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Abstract
The glial fibrillary acidic protein (GFAP) is an intermediate filament widely used to identify and label
astroglial cells, a very abundant and relevant glial cell type in the central nervous system. A major hurdle in
studying its behavior and function arises from the fact that GFAP does not tolerate well the addition of
protein tags to its termini. Here, we tagged human GFAP (hGFAP) with an enhanced green fluorescent
protein (EGFP) for the first time, and substituted a previously reported EGFP tag onmouse GFAP (mGFAP)
by a more versatile Halo Tag. Both versions of tagged GFAP were able to incorporate into the normal GFAP
filamentous network in glioma cells, and Alexander disease-related mutations or pharmacological disrup-
tion ofmicrotubules and actin filaments interfered withGFAP dynamics. These new tools could provide new
fruitful venues for the study of GFAP oligomerization, aggregation and dynamics in living cells.
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Introduction

The glial fibrillary acidic protein (GFAP) is an intermediate filament widely known as a molecular marker
for astroglia (Middeldorp & Hol, 2011). GFAP expression is strikingly enhanced in conditions of stress,
inflammation or injury (Anderson, Ao, & Sofroniew, 2014; Li et al., 2019; Middeldorp & Hol, 2011), and
mutations in this filament are associated to Alexander disease (Messing, 2018). However, the structure and
function of this filament remainmostly unknown. This is due, at least in part, to the intolerance ofGFAP to
tags at the N- or C-terminus. Most GFAP studies were restricted to fixed cells and immunocytochemistry
(Hsiao et al., 2005; Perng et al., 2008), and early attempts to tag humanGFAP (hGFAP) hadmixed success,
as cells often showedGFAP aggregation or poor filament formation (Bachetti et al., 2008; Perng et al., 2008;
Tulyeu et al., 2019). Very recently, mouse GFAP (mGFAP) was successfully tagged with EGFP by
introducing a linker between the filament and the fluorescent protein (Mignot et al., 2007). Although
mGFAP shares 95% homology to hGFAP (Anderson et al., 2014; Middeldorp & Hol, 2011), there are
relevant differences that could determine different mechanisms of regulation and function.
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Objective

Here, we developed new tools for the study of GFAP behavior and function in living cells. First, we
created an EGFP-tagged version of hGFAP where the tag is within the GFAP sequence, and not at its N-
or C-terminus, in order to avoid the issues related to terminal GFAP tags (Bachetti et al., 2008; Perng
et al., 2008; Tulyeu et al., 2019). Secondly, we used a previously reported mGFAP construct tagged with
EGFP at the C-terminus (Mignot et al., 2007) to insert aHalo Tag in substitution of EGFP. TheHalo tag is
far more versatile than EGFP (England, Luo, & Cai, 2015) and will allow super-resolution, single-
molecule and protein–protein interaction studies on GFAP.

Methods

A commercial transposase was used to insert a kanamycin resistance gene and EGFP into the human
GFAP sequence in a random manner (dx.doi.org/10.17504/protocols.io.77fhrjn). The final selected
construct had EGFP inserted after amino acid 183 of the GFAP sequence, but the transposase reaction
produced an unavoidable repetition of amino acids 181–183 right after the EGFP sequence, as previously
described (Sheridan et al., 2002). EGFP was substituted by a Halo tag in the pEGFP-N3-mGFAP plasmid
(dx.doi.org/10.17504/protocols.io.77fhrjn). Single R236H or R239C Alexander disease-related muta-
tions were inserted by site-directed mutagenesis into ourmGFAP or hGFAP constructs, respectively (dx.
doi.org/10.17504/protocols.io.77fhrjn). Human U251 cells and rat C6 glioma cells were maintained,
transiently transfected with the corresponding plasmids and treated as described in dx.doi.org/10.17504/
protocols.io.77ehrje. Imaging and image analysis were carried out as described in dx.doi.org/10.17504/
protocols.io.77ghrjw. Protein extraction and western blotting was carried out as described previously
(Herrera et al., 2009). Statistical analysis and graphical representation of data were performed using
Sigmaplot software (Systat Software, Inc., San Jose, CA, USA). Sample data are represented as mean�
standard deviation of at least 3 independent experiments. Statistical significance was evaluated by means
of a one-way ANOVA followed by a Tukey’s test. Results were considered significant when p< 0.05.

