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This study proposes a novel approach for building surrogate models, in the form of
reduced-order models(ROMs), for partial differential equation constrained optimization. A
physics-constrained data-driven framework is developed to transform large-scale nonlinear
optimization problems into ROM-constrained optimization problems. Unlike conventional
methods, which suffer from instability of the forward sensitivity function, the proposed
approach maps optimization problems to system dynamics optimization problems in
Hilbert space to improve stability, reduce memory requirements, and lower computational
cost. The utility of this approach is demonstrated for aerodynamic optimization of an
NACA 0012 airfoil at Re = 1000. A drag reduction of 9.35 % is obtained at an effective
angle of attack of eight degrees, with negligible impact on lift. Similarly, a drag reduction
of 20 % is obtained for fully separated flow at an angle of attack of 25◦. Results from
these two optimization problems also reveal relationships between optimization in physical
space and optimization of dynamical behaviours in Hilbert space.
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1. Introduction

Optimization arises in a wide range of applications from engineering design (Ravindran
2000; Bergmann, Cordier & Brancher 2005; Rozza & Manzoni 2010) to control systems
(Lassila & Rozza 2010; Manzoni, Quarteroni & Rozza 2012). Increasing computational
power has recently enabled the application of optimization techniques for industrial-scale
problems. These problems are usually governed by large nonlinear partial differential
equations (PDEs) with suitable initial and boundary conditions, which are often referred to
as full-order models (FOMs). These FOMs arise in computational mechanics applications,
such as computational fluid dynamics (CFD) (Orozco & Ghattas 1992; Newman et al.
1999; Nadarajah & Jameson 2000). In practice, these FOMs act as a constraint during
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optimization, referred to as PDE-constrained optimization. This type of optimization can
be prohibitively expensive, since it requires one or more high-fidelity FOM solutions
per design iteration (Yamaleev, Diskin & Nielsen 2008; Zahr & Persson 2016). Solving
multiple large-scale FOMs using high-fidelity solvers in the context of CFD, such as
large-eddy simulation and direct numerical simulation, can be prohibitively expensive.
Therefore, the majority of optimization studies are performed using lower-fidelity models,
such as the Reynolds-averaged Navier–Stokes approach.

To alleviate the prohibitive cost of PDE-constrained optimization using FOMs, a wide
range of studies have developed surrogate modelling techniques (Moarref et al. 2014;
Ling & Templeton 2015; Mohebujjaman, Rebholz & Iliescu 2018). Surrogate models of
nonlinear PDEs are usually referred to as reduced-order models (ROMs) (Oliveira & Patera
2007; Bui-Thanh, Willcox & Ghattas 2008a; Hinze & Matthes 2011). Dimensionality
reduction using ROMs has become an attractive approach, and is employed successfully
in optimal control (Bergmann & Cordier 2008; Kunisch & Volkwein 2008), optimization
(Rozza & Manzoni 2010; Zahr & Farhat 2015) and sensitivity analysis (Bui-Thanh,
Willcox & Ghattas 2008b; Zahr & Farhat 2015; Zahr & Persson 2016). Optimization
combined with surrogate models introduces a new approach called ROM-constrained
optimization. Generally speaking, ROMs can be embedded within machine learning
frameworks (Bright, Lin & Kutz 2013; Rowley & Dawson 2017; Taira et al. 2017), and are
based on a projection of FOMs from physical space into a lower-dimensional model space
(i.e. Hilbert space, eigenspace, Banach space, etc.) and vice versa (Rowley & Dawson
2017; Taira et al. 2017, 2020). This projection typically employs trial basis functions. These
trial basis functions typically use matrix representations, which define the reduced-order
basis (ROB). For example, the ROB can be eigenvectors or bases of a dataset obtained via
proper orthogonal decomposition (POD). The ROMs leveraging machine learning features
are usually constructed by collecting data initially obtained from FOMs (Brunton & Kutz
2019; Brunton, Noack & Koumoutsakos 2020; Murata, Fukami & Fukagata 2020). After
dimensionality reduction, other machine learning techniques can be applied to develop
new models that can predict the behaviour of the dynamical system. Depending on the
system’s complexity, or nonlinearity, hidden layers can be used to build deep learning
algorithms.

Despite recent advancements in machine learning, ROMs specialized for optimization
have not yet achieved promising results for unsteady flows. This is because existing
ROMs only estimate the state vector of the FOM at specified time intervals, but not its
sensitivity to perturbations of design parameters. Furthermore, conventional ROMs can
yield non-physical solutions when these design variables are perturbed (Epureanu 2003;
Amsallem & Farhat 2008; Hay, Borggaard & Pelletier 2009). This issue arises from the fact
that FOMs of nonlinear dynamical systems are highly sensitive to perturbations (Wang,
Hu & Blonigan 2014; Karbasian & Vermeire 2022). Trust-region approaches, such as
trust-region POD (Fahl 2000) and optimal system POD (Kunisch & Volkwein 2008), have
been proposed to improve the robustness of ROMs with respect to perturbations of design
parameters (Arian, Fahl & Sachs 2000; Carlberg & Farhat 2011). However, these methods
still need multiple FOMs to be used for sensitivity analysis.

In addition to PDE-constrained optimization, ROMs for unsteady optimization often
fail to obtain the sensitivity function. The main reason for this failure is that the behaviour
of nonlinear dynamical systems governing high-fidelity FOMs leads to unconditionally
unstable sensitivity functions for long-term data analysis (which is usually the case in
unsteady CFD simulations). Secondly, a typical ROM ignores low-energy ranks that
might significantly affect the evolutional behaviour of the dynamical system. This issue
results in missing information in the sensitivity functions. Therefore, adding extra terms
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Unsteady aerodynamic optimization

(or innovatively designing the surrogate model) to compensate for the effect of these
low-energy ranks results in a closure model in the form of the ROM. Although a short-term
data analysis might exhibit stability over a short period, improper ROM development
ultimately leads to inaccurate results.

To the authors’ knowledge, aerodynamic optimization in the presence of unsteady flows
has not been considered thoroughly by other researchers. Although there has been some
progress in this area, it has been limited to quasi-steady, periodic and laminar flows (Yoon
2016; Rubino et al. 2018; He et al. 2019; Apponsah & Zingg 2020; He & Martins 2021).
Directly optimizing chaotic FOMs has also been considered, but is limited to relatively
small-scale systems (Blonigan, Gomez & Wang 2014; Wang et al. 2014). In this study,
we develop a closure model for a ROM by leveraging physics-constrained data-driven
principles to overcome limitations for unsteady optimization of unstable flows. In the
proposed algorithm, we derive sensitivity functions from the Navier–Stokes equations,
such that the closure model can be represented as a physical (i.e. interpretable) surrogate
model in Hilbert space. The proposed algorithm leverages the minimum-residual property
to assure the optimality condition throughout the optimization procedure. This optimality
condition means searching for optimal directions in subspaces to minimize the residual in
the closure model. This condition is assessed via the least squares Petrov–Galerkin (LSPG)
approach. Additionally, in the ROB, subspaces are built via POD modes. It is noteworthy
that the trial basis function is updated at each design cycle to improve the predictions of
the closure model.

The remainder of this paper is organized as follows. In § 2, a general form of a
PDE-constrained optimization is defined, and principles of the forward sensitivity function
are discussed. Section 3 discusses the intuition of solving minimization problems in
low-dimensional subspaces, and it provides a basic concept for the ROM-constrained
optimization. In § 4, a closure model in the form of the ROM is developed via the LSPG
approach. Section 5 extends this closure model to the forward sensitivity function in
Hilbert space. In § 6, we implement the physics-constrained ROM into a platform with
which sensitivities are computed. In § 7, different strategies for building the ROB are
considered. These strategies help shape the manifolds in Hilbert space. In § 8, unsteady
aerodynamic optimization of an NACA 0012 at high angles of attack is considered, and
the resulting designs are discussed in detail. Section 9 provides overall conclusions, and
explains the utility of the ROM-constrained optimization for future unsteady aerodynamic
designs.

