CLASSIFICATION OF MAPPINGS OF AN (n+2)COMPLEX INTO AN (n-1)-CONNECTED SPACE WITH VANISHING (n+1)-ST HOMOTOPY GROUP

NOBUO SHIMADA and HIROSHI UEHARA

The present paper is concerned with the classification and corresponding extension theorem of mappings of the (n+2)-complex K^{n+2} (n>2) into the space Y whose homotopy groups $\pi_i(Y)$ vanish for i < n and i = n + 1, and the *n*-th homotopy group $\pi_n(Y)$ of which has a finite number of generators. Our methods followed here are essentially analogous to those of Steenrod [2]. He introduced the important concept of the U-products of cocycles, which enables us to define \mathcal{Y}_i -Square (refer to §1), a certain type of a combination of U-products. This square is a modification of the so-called Pontrjagin square (Pontrjagin [1], Whitehead [4], and Whitney [3]). It induces a homomorphism of $H^n(K, I_n)$, the n-th cohomology group with integral coefficients reduced mod. m of a complex K, into $H^{2n-i}(K, I)$, the (2n-i)-th cohomology group with integral coefficients, when m is even and n-i is odd. Together with squaring products we have a homomorphism (refer to §5) of $H^n(K, \pi_n(Y))$ into $H^{n+3}(K, \pi_{n+2}(Y))$ in the case i = n - 3. As its application, Eilenberg-MacLane's cohomology class K^{n+h+1} of the semi-simplicial complex $K(\pi_n(Y), n)$ with coefficients in $\pi_{n+h}(Y)$ is determined in case where h=2 and n>2 (Eilenberg-MacLane [7]).

Another information from the homomorphism may contribute partially to the homotopy type problem of A_{π}^3 -complexes (J. H. C. Whitehead [5], Chang [12], Uehara [13]).

In § 1 the above mentioned product will be defined. In § 2 we shall sketch the computation of the homotopy groups of some elementary types of reduced A_n^3 -complexes. In § 3 relations of products of cocycles in such complexes are discussed. The (n+3)-extension cocycle and the present classification of mappings will be embodied in § 4, § 5 respectively. The final section § 6 will contain some applications to related subjects.

§ 1. \mathscr{Y}_{i} -square

Let K be a finite simplicial complex or a cell complex. Let us consider the n-dimensional integral cochain group C^n of K and its subgroup $Z^n(m)$ of all cocycles mod. m for an even integer m. If $u^n \in Z^n(m)$, then $\delta u^n \equiv 0 \pmod{mod}$.

Received September 17, 1951.

m) and $\theta_m^{n+1}u^n = \frac{1}{m}\delta u^n$ is an (n+1)-integeral cocycle.

If we define

$$\mathscr{Y}_{i}u^{n} = u^{n} \bigcup_{i} u^{n} + mu^{n} \bigcup_{i+1} \theta_{m}^{n+1} u^{n} + (-1)^{n} \frac{m^{2}}{2} \theta_{m}^{n+1} u^{n} \bigcup_{i+2} \theta_{m}^{n+1} u^{n} ,$$

for $u^n \in Z^n(m)$ $(m \ge 0$ is even), straightforward calculations, by means of the coboundary formula of Steenrod [2], give the following

LEMMA 1. If n-i is odd, then we have

- 1) $\mathscr{Y}_{i}u^{n}$ is a (2n-i)-dimensional integal cocycle,
- 2) $2\%_i u^n \sim 0$,
- 3) $\mathscr{V}_{i}(ku^{n}) = k^{2}\mathscr{V}_{i}u^{n}$
- 4) $\mathscr{Y}_i(u^n+v^n) \sim \mathscr{Y}_iu^n+\mathscr{Y}_iv^n$ for $u^n, v^n \in Z^n(m)$,
- 5) $\mathscr{V}_i(mx^n) = 0$ for $x^n \in \mathbb{C}^n$,
- 6) $\mathscr{Y}_i(\delta x^{n-1}) \sim 0$ for $x^{n-1} \in \mathbb{C}^{n-1}$.

