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A b s t r a c t . Mean-field and direct simulations of the hydrodynamics and liydromagnetics of the so-
lar convection zone are discussed with the ultimate aim to understand the generation of differential 
rotation and magnetic fields. Various arguments constraining the values of the various turbulent 
diffusion coefficients are presented. It is suggested that the turbulent magnetic diffusivity is much 
smaller than the eddy viscosity which, in turn, is by up to a factor of ten smaller than the eddy 
conductivity. The magnetic field obtained from direct simulations is highly intermittent, and there 
is no clear systematic orientation of bipolar regions emerging from the convection zone. Various 
mechanisms that might cause such a field orientation are considered. Finally, the application of 
direct simulations to the determination of mean-field transport coefficients is emphasised. 
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1. Introduction 

Solving the entire solar dynamo on the computer still remains an intractable prob-
lem. Nevertheless, with reasonable approximations we may hope to model more 
realistically the solar dynamo within the not too far distant future. The pioneering 
approach of Gilman and Glatzmaier about ten years ago was an example of treat-
ing the relevant physics explicitly (Gilman L· Miller 1981, Gilman 1983, Glatzmaier 
1985a). No explicit α-effect was assumed and the magnetic field was generated 
solely by the large-scale convective motions. However, a small-scale turbulent heat 
transport was modelled by including an additional small-scale convective flux term, 
and the conductivity and viscosity coefficients were fairly large ( ^ 101 2cm2/s). 

Up to now it is not entirely clear why this promising approach did not pro-
duce correctly some of the essential properties of the solar dynamo such as the 
equatorward migration of sunspot regions (butterfly diagram), and a rotation law 
compatible with helioseismology (e.g. Brown h Morrow 1987). There are some sug-
gestions that the dynamo should instead be placed in the overshoot region at the 
bottom of the convection zone (Glatzmaier 1985b, see also the recent review by 
Gilman 1992). It has also been proposed that the physics of small-scale motions 
at the scale of granulation should be treated explicitly in the model (Nordlund 
1985). Meanwhile we know that highly concentrated downdrafts can extend over 
several pressure scale heights (Stein L· Nordlund 1989), and may persist throughout 
a major part of the solar convection zone. It would indeed be surprising if such a 
scenario could be successfully approximated by computing only large-scale convec-
tive motions. However, it still needs to be demonstrated that the presence of these 
concentrated downdrafts will really solve the basic problems. 

The possible importance of resolving small-scale convective motions in a dy-
namo motivates the restriction to a small Cartesian subvolume located somewhere 
in the lower part of the convection zone. Direct simulations of convective dynamo 
action have demonstrated that strong and irregular small-scale magnetic fields are 
generated at sufficiently large magnetic Reynolds numbers (Meneguzzi L· Pouquet 
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1989, Nordlund et al. 1992). This may have consequences for the traditional concept 
of an α-effect and the turbulent diffusivity. Conventional α-effect dynamos ignore 
the effects of small-scale magnetic fluctuations and the computation of the α-effect 
is based entirely on the small-scale velocity field (e.g. Krause L· Rädler 1980). It is 
possible, however, that the large-scale solar dynamo works in an environment with 
a strong background magnetic field and the small-scale magnetic fields then play 
an equally important role to the small-scale velocity field that is usually consid-
ered to derive turbulent transport coefficients. In fact, there are examples where 
a turbulent diamagnetic effect has been derived that does include the effects of a 
small-scale magnetic field (Kichatinov 1991). A suppression of the α-effect by the 
magnetic current helicity, (J ' · B'), has been proposed in an early paper by Vain-
shtein (1972). The importance of the small-scale magnetic field on the strength of 
α and η quenching has recently been stressed by Vainshtein L· Cattaneo (1992). 
This issue will be discussed in more detail below. 

We begin by summarising some recent results and implications of hydromag-
netic mean-field dynamos. After this we review some results of direct simulations 
of dynamo action and discuss how such simulations can be used to measure turbu-
lent transport coefficients. Finally the role of the mean magnetic field in a direct 
simulation is discussed and we speculate how the systematic orientation of bipolar 
regions and sunspot pairs can be explained. 

