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ON ALGEBRAS STABLY EQUIVALENT TO 
AN HEREDITARY ARTIN ALGEBRA 

MARIA INÈS PLATZECK 

I n t r o d u c t i o n . Let A be an art in algebra, t ha t is, an art in ring tha t is a 
finitely generated module over its center C which is also an art in ring. W e 
denote by mod A the category of finitely generated left A-modules. We recall 
t ha t the category mod A of finitely generated modules modulo projectives is 
the category given by the following da ta : the objects are the finitely generated 
A-modules. The set of morphisms Horn (A, B) between two A-modules A and 
B in mod A is Horn A (A , B)/P(A, B), where P(A, B) is the C-submodule of 
Horn A (Ay B) consisting of all the m a p s / : A —» B t ha t factor through a projec
tive module. Two art in algebras A and A' are stably equivalent if mod A and 
mod A' are equivalent [1]. 

Artin algebras stably equivalent to an hereditary ar t in algebra have been 
characterized in fl] by M. Auslander and I. Reiten, who also gave a description 
of an hereditary ring Y s tably equivalent to A. The purpose of this paper is t o 
give a different description of a hereditary ring Y s tably equivalent to A 
together with a functor F: mod A —> mod Y t h a t induces a stable equivalence 
between A and I \ The description is the following: let a denote the two sided 
ideal sum of the nonprojective simples of the socle of A and let b be the left 

A/a 0 1 
a A/6 J' 

We consider the T-modules as triples (A, B,f), where A is a A/a-module, B 
is a A/fr-module a n d / : a® A —>2S is a A/fr-homomorphism (see [1]). Then for 
a A-module M, F(M) = (M/a M, aM, m), where m: a® M/a M —> aM is 
given by the multiplication map. 

M a n y of the results about hereditary algebras obtained either by using 
representations of diagrams and K-species (see, for example, [3]), or by using 
the notions of almost split sequences and irreducible maps (see [2]), have been 
extended to ar t in algebras t ha t are stably equivalent to an heredi tary algebra 
in [4]. Adost of the results obtained in [4] can be deduced from the heredi tary 
case by using the functor F: mod A —> mod Y t ha t induces the stable equiva-

annihilator of a in A. Then a is a k/b — A/a-bimodule and Y = 

lençe between A and the hereditary ring Y = . This is one of the 
a A/b_ 

reasons why we are interested in this part icular description of Y and F. On the 
other hand, another reason why we are interested in giving this description, 
different from tha t given in [1], is because it facilitates computat ions. 
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We assume throughout the paper t ha t A is an ar t in algebra and t h a t all the 
modules are finitely generated. We recall from [1, ch. I, T h 1.6 and 2.1] t h a t 
A is s tably equivalent to an heredi tary algebra if and only if the following con
ditions are satisfied: 

1) Every indecomposable submodule of an indecomposable projective A-
module is projective or simple. 

2) If S is a nonprojective simple submodule of a projective module then 5 

is a factor of an injective module. 

We will prove here t ha t when A satisfies the conditions 1) and 2) , then A is 
A/a 0 

stably equivalent to the heredi tary ring T = 
A/b 

This then gives a 

different proof of par t of the characterization jus t mentioned, t ha t is, it proves 
tha t conditions 1) and 2) imply t ha t A is s tably equivalent to an heredi tary 
algebra. 

Since some of the results t ha t we prove are t rue when only one of the two 
conditions 1) or 2) is needed, we will s tudy properties of ar t in algebras satis
fying either 1) or 2). Then we will apply these results to our case, t ha t is, to the 
case when both properties hold. 