Thus \mathcal{Y}_i induces a homomorphism such that:

$$\mathscr{Y}_i: H^n(K, I_m) \longrightarrow {}_2H^{2n-i}(K, I)$$
,

where ${}_{2}H = \{g; g \in H, 2g = 0\}$ for any abelian group H. We shall use this homomorphism in the following only when i = n - 3.

§ 2. Some types of elementary A_n^2 -complexes

We shall refer to the following types of polyhedra as elementary A_n^2 -complexes;

- i) $B^0 = S^n$, *n*-sphere.
- ii) $B^{1}(m) = S^{n} \cup e^{n+1}$, where an (n+1)-element e^{n+1} is attached to S^{n} by a map $f: \partial e^{n+1} \to S^{n}$ of degree m.
- iii) $B^{2}(0) = S^{n} \bigcup e^{n+2}$, where e^{n+2} is attached to S^{n} by an essential map $n: \partial e^{n+2} \to S^{n}$.
- iv) $B^2(2r) = B^2(0) \cup e^{n+1}$, when e^{n+1} is attached to S^n of $B^2(0)$ by a map $f: \partial e^{n+1} \to S^n$ of degree 2r.

Then we have

LEMMA 2.

- α) $\pi_{n+1}(B^2(0)) = 0$,
- β) $\pi_{n+1}(B^1(2r+1)) = 0$; $\pi_{n+1}(B^1(2r)) = (2)$, cyclic group of order 2, whose generator ζ is represented by an essential map of S^{n+1} onto $S^n \subset B^1(2r)$,
- γ) $\pi_{n+1}(B^2(2\gamma)) = 0$.

LEMMA 3.

 α) $\pi_{n+2}(B^2(0)) = I$, free cyclic group, whose generator ω is represented by a

map of degree 2,

- β) $\pi_{n+2}(B^1(2r+1)) = 0$; $\pi_{n+2}(B^1(2r)) = (2) + (2)$, direct sum of two cyclic groups of order two, with generators ξ and ζ , where ξ is represented by a map covering $e^{\mathfrak{v}+1}$ essentially and ζ is represented by an essential map $\eta: S^{n+2} \to S^n \subset B^1(2r)$,
- γ) $\pi_{n+2}(B^2(2r)) = I + (2)$: direct sum of the free cyclic group with the generator ω and the cyclic group of order 2 with the generator ξ .

Proof of Lemmas.

Some of these statements are easily deducible from known results of Freudenthal, J. H. C. Whitehead [6], G. W. Whitehead [9], Pontrjagin [10]. Thus we shall sketch here the proof of Lemma 3.

3, α) Any map which is homotopic to a map of S^{n+2} into S^n of $B^2(0)$, is contractible in $B^2(0)$ to a point, so that there is no essential map of degree 0. Next we prove that there is no essential map f of odd degree k. If we denote f^* the inverse homomorphism between cohomology groups of the two spaces, we obtain $f^*(S^n \cup S^n) = f^*S^n \cup f^*S^n = 0$ in S^{n+2} , while in $B^2(0)$, $S^n \cup S^n = e^{n+2}$ (mod 2) and thereby $f^*(S^n \cup S^n) = f^*e^{n+2} = kS^{n+2}$ (mod 2). This is a contradiction.

Consider a map $\varphi: S^{n+2} \to B^2(0)$ such that $\varphi \mid V_{\ge 0}^{n+2}$ represents twice of a suitably chosen generator of the relative homotopy group $\pi_{n+2}(B^2(0), S^n)$ and extend $\varphi \mid V_{\ge 0}^{n+2}$ through the lower hemisphere $V_{\ge 0}^{n+2}$ by contracting in S^n the resultant inessential map of the equator S^{n+1} into S^n to an point. φ has degree 2 and represents φ .

- 3, β) Let g be a map of S^{n+2} into $B^1(2r)$ such that $g \mid V_{\ge 0}^{n+2}$ represents of a generator of $\pi_{n+2}(B^1(2r), S^n)$, and extend g through the lower hemisphere $V_{\ge 0}^{n+2}$ by contracting the resulting inessential map of the equator S^{n+1} into S^n to a point in S^n . g represents ξ . $2\xi = 0$. ξ is essential, for the superposition hg of g by the map h of $B^1(2r)$ onto S^{n+1} , is essential, where h maps S^n into a point p of S^{n+1} and e^{n+1} topologically to $S^{n+1} p$.
 - 3, γ) $\bar{\zeta}$ in $\pi_{n+2}(B^1(2r))$ vanishes by imbedding $B^1(2r)$ in $B^2(2r)$.