2. PDE-constrained optimization

Let us consider a dynamical system represented as a set of PDEs over a smooth
time-domain T, as follows:

∂ua

∂t
= f a(ua, t,S), ua(0,S) = ua,0, (2.1a,b)

where t ∈ R+ is time and t ∈ T, ua(t,S) ∈ R
∞ denotes the state vector, ua,0 ∈ R

∞
is the initial state vector at t = 0. Additionally, S is a vector of design variables S =
[S1,S2, . . . ,Sns]

�, where ns shows the total number of design variables in the design
space, D . Also, f a : R

∞ → R
∞ characterizes the dynamical behaviour of the system

on the right-hand side of (2.1a,b). In the context of CFD, a spatial discretization can be
applied to f a, yielding a discrete approximation with nu dimensions, f : R

nu → R
nu , and

a system of ODEs that approximate the original PDE. The approximate state vector found
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using this system of ODEs is denoted u(t,S). Numerical error introduced by discretization
is usually expressed as an additional residual term

∂u
∂t

= f (u, t,S) + r(u, t,S), u(0,S) = u0, (2.2a,b)

where r(u, t,S) : R
nu → R

nu is the residual of the discretized PDEs. In practice, the
dynamical behaviour of (2.2a,b) is investigated via a set of observables, which are called
objective functions. Consider a scalar objective function dependent on the full state u and
design variables S . This can be defined as J (u,S) : R

nu → R. Usually, the objective
function takes the form of a time average

J̄ (S) = 1
T

∫ T

0
J (u, t,S) dt, (2.3)

where J̄ is the time-averaged objective function and T ∈ T is a time averaging period.
Using (2.2a,b) and (2.3), we can define a PDE-constrained optimization

minimize
u∈Rnu ,S∈D

J̄ = 1
T

∫ T

0
J (u, t,S) dt,

subject to r(u, t,S) = 0,

dr
dS (u, t,S) = 0,

C(u,S) ≤ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

where dr/dS is the sensitivity of residual to a set of design variables, a critical constraint
when the dynamical system is nonlinear, and C(u,S) is a set of user-defined constraints
(i.e. geometrical constraints). It is worth mentioning that adding the sensitivity of the
residual to (2.4) is sometimes unusual. However, to keep consistency in formulations and
have a better connection between PDE-constrained and ROM-constrained optimizations,
we used this sensitivity function in the general definition of optimization problem. To
solve large-scale minimization problems of this form via gradient-based methods, the
time-averaged sensitivity of (2.3) with respect to S is required:

dJ
dS =

[
∂J
∂u

]�
v + ∂J

∂S , (2.5)

where v = ∂u/∂S ∈ R
nu . Substituting (2.5) into (2.3), the time-averaged sensitivity of the

objective function with respect to S is

dJ
dS = 1

T

∫ T

0

([
∂J
∂u

]�
v + ∂J

∂S

)
dt. (2.6)

Hence, the sensitivity of the objective function is directly related to the sensitivity of the
solution. In order to find this, we use the gradient of the dynamical system from (2.2a,b):

∂δu
∂t

= ∂f
∂u

δu + ∂f
∂S δS + dr

dS δS, (2.7)

where δ denotes perturbations. Premultiplying all terms in (2.7) by 1/δS , and assuming
v = ∂u/∂S � δu/δS , the following expression is obtained:

∂v

∂t
= ∂f

∂u
v + ∂f

∂S + dr
dS , v(0,S) = v0. (2.8a,b)
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Unsteady aerodynamic optimization

Because (2.8a,b) evolves in time (i.e. t(n) < t(n+1), where n is the index of time intervals)
from an initial condition v(0,S) = v0, it is called the forward sensitivity function. Finally,
the sensitivity of the solution to the design variables can be obtained by solving (2.8a,b),
and then, the gradient of the objective function can be computed via (2.6) for each design
cycle. However, (2.8a,b) diverges for chaotic systems because of unstable modes in the
dynamical behaviour of the system. In the next section, we illustrate the concept of
ROM-constrained optimization to reduce computational costs, and address this stability
issue for the forward sensitivity function.

3. ROM-constrained optimization

In ROM-constrained optimization, the governing equations are projected onto
low-dimensional subspaces. Therefore, instead of solving massive PDEs for each
optimization iteration, we only solve a compact form of the governing equations, as a set
of ROMs, which has fewer degrees of freedom and complexity. Figure 1 shows a general
approach for optimization problems. Conventionally, optimization problems are solved in
physical space, P . Consider the left-hand side object as the initial design in figure 1.
To optimize the shape of this object, we solve the optimization problem subject to a
Hamiltonian dynamical system defined as ∇ · H(u,S). In this example, u and S represent
state and shape parameters, respectively. The right-hand side object in P is the optimized
shape. According to the properties of a Hamiltonian system, the dynamical system for each
object has a unique representation in Hilbert space H . Usually, this representation is a set
of generalized coordinates, q, that define the dynamical behaviour of the corresponding
object in H . Therefore, in order to find the representation of the reference object, we
project its corresponding state vector from P to H using a projection function P. We
assume that F is a surrogate model that represents the exact evolution of the state vector
in H , such that that F : q × T → q with (q, t) 	→ F(q, t) in t ∈ T. Now if we apply this
optimization problem subject to F, we obtain the optimized set of generalized coordinates.
In the end, we lift back these optimized generalized coordinates from H to P via P

′,
obtaining the same optimized object in P . It is worth mentioning that F is unknown,
and we should build a closure model with rank r ∈ R+ given by F : R

r → R
r, such that

F : q × T → q, in the form of a ROM to approximate F. The closer F to F, the closer the
optimization results will be to the true optimal design in P .

4. Dimensionality reduction

The full state can be defined as a linear combination of vectors embedded in the matrix
of trial basis functions (a combination of subspaces in H used as projection function P).
Therefore, the full state can be given by

u(t,S) = ū + Φ̃q̃(t,S) + Φ ′q′(t,S), (4.1)

where Φ̃ and Φ ′ indicate the coarse-scale and fine-scale modes of the dynamical system.
Furthermore, q̃ and q′ are generalized coordinates corresponding to Φ̃ and Φ ′, respectively,
and ū ∈ R

nu is the vector of reference states. Writing the full state in the form of (4.1) will
help distinguish between different types of variables, dominant modes, and the dynamical
response of the full state. For instance, in turbulent flow, the total velocity magnitude can
be decomposed into different modes to identify vortex shedding patterns. Using this kind
of decomposition, it is possible to recognize each mode’s effect on the turbulent flow.
Since energetic modes are embedded in Φ̃, we can truncate (4.1) and approximate the full
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Optimize shape

Optimize dynamicsP P
′

ℋ

F(q, S) ∈ ℋ

∇ ·H(u, S) ∈

Figure 1. Optimization of the shape of an arbitrary object subject to a Hamiltonian system in physical space
P versus optimization of its dynamics subject to a surrogate model in Hilbert space H .

state by
u(t,S) ≈ ū + Φ̃q̃(t,S), (4.2)

which is the reduced-order description of the full state u in a lower-dimensional subspace.
Note that Φ̃, as a projection function P, can accurately approximate the full state if the
truncated rank r ∈ R+ is sufficiently large (the rank is the number of modes embedded in
Φ̃) such that Φ̃ can capture the majority of the dynamical system’s energy. By substituting
(4.2) into (2.2a,b), and constraining the nonlinear equations to be orthogonal to a set of
test subspaces Ψ̃ ∈ R

nu×r, we can specify the ROM as

Ψ̃ �
(

Φ̃
∂ q̃
∂t

− f (ū + Φ̃q̃, t,S)

)
+ Ψ̃ �r(ū + Φ̃q̃, t,S) = 0, q̃(0,S) = q̃0, (4.3a,b)

where q̃0 is the initial condition of the ROM, and Ψ̃ is the test basis function, which is
used to minimize the distance to the state of the FOM in some norm. Therefore, according
to Ψ̃ �r(ū + Φ̃q̃, t,S) ≈ 0, (4.3a,b) can be simplified to

Ψ̃ �
(

Φ̃
∂ q̃
∂t

− f (ū + Φ̃q̃, t,S)

)
= 0, q̃(0,S) = q̃0. (4.4a,b)