2. T h e mean-field dynamo prob lem 

2 . 1 . αΩ-DYNAMOS 

There have been several attempts to improve the mean-field dynamo approach and 
to apply it to the Sun. Nevertheless, many models do not reproduce important 
geometrical properties of the solar magnetic field. In fact, the theoretical butterfly 
diagram of the old Model I of Steenbeck h Krause (1969) is often better than 
many butterfly diagrams presented since. The main "problem" arose with the better 
knowledge of the solar internal angular velocity distribution. Models with an inward 
increasing angular velocity in the equatorial plane (i.e. ΘΩ,/dr < 0), as in the models 
of Steenbeck L· Krause, unfortunately do not apply to the Sun. 

Within the framework of αΩ-dynamos an equatorward migration of the sunspot 
belts can be obtained when αθΩ/dr is positive in the northern hemisphere. At-
tempts to construct a solar dynamo with dil/dr > 0 and negative α-effect (in the 
northern hemisphere) have been reviewed by Schmitt (1993). In this approach, the 
two induction effects, differential rotation and α-effect, are placed in the overshoot 
layer at the bottom of the solar convection zone. This is in contrast to the original 
ideas of Steenbeck and Krause, where the two induction effects operate in spatially 
distinct regions. It is still not clear, however, which of the two scenarios is actually 
more appropriate to the Sun. In a recent paper by Parker (1993) the idea of dis-
tinct regions of induction effects has been reconsidered in a model for the interface 
between the convection zone proper and the radiative interior. 

A realistic model of the solar dynamo should indeed include the combined sys-
tem of convection zone and overshoot layer. This can be modelled by including a 
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layer with reduced turbulent diffusion coefficients below the convection zone proper. 
Oscillatory magnetic fields generated in the convection zone only penetrate of order 
a skin depth into the interior, as demonstrated by Roberts h Stix (1972). However, 
if a downward turbulent pumping is included the field can accumulate near the in-
terface. Some preliminary models of this kind have been presented in Brandenburg 
et al. (1992a), where the equations describing the generation of differential rotation 
by the A-effect have been solved simultaneously with the α-effect dynamo equa-
tions. This more consistent approach reduces the degree of freedom of setting up 
such models. In the following we summarise the basic constraints that arise when 
the equations for the fluid motions are solved simultaneously. 

2 . 2 . D I F F E R E N T I A L ROTATION 

Nonlinear models for the solar differential rotation as well as direct simulations of 
convection in rotating spherical shells (e.g. Glatzmaier L· Gilman 1982) often tend to 
produce Ω-contours that are constant on cylinders. This contradicts current results 
of helioseismology (e.g. Brown L· Morrow 1987, Libbrecht 1988) which suggest that 
the Ω-contours are more radial. Recently, Gough et al. (1992) pointed out that 
models with cylindrical Ω-contours for το > 0.7R, where w is the distance from the 
rotation axis and R the outer radius, might also be compatible with the truncated 
set of helioseismological data. With the definition Ta = 4Ω2Λ4/Ι/2, where ut is the 
eddy viscosity, we typically find that the Ω-contours become cylindrical if Ta is of 
the order of 106 or larger. This is demonstrated in Fig. 1, where we show contours of 
constant angular velocity and streamlines for compressible and stratified mean-field 
models with different values of Ta. In these models the angular velocity is driven 
by the Α-effect, quantified by a set of parameters that are thought to be relevant 
for the Sun [V(°> = - 1 , V ^ = H ^ = 5/4, s e e Rüdiger L· Tuominen (1990)]. 

For a small Taylor number the Ω-contours are similar to those suggested by 
helioseismology. For a larger value of Ta the Ω-contours becomes more nearly cylin-
drical, at least in the deeper parts of the convection zone. In the two rightmost 
panels a case with anisotropic eddy-conductivity is shown (see Brandenburg et al. 
1992b). Note that the effect on the Ω-contours is only modest - even for rather 
strong anisotropy. With stronger anisotropies noticeable deviations from cylindri-
cal Ω-contours are possible, but the resulting latitudinal convective fluxes are rather 
large (see Fig. 10 in Brandenburg et al. 1992b). The distribution of the convective 
flux at the outer radius, however, has become more radial and would therefore not 
necessarily contradict the observations (Spruit 1977, Durney L· Spruit 1979). The 
importance of a significant latitudinal dependence of the specific entropy for causing 
deviations from cylindrical Ω-contours has been stressed by Durney (1987). 