We add here some remarks which will be needed later.

Let $R^{n+1} = \sum_{\mu} B^1_{\mu}(n_{\mu})$ be a cell complex consisting of a finite number of $B^1_{\mu}(n_{\mu})$ (even n_{μ}) with a single common point belonging to each $S^n_{\mu} \subset B^1_{\mu}(n_{\mu})$ and let $R^{n+2} = \sum_{\mu} B^2_{\mu}(n_{\mu})$ be a cell complex constructed similarly. Let $\alpha_{\mu} \alpha_{\nu}$ denote the Whitehead product of α_{μ} and α_{ν} , where α_{μ} is a generator of $\pi_n(S^n_{\mu})$, etc. Let $(\alpha_{\mu}\alpha_{\nu})$ denote the subgroup of $\pi_{2n-1}(S^n_{\mu} \vee S^n_{\nu})$ generated by $\alpha_{\mu}\alpha_{\nu}$.

Then we have

$$\begin{split} &\pi_{n+1}(R^{n+1}) = \sum_{\mu} \pi_{n+1}(B^1_{\mu}(n_{\mu})), \\ &\pi_{n+2}(R^{n+2}) = \sum_{\mu} \pi_{n+2}(B^2_{\mu}(n_{\mu})) \quad \text{for} \quad n > 3, \end{split}$$

and

$$\pi_{n+2}(R^{n+2}) = \sum_{\mu} \pi_{n+2}(B^2_{\mu}(n_{\mu})) + \sum_{\mu < \nu} (\alpha_{\mu}\alpha_{\nu}) \quad \text{for} \quad n = 3,$$

by the recurrent usage of a result of G. W. Whitehead [8] or a slight generalization of lemma 5. 3. 2. of Blakers and Massay [11].

§ 3. Products in some types of elementary A_n^3 -complexes

In §2 we sketched elementary A_n^2 -complexes whose (n+1)-st homotopy groups vanish but whose n-th homotopy groups do not vanish. Among them $B^2(0)$ and $B^2(2r)$ have non-trivial (n+2)-nd homotopy groups. Here we construct from $B^2(0)$ and $B^2(2r)$ - A_n^3 -complexes whose (n+2)-nd homotopy groups vanish.

Let $B^3(0, k) = B^2(0) \cup e^{n+3}$ and let $B^3(2r, k) = B^2(2r) \cup e_1^{n+3} \cup e_2^{n+3}$ where e^{n+3} and e_1^{n+3} are attached to $B^2(0)$ and to $B^2(2r)$ by maps of ∂e^{n+3} , ∂e_1^{n+3} representing $k\omega \in \pi_{n+2}(B^2(0))$, $\pi_{n+2}(B^2(2r))$ respectively and e_2^{n+3} is attached to $B^2(2r)$, by a map ∂e_2^{n+3} into $B^2(2r)$ representing $\xi \in \pi_{n+2}(B^2(2r))$.

THEOREM 1. In $B^3(0, k)$ we have

$$S^n \cup S^n = ke^{n+3}, 2ke^{n+3} \le 0,$$

where S^n and e^{n+3} represent cocycles.

In $B^3(2r, k)$, we have

$$\beta$$
) $\%_{n-3}S^n = ke_1^{n+3}, 2ke_1^{n+3} > 0$ and

$$\gamma) \,\,\theta_{2r}^{n+1} S^n \bigcup_{n=1}^n \theta_{2r}^{n+1} S^n = e_2^{n+3} \pmod{2},$$

where S^n represents itself as cocycle mod 2r [see §1].

