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ON THE PREDICTION ERROR FOR TWO-PARAMETER
STATIONARY RANDOM FIELDS

R. CHENG

A number of Szego-type prediction error formulas are given for two-parameter
stationary random fields. These give rise to an array of elementary inequalities
and illustrate a general duality relation.

1. INTRODUCTION

Suppose that fi is a finite nonnegative Borel measure on the unit circle, I. Consider
the problem of estimating the constant function 1 within the span of {etn0}^=1 in
L2(fi). A formula for the least-squares error t\ was discovered by Szego [8] and was
amplified by Kolmogorov, Krein and Wiener:

THEOREM 1 . 1 . Let d\i — w da + d\ be the Lebesgue decomposition of \x with
respect to normalised Lebesgue measure a. We have

*;=«P/ log w da,

where the right hand side is interpreted as zero if logio is not integrable.

Likewise, Kolmogorov [6] derived an expression for the least-squares error £2 in
estimating 1 within the span of {eln6}n^i.

THEOREM 1 .2 . Let dp = w da + dX. We have

€',= ' ' ^ ' ^

where the right hand side is interpreted as zero if the integral diverges.

Of course, these results have given rise to a number of variations and generalisa-
tions. In particular, let us now take (i to be a finite nonnegative Borel measure on the
torus I2. For U C Z2 , let e(U, fi) be the least-squares error in estimating 1 within the
span of {e^'+int. (m> n j 6 yy i n £2(M). This is the bivariate analogue of the above
problems of Kolmogorov and Szego.
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In this article, formulas for e(U, fJ.) are presented for several natural choices of U.

A few of these were previously known; others can be derived via Theorems 1.1 and
1.2; still others are extensions of the work of Kalhanpur, Miamee and Niemi [5]. In
the last case, a result of [1] is used to remove restrictions on \i. Together, these error
formulas yield an array of elementary inequalities (see Corollary 3.9), not all of which
are obvious. Lastly, we shall examine a duality relation discovered by Miamee and
Pourahmadi [6] in the univariate picture. This principle extends to the multivariate
case, and is illustrated by the error formulas treated below.

2. PRELIMINARIES

In light of the formulas in Theorems 1.1 and 1.2, we might expect a study of e(U, fi)

to involve Lebesgue decompositions, logarithmic integrals and so on. This is indeed the
case, and the following structures will be needed. First, with fi given, let fi\ and y.2

be the associated marginals:

for all Borel sets E of / . Next, perform the Lebesgue decompositions

dfi2 = 9 da + d(

dfi = w dcr + dX

dfi = lrWR.d(<T x /i2) + lrcd\R

dfi = lAWTd(fii X <x) + l&cd\x-

Let

A = {eH 6 / : flogw(e", eu) <£<r(e") > -oo}

B = {e" e / : flogw(eu, el<) d<r(eu) > - o o } .

For U Q Z2, let M(U, fi) be the span of {e
l""+i"«: (m, n) G U} in L2{(i). In par-

ticular, let RN(= i?Af(/i)) be the subspace M({(m, n ) : m ^ N, n G Z}, fi), and Rao =

HRN , the "right remote space." Similarly, define Tyv = M({(m, n): m G Z, n ^ N}, (JL) ,
and Too = HTV, the "top remote space." A useful reduction occurs whenever M(U, fi)

contains Roo or Too.

LEMMA 2 . 1 . [1, 2.2] The following identifications hold:

For then we have:
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LEMMA 2 . 2 . Let U C Z2. Suppose that {{m,n): m > N, n G Z} C U for

some N. Then e(U, fi) = e(U, lrn(jxA)/-0 •

PROOF: Clearly, e{U, fi) ̂  e(U, lrn(JxA)M) •
Conversely, note that lrcu(ixAc) £ R°o Q Ro, and 1 6 RQ, hence lrn(/xA) G -Ro-

It follows that if p and g are finite trigonometric sums in RN , then

lies in RN, and hence in M(U, fi). Now

e2(5, /i) = inf | y |1 + /|2 tip : / g

^ inf < / | l + lrn(/Xii)P + ir^uC/x^)?! dM : V a n d 9 as above \

= inf j / |1 + p\2 lrn(/xA)^M : P | + inf S / |1 + q\2 lr^uC/xA^^M = 9 \ •

The second term is zero, since £2(lr<:u(ixvic)At) is right-remote; that is, by Lemma 2.1,
1 G •£2(lrcu(JxAc)/x) = -Rn(lrcu(ixAc)At) f°r a^ n - The remaining term is simply

An analogous statement holds for U containing {(m, n) : m G Z,n ^ N}.

3. ERROR FORMULAS

We now investigate e2(U, fi) for a number of interesting choices of U. Let us
interpret divergent integrals in the obvious ways.

Let Ui = { ( 0 , n ) eZ2 :n^l}.

THEOREM 3 . 1 . We have

e2(tfi, //) = exp / logoff,

c3(Ui, wda2) = exp flog (jw{eu, eit)da(ei')\da(eit).

PROOF:

= inf

By Theorem 1.1, the last expression is equal to exp Jloggda. In case dfi = wda2 , the
density g() becomes / tu(e" , )«io-(e"). D

Let U2 = {(jn, n) G Z2 : m G Z, n ^ 1}.
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T H E O R E M 3 . 2 . We have

J2

e2

(U2, fi) = Jex

(U2,wd<r2) = /exp (flogw(eis, eit)da(eit))da(eit).