When A is an art in algebra of radical square zero the conditions 1) and 2) 
are satisfied, so A is s tably equivalent to an heredi tary ring. For this special 
case, a construction similar to t ha t which is used in this paper has been given 
in [1, Ch. V]. I t is proven there t ha t if A is of radical square zero and r denotes 

A/r 0 
r A/r 

are not always Mori ta equivalent , 

they are closely related, since there is a semisimple ring V such t h a t Ti is 

Mori ta equivalent to F X V. V \ / 
We begin by proving tha t when A satisfies 1), then T = ' 

the radical of A, then A is s tably equivalent to the ring Ti = 

While the rings Y, and F = | A/a
 A°7 

[_ a A/b 

v b]i£ 
a" A/b}lsheV-

editary. Then we prove t h a t if A also satisfies 2) , then T is s tably equivalent 
to A. I t has been proven in [1, Ch. I l l , § 2] t h a t each stable equivalence class 
contains essentially one heredi tary algebra. More precisely, if A and A' are 
hereditary art in algebras, they are s tably equivalent if and only if there are 
simisimple algebras V and V such t ha t mod (A X V) and mod {A' X V) 
are equivalent. So in the stable equivalence class of A there is only one (up to 
Mori ta equivalence) heredi tary art in algebra Y with no semisimple summands . 
We end the paper by proving t ha t if A has no semisimple summands then Y 
has no semisimple summands . 

I would like to take this oppor tuni ty to thank Professor Maurice Auslander 
for m a n y helpful conversations and suggestions. 

1. We keep the notat ions of the in t roduct ion: a denotes the sum of the 
nonprojective simples in the socle of A, b is the left annihi lator of a in A, and 
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. A A-module M is said to be torsionless if it is a submodule 
' A/a 0 ~ 

a A/b_ 
of a projective module. A A-module M is said to be torsion if the indecom
posable submodules of M are not torsionless. 

If M is a A-module and c an ideal in A, then rc(M) denotes the trace of c 
over M, that is, the submodule of M generated by the images of the maps 
from c to M. We observe that when M is projective, then the multiplication 
map c (x) M —> cM is an isomorphism. 

We begin by recalling some results of [4] (Lemmas 5.1, 5.2, and Proposition 
5.3) that will be used in this section. 

LEMMA 1.1. Let A be an artin a 
aP = ra(P) = trace of a over P. 

ra and P a projective A-module. Then 

LEMMA 1.2. Assume that A satisfies 1), let M be in mod (A), let P be a projective 
A-module, T: P —> M an epimorphism, and K = Ker (x). Then K = V H Q, 

where V C aP and Q is projective. For any decomposition of K of this type, the 
sequence 

0 -» Q/aQ -* P/aP -» M/aM -> 0 

COROLLARY 1.3. / / A satisfies the condition 1), then A/a is an hereditary ring. 

We also recall from [1, Ch. V, § 1] that if Ai and A2 are artin algebras and 

M is a A2 — Ai-bimodule, then the category of modules over r = , l 
|_ M A2J 

is equivalent to the category *$ of triples (A, B,f), where A is a Ai-module, 
B is a A2-module a n d / : Tlf ®Ai^4 —>-S is a A2-homomorphism. A morphism 
{A, B, f) —> (v4r, .S7, / r ) between two objects in ^ is a pair of maps (gi, g2), 
gi: A —> ^4r, g2: .S —> ^ ; , such that the diagram 

M % A • M A' 

r 
B B' 

commutes, 

Let e = . Then M = (1 — e) Ye, and the equivalence G: mod T • 1 0 
0 0_ 

isgivenbyG(X) = (eX,(l — e)X,f), where/((l — e)ye® em) = (1 —e)yem. 
We will often describe the modules over T as triples of the type that we 
have indicated. r A / "1 

Our next aim is to prove that when A satisfies 1) then the ring , 
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is hereditary. This will follow as an immediate consequence of Corollary 1.3 

and the following result. 

" A 0 
a A/b 

also satisfies 1), and the sum of the nonprojective simples of the socle of Y\ is the 

'a 0 

PROPOSITION 1.4. Assume that A satisfies 1). Then the ring Ti = 

ideal 
0 0 

Proof. The indecomposable projective Ti-modules correspond to the triples 
(P, a (x) P , id) and (0, S, 0 ) , where P is a projective indecomposable A-
moclule and 5 is a projective indecomposable, hence simple, module over the 
semisimple ring A/b. 