We denote $B^3(m, 1)$ simply by $B^3(m)$, $(m \ge 0 \text{ is even})$,

Proof of Theorem 1. In $B^3(0, k)$, by orienting e^{n+3} suitably, we can define $S^n \bigcup_{n=2}^n S^n = (-1)^n e^{n+2}$. By Lemma 3, α) in §2, we have $\delta e^{n+2} = 2ke^{n+3}$. Since $\delta (S^n \bigcup_{n=2}^n S^n) = (-1)^n \ 2(S^n \bigcup_{n=3}^n S^n)$, we obtain α).

In $B^3(2r, k)$ S^n is a cocycle $mod\ 2r$. Let $\kappa: B^3(0, k) \to B^3(2r, k)$ be the injection mapping, and let κ^* be its inverse homomorphism of cochain groups. Then $\kappa^* \mathcal{Y}_{n-3} S^n = \mathcal{Y}_{n-3} \kappa^* S^n = \kappa^* S^n \bigcup_{\substack{n-3 \\ n-3}} \kappa^* S^n = ke^{n+3} = \kappa^* ke^{n+3}_1$ in $B^3(0, k)$. We obtain therefore, $\mathcal{Y}_{n-3} S^n = ke^{n+3}_1 + le^{n+3}_2$, but $2\mathcal{Y}_{n-3} S^n = 0$. It follows that l=0 and β) is proved.

For the part of γ), set $M^{n+3} = S^{n+1} \cup e^{n+3}$, where e^{n+3} is attached to S^{n+1} by an essential map $f: \partial e^{n+3} \to S^{n+1}$. And let $\kappa: B^3(2r, k) \to M^{n+3}$ be such a map that κ maps $B^3(0, k)$ into a point p of S^{n+1} and maps e^{n+3} onto e^{n+3} , e^{n+1} onto $S^{n+1} - p$ topologically. Then, in M^{n+3} , $S^{n+1} \cup S^{n+1} = e^{n+3}$. It follows that

$$e_2^{n+3} = \kappa^* e^{n+3} = \kappa^* (S^{n+1} \bigcup_{n-1} S^{n+1}) = \kappa^* S^{n+1} \bigcup_{n-1} \kappa^* S^{n+1} = e^{n+1} \bigcup_{n-1} e^{n+1} \pmod{2}.$$
 q.e.d.

§ 4. The (n+3)-extension cocycle

Let K be a finite complex, the r-skelton of which is denoted by K^r . Let Y be an arcwise connected topological space such that $\pi_i(Y) = 0$ for each i < n and for i = n + 1, and $\pi_n(Y)$ has a finite number of generators α_{μ} ($\mu = 1, 2, \ldots, l$).

Let $n_{\mu} \ge 0$ be the order of α_{μ} . Define following reduced complexes:

$$egin{aligned} R^n &= \sum_{\mu} B^0_{\mu}(n_{\mu}) = \sum_{\mu} S^n_{\mu} \,, \ R^{n+2} &= \sum_{n_{\mu}, \epsilon \, even} B^2_{\mu}(n_{\mu}) + \sum_{n_{\mu} \, \epsilon \, odd} B^1_{\mu}(n_{\mu}) \,, \ R^{n+3} &= \sum_{n_{\mu}, \epsilon \, even} B^3_{\mu}(n_{\mu}) + \sum_{n_{\mu} \, \epsilon \, odd} D^1_{\mu}(n_{\mu}) \quad ext{for} \quad n \! > \! 3 \,, \end{aligned}$$

and

where $e_{\mu,\nu}^6 = S_{\mu}^3 \times S_{\nu}^3 - S_{\mu}^3 \vee S_{\nu}^3$ and $B^i(n_{\mu})^2$ s and $e_{\mu,\nu}^6$ s in each reduced complex have only one point p in common. Then we can consider that $R^n \subseteq R^{n+2} \subseteq R^{n+3}$. (cf. § 2).