PROOF: This is [2, 4.5], an extension of [5, Theorem II.l]. D

Let Uz — Ui U {{m, 0): m ^ 1}. This is an "augmented halfplane," first studied
by Helson and Lowdenslager [3].

THEOREM 3 . 3 . We Aave

e2(U3, /i) = exp / log wda2.

PROOF: This is [3, Theorem 1]. D

The formula remains valid if t/3 is replaced by any other augmented halfplane,
such as Z2 \ (U3 U {(0, 0)}).

Let Ui = {{rn, n): m £ Z, n > 0} \ {(0, 0)}.

THEOREM 3 . 4 . We have

t2{U^ / i ) = y e x p ^ l o g [ l / w ( e " , e « ^ f t ]

PROOF: See [5, Theorem III.7]. D

Let Us = {(0, n): n ̂  0}.

THEOREM 3 . 5 . We have

PROOF: This follows from Theorem 1.2. D

Let U6 = {{m, n):meZ,n^0}.

THEOREM 3 . 6 . We Aave

e2(
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PROOF: Note that {(m, n) £ Z2: m £ Z, n ^ 1} C U6.

By Lemma 2.2, e2(Ue, A») = e2{Ua, lAn(Bxi)A0 • That is, we can assume that dfi
is of the form dfj, = WTd(fii x a ) . In that case the assertion follows from [5, Theorem
111.10]. D

Let UT = Z2\ {(m, 0): m < 0}.

THEOREM 3.7 . We have

r / t .. \ - 1

e (UT, /J.) = exp

PROOF: Let um be the projection of elm' onto M(Ue, fi), m £ Z. Then e(Ui, fi)
is equal to the least squares error of estimating «o within the span of {um}£J=1. To see
this, let P and Q be the projection operators of L2((i) onto M(Ug, fi) and M(UT, fi),
respectively. Then

1 - Ql = 1 - PI - (Q - P)l

= 1 - PI - (Q - P)(l - PI)

= uo-{Q- P)u0.

But the range of Q — P is exactly the span of { u m } ^ . , . By [5, Theorem III.11], the
measure v on I given by

has the property

{Uj,uk) = JeV

Hence e(Uj, /x) is equal to the least-squares error in estimating 1 within the span of
{e'mfl}m=i i n £2(")- Taking dm = hda + drj, Theorem 1.1 now gives

e2(U7, M) - exp jlog L(e") ( | [l/WT(e", ei4)] ^(e*4)^ 1 da(e").

log

log

= e x p ^ l

Let U8 = Z2\ {(0, 0)}.
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THEOREM 3 . 8 . We have

PROOF: Let {um}mez, v and A" be defined as in the proof of Theorem 3.7. Then
e2(Us, ft,) is equal to the least squares error in estimating Uo by {um}m5^o • Now-
applying Theorem 1.2 to the measure ft, gives

e2(Ua,fi) =

D
Figure 1, over, shows graphs of the parameter sets Ui, U2, • • •, Us on the Z2 array.

Note that the sets are decreasing by containment from top to bottom, and from left to
right. Since U C V implies that e(U, fi) ̂  e(V, fi), this yields:

COROLLARY 3 . 9 . Suppose that W(x, y) is a nonnegative, [dxdy]-integrable
function on [0, 1] x [0, 1]. Then the following inequalities hold, provided that the
reciprocals of divergent integrals are interpreted as zero:

JJWdxdy 2

expf (log fWdx)dy Js ( ( / W dx)'1 dy) ~*

/exp (/log Wdy)dx ^ J (J W^dy)'1 dx

exp JJ log W dx dy ^ exp J log

(J (exp f log W-1dy)dx)-1 >

4 . A DUALITY RELATION

The following result is an adaptation of [7, Theorem 3.1] to the present context.
For any subset U of Z2 \ {(0, 0)}, let U~l = (Z2 \ {(0, 0)}) \ U.

THEOREM 4 . 1 . Suppose that w ^ 0, Jwd<r2 < 00 and Jw^da2 < 00. Then

e(U,wdv2) =£(U-1,w-1d<r2) - 1
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Figure 1

for any U C Z2 \{{0, 0)}.

PROOF: Let MQ[U) be the collection of finite linear combinations of
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{eim'+int: (m,n) £ U}.

1 (U, w dcr2) = inf { / |1 + p\2 wda2:pe M0(U)\e2'

f <J {fw)w-> do*)*
\ S\fw\2w-*da*

The supremum is exactly the squared norm of 1 as a bounded linear functional on the
span G of {fw: f E M0(U U {(0, 0)})} in L2^'1 da2) . This, in turn, is equal to the
squared distance in L2(w~1 da2) from 1 to Gx. But Gx is spanned by MQ(U~1).

Thus the chain of equations continues

= inf < / |1 +q\ w~l da2 : q E Mo (

D
It can be checked by inspection that the formulas of Theorems 3.1 through 3.9 are

consistent with Theorem 4.1. First note that U^1 is a rotation of Uj; U^1 is a rotation
of TJ\; Uf1 is a rotation of Us ; U^1 is a rotation of itself; Uf1 is the empty set (this
corresponds to prediction of 1 by 0). After the appropriate variable changes to account
for the rotations, the associated pairs of formulas do indeed illustrate Theorem 4.1.
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