Let now (iVi, N2jf) be an indecomposable submodule of an indecomposable 
projective module. We will see t h a t it is projective or simple. Since A/b is 
semisimple, Irnf is a direct summand of N2. Thus , we can write (iVi, N2, f) = 
(iVi, ImfJ) 11 (0, B, 0 ) , for some A/b module B. Since (N1} N2, f) is inde
composable, then either B = 0 a n d / is an epimorphism, or Ni = 0 and B is 
simple. Since in the second case (iVi, N2,f) = (0 , B, 0) is projective, we may 
assume t h a t / is an epimorphism. Let (gi, g2): (^Vi, N2,f) —» (P , r/- (x) P , id) be 
a monomorphism, with P indecomposable projective. Then gx: NY—> P is a 
monomorphism. Therefore iV\ is projective or simple torsionless nonprojective, 
because A satisfies 1). If N\ is simple torsionless nonprojective, then we know 
by Lemma 1.1, t h a t gi(Ni) C a P. From the commuta t ive diagram 

1 0 gi 
a ® TVi >• a P 

(1) / 

0 - > i V 2 

id 

-> a 

we find tha t (1 (g) g l ) (a ® N,) C a (x) r/P C a2 (x) P = 0; so g 2 / = 0. Bu t g2 

is a monomorphism a n d / is an epimorphism. Therefore 7V2 = 0; so (A^, N2,f) 
= (Ni, 0, 0) is simple torsionless nonprojective. 

Assume now tha t A î is projective. We have the commuta t ive diagram 

1 0 gi 
a ® Nv • a ® P 

aiVi 
g i k ^ i 

zP. 

iVi and P are projective, so, as we observed before, the vertical maps are 
isomorphisms. Moreover, the map gi\aNi is a monomorphism. Therefore 
1 (8) gi is also a monomorphism. From the diagram (1) we have t ha t g2f = 
1 ® gu so the ep imorph i sm/ is also a monomorphism. Therefore (Ni, N2,f) c^ 
(Ni, a (x) N1} id) is projective. 
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This proves that satisfies the property 1), and also that the non-
A 0 

L a A/6 J 
projective torsionless simple modules are of the form (S, 0, 0) with S C a. 
This ends the proof of the proposition. 

The result that interests us now follows as a corollary. 

COROLLARY 1.5. If A satisfies Property 1) then the ring 
tary. 

A/a 0 
a A/b^ 

is heredi-

Assume now that A is an arbitrary artin algebra and c a two sided ideal in A 
such that c2 — 0. Let iVi be a A-module such that cNi = 0, a: P —> iVi a 
projective cover for Ni and K = Ker a, We can then define a map e: c ® Ni —> 
K/cK by e(c®a(p)) = cp e K/cK. 

LEMMA 1.6. In the notations of the preceding paragraph, the sequence 

0-^c^Nx-^ K/cK A P/cP ^ Ni -> 0 

is exact, where â and I are the maps induced by a and the inclusion i: K —> P 
respectively. If A/c is an hereditary ring then e is a splitable monomorphism. 
Moreover, if K/cK = Im (e) H M, then M is projective. 

Proof. It follows from the definition of e that Im(e) = Ker (l). We will 
prove now that e is a monomorphism. The sequence 

0->K-^P^N->0 

induces an exact sequence 

id 0 i 
K • c P 

id a 
-> c ® Ni 

K/cK. 

-> 0 

If e.(id® a) (Zd® Pi) = 0 then £ c t £ * G cK, so £c<£ , = Zc/ft*, with 
kt £ K, c/ £ c. Then the elements S c* ® £* a n d Z c / ® '̂(&i) have the same 
image under the product map c ® P —> cP. But this map is an isomorphism 
because P is projective, so 2 C J ( X ) ^ = £ c / ® Oh/) £ Im( id® i). Thus 
Ket(e. (id ® a)) C Im(id ® i), and this proves that e is a monomorphism. 

If A/c is hereditary then %{K/cK) is projective, since it is a submodule of 
the projective A/c-module P/c P . Then the map I: K/cK -+ï(K/cK) splits, 
and therefore e splits. Moreover, a complement of Im(e) in K/cK is projective 
because it is isomorphic to l{K/cK). 