Let us define a map $\varphi: R^n \to Y$ such that $\varphi: S^n_\mu \to Y$ represents $\alpha_\mu \in \pi_n(Y)$. Then it is easily seen that φ is extended to a map $\varphi: R^{n+2} \to Y$. For a given normal map $f: K^n \to Y$, there exists a map $h: K^n \to R^n$ such that $h: K^{n-1} \to p$ and f is homotopic to φh . Thus it may be supposed that f and φh define the same map on K^n . If f is extensible to K^{n+1} , then f is also extensible to K^{n+2} from $\pi_{n+1}(Y) = 0$. Then the secondary obstruction $e^{n+3}(f)$ is defined. Correspondingly, h can be extended to a map $h: K^{n+2} \to R^{n+2}$ such that φh and f are homotopic on K^{n+2} relative to K^n , Notice that h, moreover, can be extended to a map of K^{n+3} into R^{n+3} . It follows that $e^{n+3}(f) \Leftrightarrow e^{n+3}(\varphi h) = h^*e^{n+3}(\varphi)$. If $e^{n+3}(\varphi) = e^{n+3}(\varphi)$ is such an element of $e^{n+2}(Y)$ as is represented by a map $e^{n+3}(\varphi) = e^{n+3}(\varphi)$ and if $e^{n+3}(\varphi) = e^{n+3}(\varphi)$ is such an element of $e^{n+2}(Y)$ as is represented by a map $e^{n+3}(\varphi) = e^{n+3}(\varphi)$ is such an element of $e^{n+2}(Y)$ as is represented by a map $e^{n+3}(\varphi) = e^{n+3}(\varphi) = e^{n+3}(\varphi)$. If $e^{n+3}(\varphi) = e^{n+3}(\varphi)$ is such an element of $e^{n+2}(Y) = e^{n+3}(\varphi)$ as is represented by a map $e^{n+3}(\varphi) = e^{n+3}(\varphi)$. If $e^{n+3}(\varphi) = e^{n+3}(\varphi)$ is such an element of $e^{n+2}(Y) = e^{n+3}(\varphi)$ as is represented by a map $e^{n+3}(\varphi) = e^{n+3}(\varphi)$ is such an element of $e^{n+2}(Y) = e^{n+3}(\varphi)$ as is represented by a map $e^{n+3}(\varphi) = e^{n+3}(\varphi)$ is such an element of $e^{n+3}(\varphi) = e^{n+3}(\varphi)$ as is represented by a map $e^{n+3}(\varphi) = e^{n+3}(\varphi)$ is a map representing a generator of order 2 of $e^{n+3}(\varphi)$, then, we have by theorem 1 in § 3,

$$\begin{split} c^{n+3}(\varphi h) &= h^*c^{n+3}(\varphi) = h^* \big[\sum_{\substack{n \sqsubseteq 0, \text{ even}}} \omega(\alpha_\mu) e_{1,\,\mu}^{n+3} + \sum_{\substack{n \mu > 0, \text{ even}}} \xi(\alpha_\mu) e_{2,\,\mu}^{n+3} + \big(\sum_{\mu < \nu} \alpha_\mu \alpha_\nu e_{\mu,\,\nu}^6 \big) \big] \\ &= h^* \big[\sum_{\substack{n \mu \geq 0, \text{ even}}} (\mathscr{G}_{n-3} S_\mu^n) \omega(\alpha_\mu) + \sum_{\substack{n \mu > 0, \text{ even}}} (S_{q_{n-1}} \theta_{n_\mu}^{n+1} S_\mu^n) \xi(\alpha_\mu) + \big(\sum_{\mu < \nu} (S_\mu^3 \bigcup S_\nu^3) \alpha_\mu \alpha_\nu \big) \big], \end{split}$$

where the last terms $\sum_{\mu \leq \nu} (S_{\mu}^3 \cup S_{\nu}^3) \alpha_{\mu} \alpha_{\nu}$ are added only when n=3.

If we put $c_{\mu}^{n} = h^{*}S_{\mu}^{n}$, then the first obstruction $c^{n}(f)$ of f is expressible in the following form: $c^{n}(f) = \sum_{n} \alpha_{\mu} \cdot c_{\mu}^{n}$.

Thus we obtain the following

THEOREM 2. Let K be a finite complex, and let K^r be its r-skeleton. Let Y be an (n-1)-connected topological space whose (n+1)-th homotopy group vanishes. Given a mapping $f: K^n \to Y$ such that f maps K^{n-1} into a point of Y.

