V (M) � (2.4 ± 1.3)10−2 ×

(
Mτ

M

)6

, (25.73)

as given in Eq. 25.71. The departure of the theoretical prediction from the data points below
1.2 GeV signals the important role of higher dimension non-perturbative contributions
which we shall discuss in the part of this book dedicated to QCD spectral sum rules. Here,
a reasonable fit represented by the continuous line corresponds to the choice:

αs
(
M2

τ

) = 0.33 , δD=6
V

(
M2

τ

) � 2.4 × 10−2 , δD=8
V

(
M2

τ

) � −9.5 × 10−3 . (25.74)

However, though the D = 8 condensate contribution is tiny at the τ mass, its effect at
1.2 GeV is 1.25 larger than the one of D = 6, which changes completely the shape of the
QCD prediction and can raise some doubt on the validity of the OPE at this scale.

25.6.3 Strange quark mass from τ -like processes

τ -like processes have also been used for extracting the strange quark running mass defined
in the previous chapter. These processes are:

https://doi.org/10.1017/9781009290296.034 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.034


274 V Hard processes in e+e− collisions

� The Cabibbo suppressed transition 
S = 1 measured in [33,328] and exploited in [348]:

τ → ντ + 
S = 1 hadrons (25.75)

� The I = 0 e+e− → hadrons process:

e+e− → I = 0 hadrons (25.76)

using the τ -like decay process [354] (see also [355]):

Rτ,0 ≡ 3 cos2 θc

2πα2
SEW

∫ M2
τ

0
ds

(
1 − s

M2
τ

)2 (
1 + 2s

M2
τ

)
s

M2
τ

σe+e−→ I=0 . (25.77)

involving the I = 0 total cross-section or/and of its different combinations.

We shall discuss in details these processes in the chapter on quark masses.
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