If Ψ̃ = Φ̃, then the (4.4a,b) represents the Galerkin projection of the FOM (Carlberg,
Barone & Antil 2017). For Ψ̃ = (∂r/∂u)Φ̃, (4.4a,b) is the LSPG projection (Bui-Thanh
et al. 2008a,b; Carlberg, Bou-Mosleh & Farhat 2011; Carlberg et al. 2013, 2017).
The distinguishing property of LSPG is that the projection remains optimal for
dynamical systems with non-symmetric positive definite Jacobians (Zahr & Farhat 2015).
Furthermore, It has shown that LSPG has the minimum-residual property (Zahr & Farhat
2015; Carlberg et al. 2017), which can be written as

q̃ = argmin
z∈Rr

∥∥∥r(ū + Φ̃z, t,S)

∥∥∥2

2
. (4.5)

Generally speaking, LSPG adds a term to the Galerkin projection in order to stabilize it
numerically. This stabilization becomes essential when FOMs possess nonlinear behaviour
in the design space D . Consequently, in this study, the closure model for the ROM is built
based on LSPG projection.
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Unsteady aerodynamic optimization

5. Sensitivity analysis

The state sensitivity can be obtained by taking the derivative of (4.2) with respect to S
such that

v(t,S) ≈ ∂ū
∂S + ∂Φ̃

∂S q̃(t,S) + Φ̃h̃(t,S), (5.1)

where ∂ū/∂S ∈ R
nu is the vector of reference sensitivities. According to (5.1), the

solution of the sensitivity h̃ = ∂ q̃/∂S ∈ R
r can be approximated by the sensitivities

of the prominent modes embedded in Φ̃. Moreover, ∂Φ̃/∂S could be negligible if
the perturbation of design parameters does not have a notable influence on the state.
Otherwise, ∂Φ̃/∂S will be a required term in the optimization. To develop the sensitivity
function, we assume that the ROM is identical to (2.2a,b). Hence, a set of ODEs in the
form of a ROM can be written as

∂ q̃
∂t

= F(q̃, t,S) + R(q̃, t,S), q̃(0,S) = q̃0, (5.2a,b)

where R : R
r → R

r and F : R
r → R

r with q̃ 	→ F(q̃) are the residual and flux of the
closure model, respectively. In the ideal case, the residual of the FOM and the ROM is
zero. However, approximating the state of the FOM via dimensionality reduction (i.e. u ≈
ū + Φ̃q̃) and frequent projection via P will introduce non-zero values to the residual R.
Petrov–Galerkin projection minimizes R(q̃, t,S) by projecting it onto r(ū + Φ̃q̃, t,S) in
P by means of P = Ψ̃ . Therefore, we can write the Petrov–Galerkin projection of the
residual as

R(q̃, t,S) = Ψ̃ �r(ū + Φ̃q̃, t,S). (5.3)

Substituting (2.2a,b) into (5.3), yields the same equation as (4.4a,b). Note that this
equation in discrete form corresponds to LSPG. Similar to (2.4), to satisfy the constraints
of the optimization problem, the derivative of the residual should be set to zero. By
assuming that the rank of the ROM is sufficient, we can derive the sensitivity function
from (4.4a,b) as

dR
dS = ∂Ψ̃ �

∂S

(
∂(ū + Φ̃q̃)

∂t
− f (ū + Φ̃q̃, t,S)

)

+ Ψ̃ �
(

∂Φ̃

∂S
∂ q̃
∂t

+ Φ̃
∂h̃
∂t

− ∂f
∂ū

∂ū
∂S − ∂f

∂u
∂Φ̃

∂S q̃ − ∂f
∂u

Φ̃h̃ − ∂f
∂S

)
. (5.4)

Also, the vector of reference sensitivity is defined as v̄ = ∂ū/∂S . By leveraging the
continuous representation of LSPG, we can define the test basis function as Ψ̃ =
(∂r/∂u)Φ̃, and then substitute it into (5.4) to obtain the following equation:

dR
dS =

(
∂Φ̃�

∂S
∂r
∂u

�
+ Φ� ∂

∂S
∂r
∂u

�)(
Φ̃

∂ q̃
∂t

− f (ū + Φ̃q̃, t,S)

)

+ Ψ̃ �
(

∂Φ̃

∂S
∂ q̃
∂t

+ Φ̃
∂h̃
∂t

− ∂f
∂ū

v̄ − ∂f
∂u

∂Φ̃

∂S q̃ − ∂f
∂u

Φ̃h̃ − ∂f
∂S

)
. (5.5)

The second-order derivative of the residual, (∂/∂S)(∂r/∂u)�, is usually not available
or is expensive to compute. Furthermore, ∂Φ̃/∂S cannot be determined from the trial
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basis function. If the FOM is not very sensitive to the design variables, we can neglect it
by setting ∂Φ̃/∂S = 0. However, this is not acceptable in most cases. To compute dR/dS
efficiently, we need to remove unknown (or expensive) terms from (5.5). To this end, we
rewrite (5.4) with reference to (5.2a,b) as

dR
dS = ∂R

∂ q̃
h̃ + ∂R

∂S + ∂R
∂Ω

, (5.6)

where ∂R/∂Ω ∈ R
r is derivative of the residual with respect to a source term. Also,

derivatives in (5.6) have the following definition:

∂R
∂ q̃

= ∂

∂t
− ∂F

∂ q̃
,

∂R
∂S = −∂F

∂S ,

∂R
∂Ω

= −∂F
∂ū

v̄.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.7)

The difference between (5.5) and (5.6) arises from the fact that (5.5) is derived from a
closure model that only includes the state information in its hierarchical structures. Here
we assume that Φ̃ includes the state information. However, (5.6) assumes that the closure
model uses other hierarchical structures and information to approximate the sensitivity
functions. In other words, h̃ is approximated by minimizing the residual of the solution of
the sensitivity in some norm (which is usually the �2 norm),

h̃ = argmin
z∈Rr

∥∥∥∥∥∂(ū + Φ̃q̃)

∂S − v̄ − Φ̃z

∥∥∥∥∥
2

2

, (5.8)

where v ≈ ∂(ū + Φ̃q̃)/∂S = v̄ + Φ̃h̃. It is worth pointing out that computing h̃ requires
embedding more information in Φ̃, as shown in (5.8). Further details will be provided
in § 7 to show how to revise Φ̃ for sensitivity analysis. To solve (5.6), we discretize it
using the backward differentiation formula (BDF), a linear multistep scheme. Therefore, a
discrete form of (5.6) can be represented as

ζ0

Δt
h̃(n) +

⎛
⎝ k∑

j=1

ζj

Δt
h̃(n−j)

⎞
⎠− β0

∂F (n)

∂ q̃(n)
h̃(n) + ∂R(n)

∂S + ∂R(n)

∂Ω(n)
= 0, (5.9)

such that

lim
δS→0

lim
r→nu

∂R
∂S = 0. (5.10)

Moreover, ζ and β are coefficients of the temporal scheme. Rearranging (5.9) yields(
ζ0

Δt
− β0

∂F (n)

∂ q̃(n)

)
h̃(n) +

k∑
j=1

ζj

Δt
h̃(n−j) + ∂R(n)

∂S + ∂R(n)

∂Ω(n)
= 0. (5.11)

Looking at (5.11), the first term is the derivative of the residual with respect to the vector
of states at the nth time step, ∂R(n)/∂ q̃(n). Additionally, the second term in this equation
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is the derivative of the residual with respect to the vector of states at different time steps,
∀p /= n : {∂R(n)/∂ q̃( p) = ζj/Δt}. Therefore, (5.11) can written as

∂R(n)

∂ q̃(n)
h̃(n) +

k∑
j=1

(
∂R(n)

∂ q̃(n−j)

)
h̃(n−j) + ∂R(n)

∂S + ∂R(n)

∂Ω(n)
= 0. (5.12)

Having all derivatives in the form of low-dimensional residuals allows us to convert them
into smaller terms in the high-dimensional space. Therefore, we can obtain derivatives
directly from the residual of the FOM. Using Petrov–Galerkin projection, the relationship
between the ROM and the FOM can be expressed as R(n) = Ψ̃ (n)�r(n) in discrete time
steps. Hence, the relation between derivatives of the residual can be represented as follows:

∂R(n)

∂ q̃(n)
=
(

∂Ψ̃ (n)�

∂u(n)
r(n) + Ψ̃ (n)� ∂r(n)

∂u(n)

)
∂u(n)

∂ q̃(n)
,

∂R(n)

∂ q̃( p)
=
(

∂Ψ̃ (n)�

∂u( p)
r(n) + Ψ̃ (n)� ∂r(n)