The meridional velocities generated in the case of large Taylor numbers are 
maximal deep in the convection zone. The surface values are much smaller and 
possibly close to the detectable value. 
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Fig. 1. Comparison of the contours of the angular velocity (upper row) and streamlines 
of meridional circulation (lower row) for two different values of the Taylor number and 
isotropic eddy conductivity (left and middle column), and anisotropic eddy conductivity 
(right column). Dotted streamlines denote counter-clockwise circulation. 

2 . 3 . CONSTRAINTS ON THE TURBULENT DIFFUSION COEFFICIENTS 

The theoretical results for the various turbulent transport coefficients are rather 
uncertain, and this has lead to the practice of treating them essentially as free 
parameters. In the following we point out that there are several constraints on the 
values of the various diffusion coefficients. 

In the previous section we have seen that the solar differential rotation can 
readily be explained in terms of the A-effect formalism when Ta ^ 105, i.e. vt ^ 
101 4cm2/s. Furthermore, if we accept the idea of an αΩ-type dynamo as expla-
nation for the solar cycle then, in order to obtain the correct 22 year period, the 
turbulent magnetic diffusivity, should not exceed a value around 1010· 11 cm2/s 
(e.g. Choudhuri 1990). 

There are two other effects that constrain the diffusion coefficients. The equa-
tions governing the mean stratification of the convection zone may exhibit a large-
scale Rayleigh-Bénard type instability if the "turbulent" Rayleigh number 

VtXt \ cp dr J mid vtx> \ ρ ;mid 

is large enough. Here, χ< is the eddy conductivity, Fc o n v = —XtpTVS is the small-
scale convective flux, and a perfect gas with ρ = Vad/>cpT has been assumed with 
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Vad = 1 — I/7 = 0.4. For solar values we have Rat « 2 χ 104, which is somewhat 
above the critical value (0.5... 1 χ 104) for the onset of Rayleigh-Bénard convec-
tion. A large-scale convection in addition to the small-scale convection modelled in 
the mean-field approach may be an artifact and an indication that the mean-field 
equations become invalid, or are too simple; see Brandenburg et al. (1992b) and 
Tuominen et al. (1993). This can be avoided by taking much larger values for vt 

and xt , i.e. ( u t X t ^ 1.5 x 101 3cm2/s. However, there is yet another issue that, 
if correctly interpreted, may prevent us from choosing v% too large. 

In all mean-field investigations of the solar differential rotation the turbulent 
viscous heating in the mean-field energy equation has been neglected. In fact, Hewitt 
et al. (1975) have shown that viscous heating in convective flows can contribute up 
to about 5% to the energy budget if the stratification is strong. If we adopt the 
molecular (laminar) expression for the viscous heating term with ordinary viscosity 
being replaced by the turbulent value, then we have q

visc
 = —Qij(

u

i,j), where 
Qij = (u'iiij) = — vt((uitj) -f (Ujti)) -f Λ-effect. The largest contribution comes from 
the differential rotation, i.e. 

In the Sun |τσνΩ| is about 0.2 Ω. The integral of qvlsc over the entire convection 
zone leads to the estimate 

where M c « 6 x 1031 g is the mass of the solar convection zone. Comparing 
with the solar luminosity we find 

Thus, the rate of viscous heat production can be a substantial fraction of the solar 
luminosity if vx is of the order of 101 3cm2/s or larger. We computed a number 
of models for different Taylor numbers with the viscous heat term included and 
found in these cases that the models become more unstable to convection than 
before. This is due to the fact that the viscous heating, since it is proportional to 
the density p, is more efficient in the lower parts and therefore enhances the radial 
entropy gradient. 