Results

Both EGFP-hGFAP andmGFAP-Halo constructs formed normal filaments in U251 glioma cells, but the
mGFAP-Halo construct failed to do so in rat C6 glioma cells (Fig. 1A). They were suitable for obtaining
super-resolution-like pictures bymeans of super-resolution radial fluctuations (SRRF) (Fig. 1B). None of
them formed normal fibers in HEK293 cells (Fig. 1D). The site of insertion of EGFP in hGFAP was not
suitable for hosting a Halo tag or bimolecular fluorescence complementation tags (Fig. 1C). While the
Alexander disease-relatedmutation R239C induced aggregation of hGFAP in 48% of cells, the equivalent
R236H mutant mGFAP showed disorganization of fibers with signs of aggregation in only 14% of cells
(Fig. 2A-C). The expression levels of mutant GFAP were similar to their wild type counterparts (Fig. 2E).
However, we cannot rule out the possibility that mGFAP-Halo constructs are expressed at lower overall
levels than hGFAP-EGFP constructs, which could explain a lower level of aggregation in mutant
mGFAP-Halo. The anti-amyloidogenic curcumin derivative CNB-001 (10μM)(Liu, Dargusch, Maher,
& Schubert, 2008) partially prevented hGFAP aggregation (Fig. 2D). Single-molecule analysis of
mGFAP-Halo dynamics confirmed that the R236H mutation produced a higher proportion of free-
moving GFAP molecules, and indicated that pharmacological interference with microtubules or actin
filaments significantly disrupted mGFAP dynamics (Fig. 3).

Discussion

Our tagged hGFAP and mGFAP constructs behaved mostly as expected for endogenous GFAP when
they were expressed in living glioma cells and challenged with previously known genetic and pharma-
cological modifiers of GFAP fibrillization. The only anomalies detected are the lack of GFAP aggregates
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in the R236HmGFAP-Halomutant and its inability to form fibers in rat glioma cells. These are facts that
we cannot currently explain and in which the performance of the EGFP-hGFAP version was superior.
Interestingly, the only functional site of EGFP insertion in hGFAP is located in a region (amino acids
183–184) that shows very little frequency of mutations related to Alexander disease (Messing, 2018).

Conclusions

We reported a successful attempt to EGFP-tag hGFAP and a new version of mGFAP tagged with Halo.
The EGFP-hGFAP construct is adaptable to different species and behaves as expected when it is mutated,
but it is not suitable for single molecule analysis (although it can be used for super-resolution imaging in
combination with the SRRF plug-in (Gustafsson et al., 2016). On the other hand, the mGFAP-Halo

Figure 1. Tagged versions of human and mouse GFAP form normal fibers in glioblastoma cells. Human U251 or rat C6
glioblastoma cells were transiently transfected with different human or mouse GFAP constructs, and imaged 24h later. A,
When transfected into U251 human glioblastoma cells EGFP-hGFAP and mGFAP-EGFP exhibited a normal GFAP filamentous
network. However, when the same constructs were transfected into C6 rat glioma cells, only EGFP-hGFAP formed a regular
filamentous network. B, mGFAP-Halo constructs (incubated with the JF549 Halo ligand, 100 nM) also produced normal
filaments only in U251 cells. Widefield images of the mGFAP-Halo construct were further analyzed using the ImageJ software
with the NanoJ SRRF plug-in to obtain a more defined image of the intermediate filament network. C, Our attempts to
substitute EGFP for bimolecular fluorescence complementation (BiFC) tags Venus 1 (amino acids 1–157) and Venus 2 (amino
acids 158–238) or Halo Tag were unsuccessful. These are representative images of U251 cells transfected with these
constructs, where residual fluorescence can be observed but has no recognizable pattern (i.e. filaments, bundles or
aggregates). D, Transfection of HEK293 cells with the EGFP-hGFAP construct produced either homogenous fluorescence or
aggregates, but no filamentous network.
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Figure 2. Alexander disease-related mutations cause filament disorganization of GFAP. A, U251 cells were transiently
transfected with either wild type (WT) or Alexander disease (AxD)-related versions of EGFP-hGFAP or mGFAP-Halo (R239C or
R236H, respectively), and pictureswere taken 24h later. In the case of themGFAP-Halo constructs, cellswere incubatedwith the
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construct is more sensitive to the biological background and does not aggregate when mGFAP is
mutated, but it allows a wider spectrum of applications, including super-resolution, single-molecule
and protein–protein interaction analyses in living cells. We hope these new tools help the GFAP and
astrocyte community to advance our understanding of physiological and pathological functions of this
intermediate filament in living cells.
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Figure 3. Genetic or pharmacological interference with the diffusion properties of mGFAP molecules. Average diffusion
coefficient of rapid-diffusion molecules (A) and fraction of slow-diffusion GFAP molecules (B) calculated for individual cells
(20 cells/group) by means of the Spot-On online tool (https://spoton.berkeley.edu/SPTGUI/docs/latest). The AxD-related
mutation R236H or incubation of cells with Leukemia Inhibitory Factor (LIF, 100 ng/ml), Nocodazole (10μM) or Latrunculin B
(10μM) for 2 hours changed the diffusion properties of single mGFAP molecules. LIF is a cytokine that induces the expression
and polymerization of GFAP; Nocodazole is a drug that interferes with the formation of microtubules; and Latrunculin B is a
drug that disrupts actin filaments. *, significant versus WT, p < 0.05; *** p < 0.001.
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