∂u( p)

)
∂u( p)

∂ q̃( p)
, n /= p,

∂R(n)

∂S =
(

∂Ψ̃ (n)�

∂S r(n) + Ψ̃ (n)� ∂r(n)

∂S

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.13)

Furthermore, the derivative of the residual with respect to the source term is also obtained
by

∂R(n)

∂Ω(n)
= Ψ̃ (n)�

k∑
j=0

∂r(n)

∂u(n−j) v̄. (5.14)

Applying LSPG to obtain a ROM with enough POD modes in H leads the residual of
the FOM to be close to zero, such that ∀ n : {r(n) : Φ̃q̃ → 0}. This definition leads to the
first term in the derivatives being negligible. On the other hand, ∂u(n)/∂ q̃(n) = Φ̃. Recall
Ψ̃ = (∂r/∂u)Φ̃, we can simplify (5.13) as follows:

∂R(n)

∂ q̃(n)
= Ψ̃ (n)�Ψ̃ (n),

∂R(n)

∂ q̃( p)
= ζp

Δt
Ψ̃ (n)�Φ̃, n /= p,

∂R(n)

∂S = Ψ̃ (n)� ∂r(n)

∂S .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.15)

In the end, by substituting (5.15) into (5.12), the discretized equation can be given by

Ψ̃ (n)�Ψ̃ (n)h̃(n) +
k∑

j=1

ζj

Δt
Ψ̃ (n)�Φ̃h̃(n−j) + Ψ̃ (n)� ∂r(n)

∂S

+ Ψ̃ (n)�
⎛
⎝ k∑

j=1

ζjI + ∂r(n)

∂u(n)

⎞
⎠ v̄ = 0, (5.16)

where I is the identity matrix. From (5.16), all terms can now be obtained from derivatives
of the FOM. Moreover, (5.16) lets us advance the solution of the sensitivity in time
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with large time steps since this equation is solved implicitly. This capability has some
significant advantages for optimization problems: (1) lower hard-disk requirements for
a group of FOMs; (2) solving the ROM via an implicit scheme guarantees numerical
stability (although poor datasets and configurations can lead to spurious results, proper
configurations should always be taken into account); (3) LSPG performs efficiently for
intermediate time steps (Carlberg et al. 2017). Ultimately, the minimization problem of
the FOM in (2.4) can be transformed into a new minimization problem for a ROM in
lower dimensions as

minimize
q̃∈Rr,S∈D

J̄ = 1
T

∫ T

0
J (ū + Φ̃q̃, t,S) dt,

subject to

R(ū + Φ̃q̃, t,S) = 0,

dR
dS (ū + Φ̃q̃, t,S) = 0,

argmin
z∈Rr

∥∥∥∥∥∂(ū + Φ̃q̃)

∂S − v̄ − Φ̃z

∥∥∥∥∥
2

2

,

C(ū + Φ̃q̃,S) ≤ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.17)

where the optimizer uses the ROM to search in the design space D . A distinguishing
feature of this work is that the optimization in (5.17) is solved in H , as opposed to
conventional optimization, which is solved in P . According to (5.17), we need to obtain
manifolds in H to evolve the solution with time. These manifolds are responsible for the
dynamical behaviour of the FOM in lower dimensions. Therefore, in the next section, we
investigate ways to find such manifolds.

6. Physics-constrained ROMs

In this study, to build a closure model in lower dimensions, we explicitly derive the
overall structures of manifolds in Hilbert space from the physical governing equations,
and then shape them via a training dataset. This strategy is called a physics-constrained
data-driven approach, and can result in accurate predictions of the closure model with less
training data. Hence, we will leverage this approach to address downsides of conventional
approaches, making optimization more robust with reduced requirements for the training
dataset. To clarify what we seek when building a closure model, some essential points in
this approach will be explained. If a closure model is represented as F with a solution q̃,
then an ideal model should guarantee four criteria, represented as follows:

(i) accurate prediction of the solution, q̃ 	→ u;
(ii) accurate prediction of the dynamical response, F 	→ f ;

(iii) strong numerical stability, ‖F‖ ≤ ε, where ε is a bounded value;
(iv) representation of the derivatives in lower dimensions, ∇ · F ∼= ∇ · f .

The first and second criteria denote that the dimensionality reduction should not
influence the prediction accuracy in the closure model over a finite time interval T. This
accuracy can be improved by adding an adequate number of subspaces (i.e. POD modes)
to the ROB. In the third criterion, having a rich training dataset can improve prediction
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accuracy in the closure model, but does not guarantee stability. The Galerkin projection
is represented as a continuous form of minimization in the closure model (Carlberg et al.
2017). This projection becomes highly unstable for nonlinear dynamical systems (i.e. in
high-Reynolds-number flows). The reason is that small flow structures play an essential
role in the subsequent flow evolution (Nair et al. 2019). To overcome this issue, other
implicit projection methods, such as LSPG, can be employed to build a stable closure
model (Carlberg et al. 2011, 2017; Parish, Wentland & Duraisamy 2020). In the fourth
criterion, derivatives of the closure model should closely approximate those of the FOM
in lower dimensions. Most ROMs (linear, autoencoder or data-driven closure models) are
only designed to approximate the state vector over t ∈ T. In other words, there is no general
model that represents the Jacobian of the ROM. Therefore, conventional ROMs may not
be suitable for sensitivity analysis. Besides accurate prediction of the state vector, ROMs
should project the most prominent features of the Jacobian and related derivatives of the
FOM (i.e. ∂r(n)/∂u(n) and ∂r(n)/∂S) into lower dimensions.

In this study, the proposed algorithm relies on dimensionality reduction and dynamic
prediction of a large-scale system using a ROM. Having a well-defined closure model
for the ROM, sensitivity analysis of the FOM can then also be projected into lower
dimensions. Figure 2 depicts the schematic of the proposed approach to build a ROM
for approximating the sensitivity solution. The state vector u from higher dimensions, P ,
is projected into lower dimensions, H1, via a projection function P, where H1 represents
a space embedding the dynamical system in (5.2a,b). In the next step, the closure model is
built for the dynamical system via solving R(ū + Φ̃q̃, t,S) = 0 for q̃. These generalized
coordinates, q̃, evolve in H1 with time, and will be used in the next steps to build the
Jacobian and other related matrices. If the model architecture and training procedure are
fulfilled properly, the generalized coordinates typically will appear as a set of correlations.
Subsequently, the steady-state forward sensitivity function is solved for vss, which is in
physical space P , over a limited set of time intervals. The collected sensitivities are used
to project these sensitivity solutions from P into H2 via a projection function P

′. Note
that H2 is a space adjusted to the sensitivity function in (5.16), and the evolution of the
sensitivity solution lies into this space. In the next step, (dR/dS)(ū + Φ̃q̃, t,S) = 0 is
solved for h̃, which is the sensitivity solution in H2. Note that q̃ and h̃ could have different
dimensions. Finally, the sensitivity solutions in H2 can be lifted back from lower to higher
dimensions through P

′′ to reconstruct the solution of the sensitivity in P . An important
note is that the ROM should be able to reconstruct the full state vector over T. Also,
the proposed model receives only a limited set of the sensitivities, sampled sporadically
in time. Then, it predicts the full solution of the sensitivity for all time intervals in T.
In order to build a ROM, we need to use some portion of data obtained from the FOM.
The data collected from this FOM are usually vectors of the state, represented as a set
of snapshots. It is worth mentioning that the time period considered for each simulation,
T ∈ T, is a range in which we capture snapshots and use them to build the ROB. Therefore,
this period needs to be long enough to obtain most of the evolutional behaviour of the
dynamical system. Otherwise, some portion of the dynamics will be missed in the ROM,
leading to a spurious model. Hence, in this study, we selected T to be long enough with
adequate time intervals such that the collection of snapshots can represent most of the flow
features in this period.
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Figure 2. Schematic of the physics-constrained data-driven approach. The physics-constrained part uses
information from the governing equations to apply strict constraints on the shape of manifolds in Hilbert space.
Therefore, the overall structures of these manifolds are known, but their scale and details are unknown. The
data-driven part helps fill this gap to find the shapes of these manifolds in Hilbert space.