If the first obstruction $c^n(f)$ is a cocycle, then f is extensible to a map $f: K^{n+2} \to Y$ and its (n+3)-extension cocycle $c^{n+3}(\bar{f})$ is determined from $c^n(f)$ in the following form: $(n \le 3)$

$$\begin{split} c^{n+3}(\bar{f}) & \approx \sum_{n\mu \geqq 0, \text{ even}} (c_{\mu}^{n} \underset{n-3}{\bigcup} c_{\mu}^{n} + n_{\mu} c_{\mu}^{n} \underset{n-2}{\bigcup} \lambda_{\mu}^{n+1} + (-1)^{n} \frac{n_{\mu}^{2}}{2} \lambda_{\mu}^{n+1} \underset{n-1}{\bigcup} \lambda_{\mu}^{n+1}) \omega(\alpha_{\mu}) \\ & + \sum_{n>0, \text{ even}} (\lambda_{\mu}^{n+1} \underset{n-1}{\bigcup} \lambda_{\mu}^{n+1}) \hat{\varsigma}(\alpha_{\mu}) + \sum_{\mu < \nu} (c_{\mu}^{2} \bigcup c_{\nu}^{3}) \alpha_{\mu} \alpha_{\nu} , \end{split}$$

where the last terms is added only when n=3, and $c^n(f)=\sum_{\mu}\alpha_{\mu}c_{\mu}^n$, $\lambda_{\mu}^{n+1}=\theta_{n_{\mu}}^{n+1}\cdot c_{\mu}^n$ $=\frac{1}{n_{\nu}}\delta c_{\mu}^n$ $(n_{\mu}>0)$, and $\lambda_{\mu}^{n+1}=0$ $(n_{\mu}=0)$.

§ 5. Classification

We shall apply Theorem 2 in § 4 to the present classification problem in a usual way. Let Y be a space as was referred to above. It is our aim to classify all the classes of mappings of an (n+2)-dimensional complex K into the space Y. If we denote by $\mathcal{G}_{n-2}c^n(f)$ the first terms in the expression of $c^{n+3}(\bar{f})$ (n>3) in Theorem 2 and if we denote the second terms by $S_{q_{n-1}}\theta^{n+1}c^n(f)$, then we have

$$c^{n+3}(\bar{f}) \sim (\mathcal{Y}_{n-3} + S_{q_{n-1}}\theta^{n+1})c^n(f)$$
.

We shall use this notation in the following.

Since $\mathscr{Y}_{n-3}+S_{q_{n-1}}\theta^{n+1}$ is a homomorphism of $H^n(K, \pi_n(Y))$ into $H^{n+3}(K, \pi_{n+2}(Y))$, we have the classification theorem through analogous arguments of Steenrod [2].

THEOREM 3. (n > 3).

Let K be an (n+2)-dimensional finite complex, and let Y be a space with the same property in Theorem 2.

All the homotopy classes of mappings of K into Y, that are contained in one homotopy class of mappings of K^n into Y, are in one to one correspondence with the cosets of the factor group:

$$H^{n+2}(K, \pi_{n+2}(Y))/(\mathcal{Y}_{n-4}+S_{n-2}\theta^n)H^{n-1}(K, \pi_n(Y)),$$

where $\mathscr{Y}_{n-4} + S_{q_{n-2}}\theta^n$; $H^{n-1}(K, \pi_n(Y)) \to H^{n+2}(K, \pi_{n+2}(Y))$ is a homomorphism.

Theorem 3'. (The case n=3). All the homotopy classes of mappings of K^5 into Y, that are homotopic to each other on K^3 , are in one to one correspondence with the cosets of the factor group:

$$H^{5}(K^{5}, \pi_{5}(Y))/\Psi H^{2}(K^{5}, \pi_{3}(Y))$$

where $\Psi: H^2(K^5, \pi_3(Y)) \to H^5(K^5, \pi_5(Y))$ is a homomorphism defined in the following way.