Rüdiger (1987) pointed out that, in general, the coefficient in the viscous heating 
expression differs from the turbulent viscosity coefficient. Using the First-Order-
Smoothing approximation he .found that, in the context of accretion disc theory, 
this coefficient can be three times larger than the turbulent viscosity. This would 
make the viscous heating problem even more severe. Thus, if Eq. (4) is correct, we 
must conclude that vt <C 101 3cm2/s. 

To summarise this subsection, there are arguments that in the solar convec-
tion zone the various turbulent diffusion coefficients differ from each other. Prob-
lems concerning the dynamo period indicate that η% « 1011 cm2/s or even smaller, 
whereas the possibility of large-scale Rayleigh-Bénard type convection suggests that 
Xt « 101 4cm2/s. The value of v% must be somewhere in between these two values, 

(/vise « p V t { w V S l ) 2 . (2) 

(3) 

Qvisc/L « 0.06 (i/(/1013cm2/s). (4) 

i.e., 

https://doi.org/10.1017/S0074180900173966 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900173966


116 

(5) 

Arguments concerning the turbulent heating and the Taylor number puzzle are not 
compatible with each other. If we accept the expression for the turbulent heating, 
then the constraint of not too large viscous heating requires vt & 3 x 1012cm2/s. It 
should be noted that the ordering in Eq. (5) is not implausible and may be related 
to the increasing intermittency of entropy, velocity, and magnetic field structures. 

3. Intermittency and magnetic field orientation 

Direct simulations of turbulent hydromagnetic convection have provided interesting 
information about turbulent dynamo action. In the simulations by Nordlund et al. 
(1992) and Brandenburg et al. (1993) most of the dynamo activity is seen in the 
downdrafts. This leads to a strong downward transport of magnetic field associated 
with such downdrafts. This transport opposes the effects of magnetic buoyancy that 
tend to bring magnetic flux tubes to the surface. This is an important property, 
because it indicates that a dynamo may still work even in the presence of strong 
magnetic buoyancy. This downward transport causes an accumulation of the mag-
netic field at the interface between the radiative interior and the convection zone. 
Even though the magnetic energy density achieves its maximum at this interface, 
dynamo action is not restricted to this region, but occurs indeed at all depths 
throughout the convection zone. 

The magnetic field obtained in simulations is highly disordered and the orien-
tation of magnetic flux tubes seems to be quite random. In order to explain Hale's 
polarity law one might expect that one needs a strong toroidal field consisting 
of flux tubes oriented mainly in one and the same direction (cf. Schüssler 1987). 
Whilst the field in the convection zone is probably highly intermittent, it is to be 
expected that there is still a nonvanishing mean-field component, whose strength 
may well be a hundred times weaker than the rms field strength. We might expect 
that, as the magnetic field is pushed down to the bottom of the convection zone, 
the field becomes more and more uniformly oriented towards the overshoot layer. 
Here, the turbulence is weak and there is enough time for individual flux tubes 
to align themselves according to the polarity of the majority of flux tubes down 
there. According to this picture, flux cancellation due to fast reconnection together 
with shear and persistent downward pushing motions from above might be able to 
cause a sufficiently uniform orientation of the strongest flux tubes which eventually 
escape and rise to the surface to produce a sunspot pair. 

The process outlined above has not yet been seen in numerical simulations, and 
it is plausible that such an effect only occurs if the simulation was carried out in 
a box large enough to allow both differential rotation and large-scale (mean-field 
type) dynamo action in the convection zone proper. 

It is suggestive to associate the mechanism of flux tube alignment both above 
and below the convection zone proper with the behaviour of a compass needle in 
a large-scale magnetic field. If external perturbations are weak the compass needle 
will be able to align itself. The only possible regions where this is the case are 
the upper and lower overshoot layers. The typical timescale for the alignment of an 
idealised, "freely moving" magnetic flux tube with afield strength B\ in an external 
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magnetic field Bo depends on the density and the length L of the needle. To order 
of magnitude we have 

r= L/v,4, where v\ = Β0Βϊ/(μ0ρ)1 (6) 

and va is the Alfvén speed computed from the geometrical mean of the magnetic 
field in and outside the magnetic flux tube. Using typical values for the surface 
layers, B0 = 1 G, Βχ = 1000G, ρ — 10~6g/cm3, we obtain vA « 0.1km/s, and 
with L = 1000 km we have r « 3 hours. This time is short enough for magnetic flux 
tubes to reorient themselves after their emergence. In the lower overshoot region 
the time scales are much longer, but still short compared with the period of the 
solar cycle, and so this effect may be important even down in the overshoot layer. 
Sufficiently large simulations including upper and lower overshoot layers could, in 
principle, display this effect. 