7. ROB

Model reduction is usually based on the construction of low-dimensional subspaces in
H . Subsequently, a transformation function is applied to project the solution onto these
low-dimensional subspaces. For the compressible flow problems considered here we build
snapshots using the conserved variables u = [ρ, ρui, ρe], where ρ is density, ui the
velocity component in the ith direction and e is energy. Additionally, other quantities in
the form of vectors can enrich the trial basis function in H . These quantities can be
solutions of the sensitivity, residuals or fluxes (Zahr & Farhat 2015). To define the trial
basis function, first build a ROB, since the trial basis function is usually defined as a set
of different ROB. As mentioned previously, having a well-trained ROB helps produce a
robust trial basis function that can work in off-design conditions. Hence, the performance
of a ROM with respect to any perturbation in D will be ensured. We may execute
several FOMs for a different set of design parameters, Si = {S1,S2, . . . ,Snd} ⊂ D , where
nd indicates the total number of FOMs. Later, snapshots for each FOM are assembled
according to

U(Si) =
⎡
⎣ | | |

u(1)(Si) − ū u(2)(Si) − ū · · · u(mu)(Si) − ū
| | |

⎤
⎦ ∈ R

nu×mu, (7.1)

where mu denotes the last snapshot. After building matrices using (7.1), we then collect
them in a unified matrix

X state = [U(S1) U(S2) · · · U(Snd)], (7.2)

where X state is the dataset that will be used to train the ROB. Subsequently, each ROB is
built via a set of POD modes

Φ̃u = POD(X state), and U(Si) = Φ̃uQu(Si), i = 1, 2, . . . , nd, (7.3a,b)

where Φ̃u ∈ R
nu×rstate , and rstate shows the rank of the ROB for the state vector.

Moreover, POD denotes a function that returns the orthogonal modes (i.e. POD modes).
This function can be developed using snapshot-POD or singular value decomposition.
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Additionally, Q(Si) shows the generalized coordinates for each set of design parameters
expressed as

Qu(Si) =
⎡
⎣ | | |

q̃(1)
i q̃(2)

i · · · q̃(mu)
i| | |

⎤
⎦ ∈ R

rstate×mu . (7.4)

To improve the trial basis function, it is also possible to train another ROB with the
sensitivity dataset. The idea is that the sensitivity function is solved for a different set of
design variables, Si ⊂ [S1,S2, . . . ,Snd ]. Since the sensitivity function is usually unstable,
we solve the steady-state sensitivity function for samples sporadically selected over
different time intervals. Although steady-state solutions of the sensitivity, vss ∈ R

nu , differ
from unsteady ones, v ∈ R

nu , they provide useful information about relevant structures in
the dynamical behaviour of the forward sensitivity function. Therefore, we can use these
results to approximate manifolds in Hilbert space to be able to solve this function in time.
Therefore, snapshots of the solution of the sensitivity for all samples are defined as

V ss(Si) =
⎡
⎣ | | |

v
(N(1))
ss (Si) − v̄ss v

(N(2))
ss (Si) − v̄ss · · · v

(N(mp))
ss (Si) − v̄ss

| | |

⎤
⎦ ∈ R

nu×mp,

(7.5)
where N(n′) = {ξ (1), . . . , ξ (mp)} is the list of sampling time intervals, and mp is the last
sample for each case. Additionally, n′ indicates an index for timing. Therefore, a dataset
for all samples is represented as

X sens = [V ss(S1) V ss(S2) · · · V ss(Snd)] (7.6)

and, subsequently, the ROB for the solution of the sensitivity can be given by

Φ̃v = POD(X sens), and V ss(Si) = Φ̃vQv(Si), i = 1, 2, . . . , nd. (7.7a,b)

Please note that the ROB of the solution of the sensitivity could have a different
rank, rsens ∈ R+, such that Φ̃v ∈ R

nu×rsens . Therefore, the generalized coordinates for the
solutions of the sensitivity can be written as

Qv =
⎡
⎣ | | |

h̃(N(1)) h̃(N(2)) · · · h̃(N(mp))

| | |

⎤
⎦ ∈ R

rsens×mp . (7.8)

Since the POD function is sensitive to the relative scale of the dataset in the snapshot
matrix X , it cannot be used directly on the set of states and solutions of the sensitivity
at the same time, POD([X state, X sens]) (Carlberg & Farhat 2011). To resolve this issue, a
Gram–Schmidt-like procedure is used (Zahr & Farhat 2015) in which the ROB for state
vectors and solutions of the sensitivity are a subset of the trial basis function

Φ = [Φ̃u Φ̃v] ∈ R
nu×r, (7.9)

where r = rstate + rsens. It has been shown that building a trial basis function like (7.9)
guarantees the minimum-residual property for the ROM without introducing excessive
error (Zahr & Farhat 2015). Additionally, this type of trial basis function has been shown
to be robust against perturbations in design parameters (Zahr & Farhat 2015). It is worth
mentioning that the method for building the ROB in (7.6) and (7.7a,b) will remain efficient
if all design variables have the same topology. For example, if all design variables
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are coordinates of control points, this method can be useful. However, adding another
variable with a different topology (i.e. angle of attack) may change the ROB significantly.
Therefore, we recommend building the ROB as

Φ̃v = [POD (V ss(S1)) , POD (V ss(S2)) , . . . , POD
(
V ss(Snd)

)]
, (7.10)

where POD modes for each set of sensitivity snapshots are built separately and,
consequently, they will be embedded into one unified matrix, Φ̃v . In (7.10), the POD modes
are rearranged based on their eigenvalues.

In general, besides the aforementioned procedure, we can also use the following method
if a specific application is required:

Φ̃ =
{

Φ̃u, if reconstruction of the state is required,
Φ̃v, if forward sensitivity analysis is required.

(7.11)

According to (7.11), the trial basis function could be the same as the ROB. If we use the
ROM to approximate the state vector of the FOM, then Φ̃u can be chosen since it still
ensures the optimality condition over T. Additionally, if we want to consider sensitivity
analysis, then Φ̃v can be used to obtain the sensitivity function of the closure model.

8. Application

In this section, the numerical model developed for the ROM is used for unsteady
aerodynamic shape optimization. The objective is drag minimization of an NACA 0012
airfoil at Re = 1000 and M∞ = 0.1. This is performed with multiple constraints to ensure
the optimization is supervised in D . Two different effective angles of attack, αeff , are
selected to investigate the performance of the optimization procedure for prestall and
post-stall conditions. In this study, αeff = 8◦ and αeff = 25◦ correspond to moderate
(prestall) and massive (post stall) flow separation, respectively. We deliberately chose
these conditions, where the Navier–Stokes equations show strong nonlinear dynamics,
to demonstrate the robustness of the optimization approach proposed in this study. The
ROM-constrained minimization in continuous form can be written as

minimize
q̃∈Rr,S∈D

J̄ = 1
T

∫ T

0
β(CD)2 dt + 1

T

∫ T

0

(
CL − CL,target

)2
dt,

subject to

R(ū + Φ̃q̃, t,S) = 0,

dR
dS (ū + Φ̃q̃, t,S) = 0,

h = argmin
z∈Rr

∥∥∥∥∥∂(ū + Φ̃q̃)

∂S − v̄ − Φ̃z

∥∥∥∥∥
2

2

,

Cgeom.(S) ≤ 0,

Bl ≤ Cbound(S) ≤ Bu,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.1)

where CL = Lift/(0.5ρcu2∞) and CD = Drag/(0.5ρcu2∞) are the lift and drag coefficients,
respectively, ρ is the fluid density, u∞ is the free stream velocity and c is the airfoil
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chord length. Moreover, Cgeom.(S) and Cbound(S) correspond to geometrical constraints
and bounds included in the constraint function C(S). Additionally, Bu and Bl are the
upper and lower limits of Cbound, respectively, and β is a weighting factor. This weighting
is important when using a united objective function. The second term of the objective
function guides the optimization toward a target lift coefficient, CL,target. The fully discrete
form of (8.1) is given by

minimize
q̃∈Rr,S∈D

J̄ = 1
mu

mu∑
n=0

β
(

CD(ū + Φ̃q̃(n), t(n),S)
)2

+ 1
mu

mu∑
n=0

(
CL(ū + Φ̃q̃(n), t(n),S) − CL,target

)2
,

subject to

R(n)(ū + Φ̃q̃(n), t(n),S) = 0,

dR(n)

dS (ū + Φ̃q̃(n), t(n),S) = 0,

v(N(n′))
ss = argmin

z ∈ R
nu

∥∥∥∥∥ ∂r(N(n′))