Let c be a two sided ideal of A, such that c2 = 0 and let d be the left annihi-
lator of c in A. Then c is a A/rf — A/c — bimodule. Let & be the category 
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defined above, equivalent to mod , whose objects are the triples 
' A/c 0 

c A/d_ 

(A, B,f), where A is a A/c-module, B is a A/d-module, a n d / : c (x) 4̂ —> B is a 
homomorphism. In all t ha t follows, we will denote by *%\ the full subcategory 
of *$ consisting of the triples (A, B, f) in ^ such t h a t / is an epimorphism. 
Then we have the following result. 

PROPOSITION 1.7. Assume that c is a two-sided ideal in A such that c2 = 0 an J 
A/c is an hereditary ring. Then F: mod A - > ^ i W dense. 

Proof. Let (iVi, iV2, / ) G ^ i and let a: P —> iVi be a projective cover of the 
A-module iVi. Let K = K e r ( a ) . W e know by Lemma 1.6 t ha t there is an 
exact sequence 

0 - » c ® Ni^>K/cK->P/cP-?>Ni->0, 

where e is a spli t table monomorphism. Let <5: K/cK —> c (x) iVi be such t ha t 
<5e = id, and denote b y / : i£ —• iV2 the composition 

K -t X/dS: A c ® ̂  X N2, 
where p: K —• K/cK is the canonical epimorphism. / is a composition of 
epimorphisms and is, therefore, an epimorphism. Let N be the pushout of 
i: K —-> P a n d / : K —* 7V2. W e have the diagram 

0 

0 

-+K - + P - * # ! -> 0 

-*iV2 
7 >iV -+Ni • > 0 . 

We will prove t ha t p: TV —> Ni induces an isomorphism p: N/cN —> N1} this 
will prove t h a t j(N2) = cN. j induces a m a p j : N2/cN2 - » N/cN, and the 
diagram 

X / c X —^—v P / c P • iVi • 0 

/ 

N2/cN2 

0 

-> iV/ciV • - • # 1 -*o 

commutes . We know tha t K/cK ~ Im(e) _H Ker(ô) . By the definition of / , we 
know that/ |Ker(<5) = 0. Then Im j = Im jj = J / ( I m e) = Xl(lm e) = 0, because 
Im e = Ker I. Therefore J = 0, so p: N/cN —• TVi is an isomorphism. If we 
consider TV as a factor of N2 X P, then p ( (0, p) ) = a (p), for p Ç P . Using then 
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that a is an epimorphism, and that <5e is the identity, so foe = f, it is not hard 
to check that the diagram 

c ® i\Ti -+ c ® N/cN 

m 
r 

N2 — : — • cN 

is commutative. Then (p-1, j): (Nu N2, f) —> F(N) = (N/cN, cN, m) is an 
isomorphism; so F is dense. 

This proposition applies to the special case when A satisfies 1) and c = a. 
We find that F: mod A —» ^ i is dense. It is not true under this hypothesis that 
F is full. However, if we also assume that A satisfies 2), that is, that A is stably 
equivalent to an hereditary algebra, then F is full. The next pages are devoted 
to proving this. To prove that F is full when A satisfies 2) we use the following 
result of [4, Lemma 5.4]. 

L E M M A 1.8. Let A be an artin ring satisfying 2 ) . If Q and P are projective 
A-modules and if Q is indecomposable and contained in rP, then Q/rQ is torsion 
or projective. 

T h e nex t l e m m a describes t he image of t he m a p e defined above when A 
satisfies 1) . 

L E M M A 1.9. Let A be an artin algebra satisfying 1) , let N be a A-rnodule, and 
let P —> N be a projective cover for N. Consider the exact sequence 

0 - > I / l l < 2 ^ > P - > N/aN-> 0, 

with Q projective and V C aP. Then the image of the map e: a (x) N/aN —> 
(V If Q) ® A/a is V® A/a ~ V. 

Proof. We know by Lemma 1.2 that the sequence 

0 • Q/aQ i d A / " ® \ P/aP • N/aN • 0 

is exact. Since V C a P, then V Ç Ker (idA/a® i)- The lemma is a conse
quence of these two facts and of the exactness of the sequence 

0 • a 0 N/aN —^-> V il Q/aQ l d A / a ® \ P/aP • N/aN, • 0 

(see L e m m a 1.6). 
W e can p rove now t h e following resul t . 