Let $\{\lambda^2\} \in H^2(K^5, \pi_3(Y))$, and let $\lambda^2 = \sum_{\mu} \alpha_{\mu} \lambda_{\mu}^2$, where α_{μ} are generators of $\pi_3(Y)$. Then $\Psi\{\lambda^2\}$ is a cohomology class represented by

$$\begin{split} \sum_{n_{\mu}>0, \text{ even}} &(n_{\mu}\lambda_{\mu}^2 \bigcup \theta_{n_{\mu}}^3 \lambda_{\mu}^2 - \frac{n_{\mu}^2}{2} \theta_{n_{\mu}}^2 \lambda_{\mu}^2 \bigcup_{1} \theta_{n_{\mu}}^3 \lambda_{\mu}^2) \omega(\alpha_{\mu}) \\ &+ \sum_{n_{\mu}>0, \text{ even}} &(\theta_{n_{\mu}}^3 \lambda_{\mu}^2 \bigcup_{1} \theta_{n_{\mu}}^3 \lambda_{\mu}^2) \xi(\alpha_{\mu}) + \sum_{\mu<\nu} &(c_{\mu}^3 \bigcup \lambda_{\nu}^2 + \lambda_{\mu}^2 \bigcup c_{\nu}^3) \alpha_{\mu} \alpha_{\nu} \text{ .} \end{split}$$

It is seen that $2\Psi(\lambda^2) = 0$.

§ 6. Invariant cohomology class $\tilde{\mathbb{A}}^{n+3}$

Eilenberg and MacLane [7] have introduced, for a space Y such that $\pi_i(Y) = 0$ (i < n < i < n + h), a cohomology class \mathcal{L}^{n+h+1} of an abstract complex $K(\pi_n(Y), n)$, and studied the influence of \mathcal{L}^{n+h+1} on homology groups of Y. We shall here deal with a space Y with the same property as in preceding sections. We consider the case n > 2 and n = 2.

THEOREM 4. Let \mathcal{L}^{n+3} be a cocycle belonging to \mathcal{L}^{n+3} , then

$$\mathcal{L}^{n+3} \sim (\mathcal{T}_{n-3} + S_{q_{n-1}} \theta^{n+1}) d^n \quad for \quad n \ge 3 ,$$

$$\mathcal{L}^{n+3} \sim (\mathcal{T}_0 + S_{q_2} \theta^4) d^3 + \sum_{\mu < \nu} (d^3_\mu \bigcup d^3_\nu) \alpha_\mu \alpha_\nu \quad for \quad n = 3 ,$$

where d^n represents the element of $H^n(\pi_n(Y), n, \pi_n(Y))$ which acts as the identity endomorphism of $\pi_n(Y)$, and $d^n = \sum_{\mu} \alpha_{\mu} d^n_{\mu}$.

BIBLIOGRAPHY

- [1] L. Pontrjagin, Mappings of the 3-dimensional sphere into an *n*-dimensional complex, C. R. Acad. Sci. URSS., 34 (1942), 35-37.
- [2] N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math., 48 (1947), 290-320.
- [3] H. Whitney, An extension theorem for mappings into simply connected spaces, Ann. of Math., 50 (1949), 285-296.
- [4] J. H. C. Whitehead, On simply connected, 4-dimensional polyhedra, Comm. Math. Helv., 22 (1949), 48-92.
- [5] J. H. C. Whitehead, The homotopy type of a special kind of polyhedron, Annals de la Soc. Polon. der Math., 21 (1948), 176-186. (This is inaccessible to us here.)
- [6] J. H. C. Whitehead, On adding relations to homotopy groups, Ann of Math., 42 (1941), 409-428.
- [7] S. Eilenberg and S. MacLane, Relations between homology and homotopy groups of spaces II, Ann. of Math., 51 (1950) 514-533.
- [8] G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math., 51 (1950), 192-237.
- [9] G. W. Whitehead, The (n+2)-nd homotopy group of the *n*-sphere, Ann. of Math., 52 (1950), 245-247.

- [10] L. Pontrjagin, C. R. Acad. Sci. URSS, 70 (1950), 957-959.
- [11] A. L. Blakers and W. S. Massay, Homotopy groups of a triad I, Ann. of Math., 53 (1951), 161-205.
- [12] S. C. Chang, Homotopy invariants and continuous mappings, Proc. Roy. Soc. of London, A, 202 (1950), 253-263.
- [13] H. Uehara, On homotopy type problems of special kind of polyhedra, to appear shortly.

Mathematical Institute, Nagoya University