∂u(N(n′)) z + ∂r(N(n′))

∂S

∥∥∥∥∥
2

2

,

rstate = argmin
z∈R+≤nu

⎛
⎝βz +

∥∥∥∥∥
mu∑

n=0

u(n) − ū − Φ̃uq̃(n)

∥∥∥∥∥
2

2

⎞
⎠ ,

rsens = argmin
z∈R+≤nu

⎛
⎝βz +

∥∥∥∥∥
mp∑

n′=1

v(N(n′))
ss − v̄ss − Φ̃vh̃(N(n′))

∥∥∥∥∥
2

2

⎞
⎠ ,

Cgeom.(S) ≤ 0,

Bl ≤ Cbound(S) ≤ Bu,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.2)

where argmin in (8.1) is expanded to show the training process and the rank selection
criteria in (8.2). The shape of the airfoil is changed using ‘B-spline’ shape functions, using
control points shown in figure 3. These control points define smooth perturbations to the
suction and pressure surfaces of the airfoil. Additionally, three fixed points at the leading
edge, and another at the trailing edge, are used as constraints to avoid defective geometries
in these regions. These fixed points are also responsible for keeping the angle of attack
constant. As mentioned above, all of these constraints are included in C(S).

8.1. Computational set-up
A two-dimensional structured computational domain with a C-topology is used. To solve
a compressible flow field, an in-house CFD software, the high-order unstructured solver
(HORUS) version 0.2.0, is used. The spatial discretization in HORUS uses the flux
reconstruction approach (Huynh 2007), and we set the solution polynomial degree to
ps = 2, which recovers third-order accuracy. The second-order BDF (BDF2) is used for
temporal discretization. The Prandtl number and Mach number are set to Pr = 0.72 and
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Figure 3. Geometrical definition of the airfoil using control and fixed points.

M∞ = 0.1, respectively. Since the governing equations are solved implicitly, the time step
is chosen to be Δt = 0.05t∗, where t∗ = c/u∞ is the convective time.

The number of elements for the initial mesh is approximately 3.7 × 103. With a solution
polynomial degree ps = 2 the total number of solution points is nu = 1.35 × 105. Figure 4
shows a comparison of time-averaged lift and drag coefficients at several angles of attack,
showing good agreement with available reference data. The baseline NACA 0012 airfoil
was then modified using sequential least squares programming as an optimizer from the
Scipy package (Virtanen 2020). Additionally, the singular value decomposition, as an
eigenvalue problem is solved via SLEPc (Hernandez, Roman & Vidal 2005) in parallel,
and PETSc (Dalcin et al. 2011; Balay 2020), compiled with OpenMPI (Dalcín, Paz & Storti
2005), is used for parallelization. We simulated each FOM case until 40t∗. It was observed
that this period is sufficient to obtain statistically converged results. Data snapshots were
then collected over a period of T = 15t∗. The number of subspaces (the rank of the ROB)
is a crucial parameter that should be assessed before starting optimization. Having an
inappropriate rank may cause a bias in the ROM, creating a poor dynamical model.
Therefore, a ROB was built for the reference case (NACA 0012 airfoil at Re = 1000).
Then the arrangement and accumulation of singular values were analysed according to
(8.2). It is observed that if the rank of the ROM is selected to be rstate = 50, the ROB
contains most of the interpretive information of flow structures. Additionally, mp = 20
samples for each control point, P(1) to P(8), are collected to develop the ROB of the
sensitivity function with the rank of rsens = 80. These derivatives are computed with a
second-order central finite difference scheme. The sensitivity function is also discretized
via the first-order BDF (BDF1) scheme for sensitivity analysis. It is worth mentioning that
rsens should be modified since some modes in Φ̃v might be unnecessary, leading to an
increase in the bias of the sensitivity. On the other hand, Φ̃v should have a high enough
rank to minimize the detrimental effect of variance on the results. Therefore, the residual
of the sensitivity function was monitored to ensure it was lower than 10−4. Using this
approach, we will now consider shape optimization at two different angles of attack.

8.2. Shape optimization of an NACA0012 at αeff = 8◦

8.2.1. Set-up
An NACA 0012 airfoil at αeff = 8◦ is in the prestall condition with CL = 0.323 and
CD = 0.14. For drag minimization we select CL,target = 0.32 and β = 10 in (8.2). We
set the effective angle of attack as a variable that can be changed by unlocking the fixed
points at the leading edge. In this case, C(S) includes 10 geometrical constraints with 16
bounds. Additionally, one extra constraint is considered to limit CL. The minimization is
then advanced for 10 design iterations.
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Figure 4. Comparison of present numerical simulations with reference data (Liu et al. 2012; Kurtulus 2015;
Meena, Taira & Asai 2017; Di Ilio et al. 2018): (a) time-averaged lift coefficient; (b) time-averaged drag
coefficient.
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Figure 5. Optimization progress in the shape optimization of the airfoil at Re = 1000 and αeff = 8◦: (a)
objective function; (b) gradients and (c) lift and drag coefficients.

8.2.2. Optimization results
Figure 5 shows the optimization results. The time-averaged objective function, J̄ ,
continuously decreases until the fourth iteration. After that, the constraints slow down
reduction of J̄ . Moreover, time-averaged gradients of the objective function are displayed
in figure 5(b). All gradients converge to zero, except one that remains constant at
approximately 0.03. This cannot be driven lower due to the imposed constraints.
Figure 5(c) illustrates how the time-averaged lift and drag coefficients are changed during
optimization. The drag coefficient is reduced by approximately 9.35 %, while producing
9 % higher lift than the reference airfoil.

To compare the reference and optimized designs in terms of geometry and flow
characteristics, figure 6 is provided. The pressure changes rapidly at the leading edge of
the optimized airfoil. These variations on the suction side produce additional increased
lift, while the rest of the optimized airfoil has no notable contribution to lift generation.
Furthermore, the optimized airfoil has a nose slightly lower than the reference airfoil,
which influences the effective angle of attack. Interestingly, the optimized airfoil produces
higher lift at lower effective angle of attack.
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Figure 6. The geometry of the airfoil and the time-averaged pressure coefficient along the airfoil surface: (a)
reference case and (b) optimized case.

8.3. Flow structures
The slender leading edge of the optimized airfoil has a notable role for the separation point
on the suction side. As shown in figure 7(a), the separation point, where the flow detaches
from the surface due to an adverse pressure gradient, is at x � 0.5c. After the separation
point, the flow confined on the suction side generates a large pressure difference and,
subsequently, higher drag. This confined area is also directly related to the wake of the
airfoil. However, the optimized airfoil’s nose induces a sudden adverse pressure gradient
near the leading edge, which leads to laminar separation bubble (LSB) formation, as shown
in figure 7(b). Consequently, it leads to a delayed separation point located at approximately
x ∼ 0.8c. This delayed flow separation leads to a smaller wake behind the airfoil, which
reduces drag.

8.4. Shape optimization of an NACA0012 at αeff = 25◦

8.4.1. Set-up
There are different reports on the stall point of an NACA 0012 at Re = 1000. Liu et al.
(2012) reported that the stall angle of attack is 27◦ with CL = 1.28. Kurtulus (2015) also
showed the stall lift coefficient as CL = 1.25 with a stall angle of 26◦, and Di Ilio et al.
(2018) detected the same stall angle, but with CL = 1.1. The present study shows that stall
occurs at 27◦ with CL = 1.25. Irregular vortex shedding is expected due to massive flow
separation on the airfoil’s suction side. Our objective is to minimize the drag coefficient
of the airfoil at αeff = 25◦. The lift and drag coefficients for the NACA 0012 at this angle
of attack are CL = 1.17 and CD = 0.66, respectively.

To define the optimization problem, we selected β = 2 and CL,taget = 1.25 to force
the objective function to keep the lift coefficient relatively constant while reducing drag.
Having a slightly higher CL,target than CL = 1.17 was found to prevent the magnitude of
the lift coefficient dropping significantly in early design iterations. Additionally, C(S)

includes 12 geometrical constraints and 16 bounds for the control points. Limiting the lift
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Figure 7. Velocity contours with superimposed streamlines for Re = 1000 and αeff = 8◦:
(a) reference and (b) optimized airfoils.
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Figure 8. Optimization progress in the shape optimization of the airfoil at Re = 1000 and αeff = 25◦:
(a) objective function; (b) gradients and (c) lift and drag coefficients.

coefficient and the angle of attack are two other constraints. Therefore, this optimization
problem contains 30 constraints in total.