P R O P O S I T I O N 1.10. / / A is stably equivalent to an hereditary ring then F is full. 

f 
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Proof. Let TV be a A-module and let a: P —> TV be a projective cover. Since a 
is contained in the radical of A, then the composition P —• TV —» TV/a TV is a 
projective cover of N/aN. We have the commutative diagram 

0 

0 

-> aN 

a2 

+ K 

±_+ N _ Z _ * N/aN 

% ita 
+ N/aN 

->0 

->o, 

where a2 = a\K and i: aN —> TV, I: K —> P are, respectively, the kernels of 
7T and ira. 

Let p: K —> K/aK denote the canonical epimorphism and let / : a (x) 
N/aN —» aN/a2N = aN be the map induced by multiplication, that is, 
/ ( a (g) *•(»)) = a.». Then P(TV) = (TV/aTV, aTV,/). 

Let now N, N' be A-modules and assume that (gi, g2): F(N) = (N/aN, 
aN, f) —> P(TV') = (TV'/aN', aN',f) is a morphism. We want to prove that 
(gi, g2) = F(g), for some g: N->N'. Let a: P -> N, a: P' —> TV' be projective 
covers of TV and TV', respectively. We consider the commutative diagram 

0 • aN —?-+ TV — ? - • N/aN • 0 

a2 

0 • K — l—+P a >TV/aTV • 0 

(I) 

0 • K' — y — * P ' - ^ - > T V ' / a T V ' • 0 

0 >aN' — ^ T V ' r+N'/aN' • O , 
1 IT 

where 6: P -> P' is a map such that gtf = â'd; V Q aP, V C aP ' , P and P ' 
are projective modules, and 62 = 6\K. To define g: TV —> TV' such that P(g) = 
(gi> £2) we will prove that a'0| Ker a = 0. Then g will be the map P /Ker a —> TV' 
induced by a'0. 

We also have the map g2: aN —> aN'. We will prove first that g2a2 = a2B2. 
We write K = V H 0, X ' = V H (?', with F Ç aP, F C aP ' , and Ç, Q' 
projective (Lemma 1.2). Since A satisfies 2) and Q ÇZ rP, then we know by 
Lemma 1.8 that the simples in Q/rQ are torsion or projective. Then Horn A (Q, 
aN') — 0 because aTV' is annihilated by b and is, therefore, a sum of torsionless 
nonprojective simple modules. This proves that g2a\Q = a2d2\Q = 0. 

https://doi.org/10.4153/CJM-1978-070-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-070-8


ALGEBRAS 825 

We will prove now that g2a2\ V = a2d2\ V. The maps a2 and a2 can be fac
tored as 

K >K/aK-^->aN and K' -?-->K'/aK'-^->aN'} 

respectively. Let 62: K/aK —• K'/aK' denote the map induced by 62: K —> K'. 
Then to prove that g2a2\ V = a2d2\ V we only need to prove that g2â2\p(V) = 
â262\p(V); that is, that g2â2e = a262e, since Im e = p(V). (Lemma 1.9). We 
have the diagram 

K/aK 

a ® N/aN —J—> aN 

g2 

a®N'/aN'-^aNr 

K'/aK' 

where the subdiagrams 1, 2, and 3 commute, and where also 62e = e'l (x) gu (as 
one can check using the definitions of the maps). 

As a consequence of the commutativity of this diagram it follows that 
g2â2e = â2B2e. This proves that g2a2 = a2d2. Using this equality and the com
mutativity of diagram (I ), one can check that ad\ Ker a = 0. Then ad induces a 
map g: N — P /Ker a —> N', and this map verifies that F(g) = (gu g2). This 
proves that F is full and completes the proof of the proposition. 

have proven then that the ring T is hereditary and that the 

2. We assume for the rest of this paper that the artin algebra A is stably 
equivalent to an hereditary artin algebra, that is, that A satisfies 1) and 2). We 