4. Determination of mean-field transport coefficients 

As long as it is impossible to run a simulation large enough to resolve simultaneously 
the enormous range of time and length scales to describe convective motions in a 
model for the 22 year solar cycle, it is obviously useful to understand basic processes 
using mean-field ideas. Simulations can be used to test the validity of the mean-
field approach and to get independent estimates for the various mean-field transport 
coefficients. 

4 . 1 . T H E » - E F F E C T 

Most of the attempts to determine the α-effect and other turbulent transport coef-
ficients have been carried out using the First-Order-Smoothing approach. Given its 
limitations it is important to investigate other possibilities. One way is to measure 
the mean electromotive force (u' χ Β') in the presence of an imposed magnetic 
field (B) of different strength and direction. A number of results have been ob-
tained in this way. For example, there have been some preliminary indications that 
the vertical component of the α-effect may actually have a different sign than the 
other two horizontal components along the diagonal of the α-tensor (Brandenburg 
et al. 1990). Qualitatively similar results have recently been obtained analytically 
by Fernere (1993) and Rüdiger L· Kichatinov (1993). 

An important future application is the determination of the latitudinal depen-
dence of a , which is analytically known only for the special case where the strat-
ificational effects on the turbulence are weak. In particular at the bottom of the 
convection zone the radial gradient of the turbulence intensity is larger, and there-
fore higher powers of terms proportional to g · Ω α cos Θ should appear in the 
α-effect (see, e.g., Rüdiger 1978). 

Unfortunately, measuring the α-effect in more realistic simulations can be quite 
time consuming. More turbulent runs can show quite lengthy transient behaviour 
and, in order to obtain good statistics and well-converged averages, the runs have 
to be sufficiently long. This is particularly the case when there is a dynamo effect 
generating significant small-scale magnetic fields. There are some indications that 
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in the presence of dynamo action there is an enhanced probability of the velocity 
and magnetic field vectors being aligned. In this case the electromotive force is 
strongly reduced and it is difficult to extract a value for the α-effect. 

4 . 2 . Q U E N C H I N G 

As the magnetic field increases, the feedback via the Lorentz force modifies the 
turbulent motions and thereby the α-effect. Again, the predictions from mean-field 
theory can be tested. In Fig. 2 we reproduce results obtained in Brandenburg et 
al. (1993) for an imposed horizontal magnetic field Bo. In the left hand panel we 
compare our results with the prediction of Rüdiger L· Kichatinov (1993). Note 
that, according to the numerical results, quenching sets in much earlier than the 
quenching derived from mean-field theory. Our results are in rough agreement with 
simulations of Tao et al. (1993). 

0.001 0.010 0.100 1.000 - 3 - 2 - 1 0 1 
BJB^ lo giQ(B0/B9q) 

Fig. 2. Quenching of the α-effect (left panel) and the strength of magnetic fluctuations 
measured in terms of q (right panel), as a function of the imposed magnetic field strength 
Bo (normalised by the equipartition value Beq = ßopttf). T h e dotted line in the left hand 
panel refers to the analytical result of Rüdiger L· Kichatinov (1993) for a strong uniform 
magnetic field. 

Most of the current approaches to determine α-quenching and other magnetic 
feedbacks are limited to the case where a uniform magnetic field is assumed which 
then modifies the turbulence.,The main problem with this approach is obviously 
that the mean-field in the Sun is most probably not smooth, but consists of many 
small flux tubes. This implies that the maximum magnetic field in individual flux 
tubes is much larger than the mean magnetic field. The intermittent properties 
of the mean magnetic field may be characterised by the moments of the magnetic 
field, in particular by the quantities q = ( B / 2 ) / 5 q and the kurtosis ( B 4 ) / ( B 2 ) 2 . 