8.4.2. Optimization results
To show how the design changes during optimization, figures 8 and 9 are provided. In
figure 8(a), the time-averaged objective function, J̄ , begins to reduce continuously until
the 10th optimization iteration. Later the objective function reduces slightly or oscillates
when the design parameters are close to the local optimum point in the design space. As
shown in figure 8(b), gradients of the objective function either plateau or converge to zero.
According to the gradient-based formulation, gradients of the objective function ideally
should be zero at the local/global optimum. However, bounding the control points with
geometrical constraints may restrict gradients from reaching identically zero. Figure 8(c)
also represents the variation of time-averaged lift and drag coefficients. The lift coefficient
drops at the first optimization iteration and, later, it rises toward the target value CL,target.
The drag coefficient diminishes significantly.
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Figure 9. (a) Instantaneous lift and (b) drag coefficients for both reference and optimized cases.

Figure 9 depicts the lift and drag coefficients versus non-dimensional time t/t∗.
From figure 9(a), the time-averaged lift coefficient reduces slightly from CL,ref . = 1.17
to CL,opt. = 1.16. However, a significant difference between the time-averaged drag
coefficients yields an approximately 20 % reduction in drag. Figure 10 shows the
distribution of the time-averaged pressure coefficient along the airfoil surface, where
the shaded area shows pressure variations over time. From figure 10(a), the pressure
on the reference airfoil suction side fluctuates across the majority of the chord length,
particularly near the trailing edge. However, pressure fluctuations for the optimized design
are significantly reduced, as shown in figure 10(b). Because the intensity of large-scale
coherent structures in the flow field tends to amplify pressure fluctuations on the suction
side, this indicates that the optimized airfoil creates weaker wake vortices.

The spatial integral of the time-averaged pressure on the surface yields the time-average
pressure force exerted on the airfoil. The majority of this pressure force originates in the
vicinity of the leading edge. However, in the optimized case, the time-averaged pressure
force near the trailing edge is significantly reduced. The pressure curves in this region
(x/c = 0.8 ∼ 1) are similar, resulting in minimal lift and drag production in this region.
Despite generating significantly less lift near the trailing edge, the airfoil is still able to
satisfy the lift coefficient constraint. This is achieved via the shear layer produced at the
leading edge of the airfoil. As shown in figure 10(b), sharp variations in the pressure
coefficient around the airfoil’s leading edge arise from an intense, but relatively stable,
shear layer. Furthermore, the airfoil’s suction surface is relatively flat and tangent to
the flow, leading to the enhanced lift. In contrast, the sharp difference of the pressure
coefficient at the leading edge of the reference airfoil is less intense than the optimized
one (figure 10a). The pressure variations on the suction side near the nose of the reference
airfoil fluctuate change with a large amplitude, indicating an unstable shear layer at the
leading edge.

8.4.3. Flow structures
Here we will explore the behaviour of coherent structures in the wakes of the reference and
optimized designs. Figures 11 and 12 show time histories of the lift and drag coefficients,
and contours of vorticity at several instants during a shedding cycle. Green arrows show the
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Figure 10. The geometry of the airfoil and the time-averaged pressure coefficient (red) along the airfoil
surface. The shaded area also displays the variations of the pressure coefficient over time. (a) Reference case
and (b) optimized case.

direction of the jet formed at the interface of two counter-rotating vortices. In frame ‘A’,
the first trailing edge vortex (TEV), Γ +

1 , leaves the airfoil surface and travels downstream.
Moreover, the first leading edge vortex (LEV), Γ −

1 , increases in intensity and envelopes the
suction surface of the airfoil. Hence, the pressure coefficient on the suction surface reaches
a minimum, yielding high lift. The shedding of LEV and TEV manifests as a von Kármán
street in the wake of the airfoil. In frame ‘B’, the aerodynamic forces decrease, since Γ −

2
is not strong enough to produce a notable low-pressure zone on the suction surface of the
airfoil. Furthermore, Γ +

2 does not allow Γ −
2 to grow. According to Kelvin’s circulation

theorem, after Γ −
1 separates, the second TEV, Γ +

2 , forms and gains energy by absorbing
the kinetic energy coming from Γ −

2 , and the shear layer at the trailing edge of the airfoil.
This energy transfer indicates that if two counter-rotating vortices are located beside each
other, the low-energy vortex absorbs energy from the high-energy vortex through shear. In
frame ‘C’, the pair vortex, Γ ∗, has developed on the suction surface. This counter-rotating
vortex reduces the connection of Γ −

2 with the airfoil surface. It is observed that Γ ∗ in the
reference case plays an important role in the quasi-periodic behaviour of vortical structures
in the wake. Different intensities and growth rates for Γ ∗ leads to different vortex shedding
patterns, which influences the LEV and TEV dynamics. This is evident in time variations
of the lift and drag coefficients.

Figure 12 shows different instants during one shedding cycle for the optimized design.
In frame ‘A’, Γ +

1 has detached from the airfoil, while Γ −
1 envelops the suction surface.

When Γ −
1 reaches its maximum intensity, the lift is maximized. In frame ‘B’, a shear layer

forms a LSB, which initiates Γ ∗. As Γ ∗ increases in intensity, it ejects Γ −
1 away from the

surface with the help of Γ +
2 (as shown in frame ‘C’). It is observed that LEV and TEV

enter a harmonic vortex shedding pattern for the optimized design, where the aerodynamic
loads repeat cyclically. The flow field becomes more complicated in the post-stall region,
where at least two shedding frequencies appear. Hence, we observe that the optimized
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Figure 11. Flow structures around the reference airfoil.

design has a simpler shedding pattern, with harmonic interaction between the LEV and
TEV.

To quantify the strength of these vortices, a control surface is placed around the airfoil
over which an integral of ∇ × u is computed, yielding circulation. The control surface
boundaries were placed far enough away from the airfoil such that this circulation was not
sensitive to them. Figure 13(a) shows the total circulation magnitude of the LEV over 15t∗
for the reference case, Γ −

ref ., and the optimized case, Γ −
opt.. The strength of Γ −

ref . is notably
higher than Γ −

opt.. Furthermore, the oscillation of Γ −
ref . is greater, while Γ −

opt. has smaller
oscillations with nearly constant peaks. The same observation is made from figure 13(b)
showing the strength of Γ +

ref . and Γ +
opt.. This indicates that the optimized airfoil produces

a weaker LEV. This is because the optimized airfoil guides the flow over the surface more
smoothly, which leads to simpler interaction between the LEV and TEV structures in the
wake.

8.4.4. Sensitivity analysis
This section analyses the sensitivity of the state vector and the objective function with
respect to the design parameters. According to (8.1), the total gradient of the objective
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Figure 12. Flow structures around the optimized airfoil.
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Figure 13. Time variation of the total strength of core vortices (i.e. LEV and TEV) over 15t∗ for both reference
and optimized cases: (a) instantaneous circulation generated by LEV; (b) instantaneous circulation generated
by TEV.

function, J̄ , can be written as

dJ
dS = 2

T

∫ T

0
β

dCD

dS CD dt + 2
T

∫ T

0

dCL

dS
(
CL − CL,target

)
dt, (8.3)
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Figure 14. Instantaneous gradients of the drag coefficient (geometrical, state and total sensitivities) with
respect to the control points.

where ⎧⎪⎪⎨
⎪⎪⎩

dCL

dS = ∂CL

∂u
v + ∂CL

∂S ,

dCD

dS = ∂CD

∂u
v + ∂CD

∂S

⎫⎪⎪⎬
⎪⎪⎭ (8.4)

and v is approximated by v ≈ v̄ + Φ̃h̃. Since the design objective is drag minimization,
we will isolate this term. The total sensitivity of the drag coefficient, dCD/dS , is
dependent on the geometrical sensitivity, ∂CD/∂S , and the state sensitivity, (∂CD/∂S)v.
The geometrical sensitivity is only dependent on the shape of the airfoil, independent of
the flow field. Also, the state sensitivity is only dependent on the flow field, independent
of perturbations in the airfoil geometry. Therefore, these two sensitivities will be explored
separately.