"A/a 0 
a A/b_ 

functor F: mod A —» ^ 1 is full and dense. Moreover, M in mod A is such that 
F(M) is projective if and only if M is projective. If we identify the category ^ 
of triples with mod T, then F induces a functor F: mod A —» mod T. The 
T-modules that are not in the image of this functor correspond to the triples in 
*$ that are not in %f 1, that is, those of the form (0, B, 0), where B is a A/a-
module. These are projective modules in mod T. So the projective T-modules 
are all the modules that are not in the image of F and those of the form F(P), 
for some projective A-module P. Let modP A and modP T denote, respectively, 
the full subcategories of mod A and mod T whose objects are the modules with 
no nonzero projective summands. Then F induces a full dense functor, that 
we will also denote by F: 

F: modp A —> modP T. 
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Let M, N be in modP A. Then it is easily seen that HomT (F(M), F(N)) = 
Horn A (M, N)/S(M, N), where S(M, N) is the subgroup of HomA(Af, N) 
consisting of the morphisms / : M —> N such that Im / C aN. The following 
lemma will prove that F induces an equivalence F; mod A —> modP T. 

LEMMA 2.1. If M, N are in modPA, then S(M, N) is equal to P(M, N) = 
{f Ç Horn A (M, N) : f factors through a projective module}. 

Proof. L e t / Ç S(M, N). Then Im(/) C aiV, s o / factors as 

where T is the canonical epimorphism. Let a: P —-> N be the projective cover of 
TV. Then a |aP: aP —> aN is an epimorphism of A/6-modules. Since A//? is a 
semisimple ring, a |aP splits. Let <t>: aN —> aP be such that a |aP. 0 = idaAr. 
Since 0 is a A/6-homomorphism, then <j> is also a A-homomorphism. We have 
the diagram 

M-^M/aM- aN 

<f>\ \a\aP 

aP 

i 

c N 

C P 
i 

T h e n / = ifir = i(a\aP • <p) • fir = a(i<j>fir), s o / factors through P. This proves 
that 5(M, N) QP(M,N). 

Let now/ € P(M, N). T h e n / factors through a projective i3, i.e., there is a 
commutative diagram 

M f + N. 

4 

Since M is in modP A, the image of a does not contain projective summands. Then 
Im (a) is a sum of simple torsionless nonprojective A-modules, because A satis
fies 1). S o l m a C Ta(P) = aP (see Lemma 1.1). Thus I m / = Im/fa = /3(Ima) C 
]8(aP) C aN, that i s , / Ç 5(M, iV), and this proves that P(M, N) QS(M,N). 

Since T is an hereditary ring, a m a p / : M -^ N between M and N in modPT 
factors through a projective if and only if / = 0. So modPT = mod r . We 
obtain then the main result of this paper. 

THEOREM 2.2. Let A be an artin algebra stably equivalent to an hereditary 
A/a 0 1 
a A/6 J 

induces an equivalence of categories F: mod (A) 

algebra. Let F: mod A —» mod be the functor defined above. Then F 

mod ( f ) . 
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We give now an example describing the ring F for some ring A which is 
stably equivalent to a hereditary ring, but which is not hereditary and not of 
radical square zero. 

Example 2.3. Let K be a field and let A be the subring of M3x3(if ) defined by 

(fa 0 0~| ) 
A = < ai a2 0 :a, a* G Kç . 

vLa3 a4 o j ; 

(See [1, Example 3.1] or [4, Example 5.19].) 
The indecomposable projective A-modules are P i = A.e, P 2 = A. (1 — e), 

where 

""l 0 O" 
0 0 0 

Lo o l. 

Let Si = Pi/rPi, 6*2 = P2AP2. The only proper submodules of P\ are P 2 

and Su and the only proper submodule of P 2 is Si. So A is not hereditary, and 
r2 j£ 0. However, A satisfies 1) and 2). The two sided ideal a is 

0 0 0 
0 0 0 
a3 a4 0. 

so 

A/a: 

r~ 

ai 
La2 a3 

a3J 

ax 0 0 
a2 a3 0 
.a 4 a5 a6J 

a3, a4 6 K( , 

ai, a2, a3 G i w , A/b c^ k and 

a* Ç if, i = 1, . . . , 6/ 

3. We devote this section to proving that if A has no semisimple summands, 
A/a 

then r 
A/a 0 I 
a A/b] also has no semisimple summands and is therefore, the 

only hereditary artin algebra with no semisimple summands stably equivalent 
to A. (See [1, ch. I l l , Th. 2.1].).Since an artin algebra A has no semisimple 
summands when there are no projective injective simple A-modules, we will 
first describe the projective and the injective A-modules. Then it will follow 
easily that the simple projective modules are not injective. 