In the right hand panel of Fig. 2 we have plotted q as a function of the imposed 
magnetic field strength BQ. Note that q is significantly quenched as Bo approaches 
the equipartition value Beq = μοΡ^2, where Ut is the rms velocity of the turbulent 
motions. A similar result has been obtained by Kleeorin et al. (1990). For further 
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details see Brandenburg et al. ( 1 9 9 3 ) . 

4 . 3 . T H E Λ - E F F E C T 

Pulkkinen et al. ( 1 9 9 1 , 1993) have presented an attempt to measure the components 
Qr4> and Qqç of the Reynolds stress tensor from simulations carried out at different 
latitudes and to determine the latitudinal dependence of the A-effect. Furthermore, 
these simulations have provided first results concerning the Qr$ component of the 
Reynolds tensor, which might be important for causing noncylindrical Ω-contours 
in the Sun. 

4 . 4 . T H E TURBULENT BAROCLINIC TERM 

In the limit of rapid rotation and small eddy viscosity the gradient of the angu-
lar velocity in the direction along the rotation axis can only be balanced by the 
baroclinic term, i.e. 

-wdtf/dz « V(T) χ V(S) -f (VT' χ VS') (7) 

where w — r sin Θ is the distance from the rotation axis and ζ — r cos Θ the dis-
tance from the equatorial plane, Τ is temperature and S specific entropy. The term 
V(T) x V(S) is treated explicitly in the mean-field computations, but the turbulent 
contribution (VT' χ VS') , arising from the correlation between Τ and 5, has to be 
derived from a turbulence model or a simulation. In Fig. 3 we show the result for 
a model presented in Brandenburg et al. ( 1 9 9 3 ) with a Rayleigh number Ra = 1 0 7 , 
a Taylor number Ta = 106, and a Prandtl number Pr = 0.5. 

Fig. 3. T h e turbulent contribution to the baroclinic term, derived from a simulation. The 
boundaries between the upper and lower overshoot layers at ζ = 0 and ζ = 1, respectively, 
are indicated by vertical dotted lines. 

Note that the turbulent contribution to the baroclinic term becomes large only 
close to the surface of the domain, and is negligible in the lower parts. Thus, sub-
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stantial deviations from cylindrical Ω-contours can only be expected in the upper 
part of the convection zone. 

5. Conclusions 

The computation of solar mean-field dynamo models encounters several problems. 
It is well-known that αΩ-type dynamos can reproduce the solar cycle period only 
if the turbulent magnetic diffusivity is much smaller than the standard value. On 
the other hand, there are arguments in favour of relatively large values of the 
eddy viscosity and the eddy conductivity. However, the possibility of strong viscous 
heating puts an upper limit on the value of the eddy viscosity. Thus, we argue 
that t]t <C ft Xt- This property might be related to the different degrees of 
intermittency of the magnetic, velocity, and entropy fields. In this connection it 
is interesting to note that Childress (1979) found for simple steady flows that the 
magnetic field is highly intermittent and a is only of the order of the square of the 
magnetic Reynolds number; see also Perkins L· Zweibel (1987). For turbulent flows 
the reduction may be less extreme, but qualitatively similar arguments may also 
apply to the reduction of the turbulent magnetic diffusivity when the magnetic field 
is intermittent; see the reviews of Schüssler (1983) and Gilman (1986). 

It remains a challenging task to set up a good direct simulation that produces 
differential rotation and magnetic fields similar to those observed in the Sun. Of 
particular interest is the question of how Hale's polarity law can be explained. In the 
picture favoured in this paper a weak mean magnetic field is generated in the entire 
convection zone. There the actual magnetic field is highly intermittent and much 
larger than the mean magnetic field. Turbulent pumping acts against magnetic 
buoyancy and causes the field to accumulate at the interface between convection 
zone and radiative interior. Here, the time scales are long and reconnection processes 
can cause the cancellation of flux tubes with opposite polarity. The result is a more 
uniformly oriented bundle of flux tubes that can be amplified further by the action of 
differential rotation. It is desirable to see the pieces of this picture being realised in 
simulations. Another mechanism that needs to be investigated in a direct simulation 
is the subsequent realignment of flux tubes once they have reached the surface. 
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