Figure 14 displays the sensitivity of the drag coefficient with respect to control points
(shown in figure 3), where each column corresponds to a control point. The first, second
and third rows show the time variation of the geometrical sensitivity, state sensitivity and
total sensitivity. From figure 10, the pressure coefficient has large fluctuations near the
trailing edge, which suggests that the aerodynamic loads are highly sensitive here (P(1)
and P(8)). This implies that the trailing edge has a significant influence on TEV formation,
affecting the drag coefficient. Furthermore, the drag coefficient is sensitive to the suction
surface of the airfoil (P(2) to P(4)), where sensitivities fluctuate with the flow. However,
since the flow field on the pressure side of the airfoil is relatively steady, the sensitivities
for P(5) and P(6) are also relatively steady. Moreover, the time variation of dCD/dS reveals
that the reference airfoil is more sensitive than the optimized design.

Figure 15 shows the primary mode of the sensitivity, which corresponds to the fluid
momentum in x direction, Φ̃x. For the reference case, P(1) has a notable effect on the TEV
and drag reduction. Also, P(1) affects a wide range of secondary structures in the wake. For
the optimized case, P(1) has less sensitivity to the TEV. On the other hand, the optimized
airfoil has higher sensitivity to the LEV. In general, for both the reference and optimized
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Reference case
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Optimized case

φx

–4.0 × 10–2 4.0 × 10–2

Figure 15. The primary modes of the solutions of the sensitivity for both reference and optimized cases.

cases, P(2) and P(3) control the shear layer at the leading edge, which directly changes the
LEV and high-pressure differences at the suction surface of the airfoil. However, P(5) to
P(7) indicate that the pressure surface of the airfoil does not significantly affect vortical
structures in the wake of the airfoil. On the other hand, P(8) influences these vortical
structures on the suction surface of the airfoil. The conclusion drawn from figure 15 is
that control points in the vicinity of the trailing edge have a significant effect on drag
minimization. On the other hand, control points adjacent to the leading edge have a notable
influence on lift.

8.4.5. Dynamics
In the previous sections, we explained how optimization changes the airfoil shape and,
hence, flow structures in the wake. Then, we focused on the behaviour of the sensitivity
solution to understand each control point’s effect on the flow field. Here, we consider
the optimization procedure from a different perspective in Hilbert space. We transform
the optimization problem from P to H , and then we identify the characteristics of the
underlying dynamical system.

Figure 16 shows a discrete Fourier transform of the generalized coordinates. Figure 16(a)
shows the Strouhal number distribution for 10 subsequent modes, indexed by their rank r.
The Strouhal number is defined as St = fslc/u∞, where fs, and lc are the frequency and
characteristic length, taken here to be the wake width, respectively. Dominant Strouhal
numbers are evident in modes with high spectrum magnitudes. For the reference case,
several dominant shedding modes are observed. However, the optimized case has only
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Figure 16. Variation of frequency for different modes in the reference and optimized cases.

three dominant modes, as shown in figure 16(b). This suggests that the wake is significantly
simpler in nature for the optimized case. Figures 16(c) to 16(g) display the amplitude
spectrum versus Strouhal number for the first five dominant modes for the reference case.
Frequencies detected in the first four modes are St1 = 0.2 and St2 = 0.1. Figures 16(h)
and 16(i) also show that the dominant Strouhal number is St1 = 0.2 for the optimized
case. Yarusevych, Sullivan & Kawall (2009) performed an extensive experiment on the
wake of the reference airfoil, and the reported Strouhal number was St ≈ 0.2 for an airfoil
at αeff = 10◦. Additionally, similar observations can be found in the results of Huang &
Lin (1995). They considered wake structures of an NACA 0012 airfoil, and mentioned
that the Strouhal number of the dominant vortex shedding for angles of attack higher than
αeff = 25◦ remains approximately constant with a value of St ≈ 0.2.

Correlations can be defined as interactions between the generalized coordinates, qi ∈
q = [q1, q2, . . . , qr]�, to understand the dynamical behaviour of the system. Figure 17
shows correlations for the first 10 modes in the reference and optimized cases. These 10
modes correspond to five ‘pair’ modes in the dynamical system. The pair modes are two
subsequent modes that show the same, or similar, dynamical behaviour with a certain
offset. Figures 17(a), 17(c), 17(e), 17(g) and 17(i) show correlations of ‘pair’ modes.
The remaining figures show correlations between ‘non-pair’ modes. Each correlation
loop, specifically in ‘pair’ modes, belongs to a specific vortical structure. Figure 17(a)
shows that the correlation of the reference case has two loops, which indicates that two
different dominant patterns in the vortex shedding occur one after another. However,
the optimized case has only one loop indicating one dominant pattern occurs cyclically.
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Figure 17. Correlations between modes: reference (blue) and optimized (red) cases.
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Figure 18. Correlations of modes coloured by sensitivity magnitude for the reference case.

High rank correlations also contain more loops, which indicates that each dominant pattern
has different forms that repeat harmonically in different shedding cycles. It is worth
pointing out that as the dynamical system experiences higher nonlinearity, the number
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Figure 19. Correlations of modes coloured by sensitivity magnitude for the optimized case.

of loops in corresponding correlations increases. Interestingly, in the optimized case, high
rank correlations have multiple similar loops, indicating linear behaviour of the vortical
structures in the wake of the optimized airfoil.

Figures 18 and 19 show correlations coloured by sensitivity magnitudes, hi ∈ h =
[h1, h2, . . . , hr]�, for the reference and optimized cases, respectively. The maximum
sensitivity belongs to the first rank and, as the rank increases, the sensitivity magnitude
reduces. The primary weight of the sensitivity belongs to prominent vortical structures in
the wake of the airfoil. As we discussed earlier, the sensitivity of the optimized case is less
than that of the reference case, which is observed by comparing sensitivity magnitudes
in figures 18 and 19. It is worth mentioning that the maximum sensitivity magnitude for
each mode happens when the generalized coordinates in correlations move to another loop.
This exchange occurs when an LEV or TEV sheds downstream. Therefore, based on these
observations, the sensitivity of the generalized coordinates in Hilbert space is strongly
related to the sensitivity of the state vector in physical space. Consequently, applying
optimization to the dynamical system in Hilbert space is analogous to optimization in
physical space.

9. Conclusions

In this study, we proposed a new approach for PDE-constrained optimization of nonlinear
systems. The intuition of this study is that, instead of directly optimizing FOMs in physical
space, we transform the physical governing equations into an unphysical space, where the
dynamics of the system evolve on manifolds. This allows us to optimize the evolutionary
behaviour of dynamical systems in lower dimensions. Hence, in optimization problems,
the optimizer is able to change the dynamical behaviour of the system, such that its
effect in physical space minimizes the objective function. To this end, we developed a
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closure model in the form of a ROM. This closure model was explicitly derived from
the FOM using the LSPG approach, and leverages the minimum-residual property over a
discrete temporal domain. Using this ROM, we omitted low energy unstable modes, while
maintaining accuracy of the ROM. Additionally, sampling techniques were considered for
building the trial and test basis functions, which shape the manifolds in Hilbert space. This
procedure is referred to as a physics-constrained data-driven approach. The main feature
of developing a ROM using this approach is that it provides derivatives of the FOM (i.e.
Jacobian) in lower dimensions. Furthermore, sequential least-squares minimizations were
used to solve this closure model, leading to a robust framework, specialized for unsteady
optimization.

Shape optimization of an NACA 0012 airfoil in the presence of flow separation at
Re = 1000 was then considered. It was shown that the proposed framework results in
a significant improvement in the aerodynamic performance of the airfoil, with a drag
reduction of approximately 20 % observed at αeff = 25◦. Unlike the reference case with
the nonlinear dynamical system, the results illustrate that the dynamical system of the
optimized case exhibit a linear-like dynamical behaviour. Therefore, we expect that
implementing the proposed optimization approach can be applied to large-scale nonlinear
problems, such as unsteady flows, and this approach significantly reduces computational
cost and data storage requirements. Future work will focus on applying this approach to
larger and more complicated turbulent flows.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.1051.
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