The following general fact will be helpful to describe the injective and pro
jective T-modules. 

LEMMA 3.1. Let F: 

and 2). 
*$ -+ 2) be a full dense functor between two categories %f 
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a) Let F satisfy: If f: A —» B is a morphism in *$ such that F(f) is a mono-
morphism, then f is a monomor phism. Then, for every infective object in ^, F (I) 
is infective in 3)'. 

b) Let F satisfy: If f: A —> B is a morphism in *$ such that F(f) is an epimor-
phism, then f is an epimorphism. Then F(P) is projective in 2), for every pro
jective object P in f̂. 

Proof. The conclusions follow in a straight forward manner from the defi
nitions. 

The functor F: mod A —> mod T that we are considering satisfies the 
property a) of the lemma. Therefore if Si, . . . , Sn is a complete set of non-
isomorphic simple A-modules and /o(Sz) denotes the injective envelope of S*, 
then F(I0(Si)) = (Io(Si)/aI0(Si), aI0(Si), mt), i = 1, . . . , n, are injective 
T-modules. To finish the description of the injective T-modules, we need the 
following result of [4, Lemma 5.5]. 

LEMMA 3.2. Assume that A satisfies 1), and let IQ(S) be the injective envelope 
of the simple A-module S. Then aI0(S) = S if S is nonprojective torsionless, and 
alo (S) = 0 otherwise. 

For a A/a-module M, we denote by I\/a(M) the injective envelope of M. 
Then one can prove the following lemma whose proof we omit. 

LEMMA 3.3. Assume that A satisfies 1) and 2) and that S is a simple A-module. 
Then (IA/a(S), 0, 0) is injective in mod I\ 

When S is torsion or projective then a • I0 (S) = 0 (Lemma 3.2), and I\/a (S) = 
{x e Io(S): ax = 0} = 70(S), so F(IQ(S)) = (7A/«(S) , 0, 0). Combining the 
preceding results, we obtain the following description of the injective modules. 

PROPOSITION 3.4. Assume that A is stably equivalent to an hereditary ring. 
Then the indecomposable injective Y-modules are the modules of the forms 
(IA /a (S), 0, 0), where S is a simple A-module, and (I0(S)/S, S, m), where m is 
the multiplication map and S is a torsionless nonprojective simple A-module. 

We can prove now the minimality of T. 

THEOREM 3.5. Let A be an artin algebra with no semisimple summands stably 

equivalent to an hereditary ring. Then Y = \ k n \ has no semisimple sum-
L a A/bj 

mands and is, therefore, the only hereditary artin algebra stably equivalent to A 
with no semisimple summands. 

Proof. Let A be a simple T-module. If A = (O, S, O), where S is simple and 
torsionless nonprojective, then I0(A) = (70(S)/S, S, m). Since aI0(S) = S and 
aS = 0 (Lemma 3.2), then I0(S)/S ^ 0. Therefore A is not injective. 

Assume now that A = (S, 0, 0), where S is simple. The projective cover of 
(S, 0, 0) is F(P0(S)) = (P0(S)/aPo(S), aP0(S), m), where P0(S) denotes 
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the projective cover of 5 and m the map induced by multiplication. If A = 
(S, 0, 0) is projective, then aPo(S) = 0 and Po(S) = S, and so 5 is projective. 
We know then by Proposition 3.4 that I0(A) = (IA/a (S), 0, 0). If A is also 
injective, then IA/a (S) = S, and so 5 is projective injective, which contradicts 
the hypotheses that A has no semisimple summands. 

This proves that V has no simple injective projective modules and completes 
the proof of the theorem. 
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