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ON ISOMORPHISMS OF CONNECTED CAYLEY GRAPHS, III

CAI HENG LI

For a finite group G and a subset S of G which does not contain the identity of G,
we use Cay(G, 5) to denote the Cayley graph of G with respect to 5. For a positive
integer m, the group G is called a (connected) m-DCI-group if for any (connected)
Cayley graphs Cay(G.S) and Cay(G,T) of out-valency at most m, S° = T for some
a 6 Aut(G) whenever Cay(G, 5) = Cay(G, T). Let p(G) be the smallest prime divisor
of \G\. It was previously shown that each finite group G is a connected m-DCI-group
for m ̂  p(G) — 1 but this is not necessarily true for m = p(G). This leads to a natural
question: which groups G are connected p(G)-DCI-groups? Here we conjecture that
the answer of this question is positive for finite simple groups, that is, finite simple
groups are all connected 2-DCI-groups. We verify this conjecture for the linear groups
PSL(2, q). Then we prove that a nonabelian simple group G is a 2-DCI-group if and
only if G = A5.

1. INTRODUCTION

For a finite group G and a subset 5 of G which does not contain the identity of G,
we define the Cayley graph of G with respect to S to be the directed graph Cay(G, 5)
with vertex set G and edge set {(a,b)\a,b £ G, ba'1 e S}. A Cayley graph Cay(G, 5)
is called a Cl-graph of G if, for any T C G, Cay(G,5) ST Cay(G,T) implies S" = T for
some a £ Aut(G). (CI stands for Cayley Isomorphism.) Further, for a finite group G
and a positive integer m, if every connected Cayley graph of G of out-valency at most
m is a Cl-graph, we call G a connected m-DCI-group; while if every Cayley graph of G
of out-valency at most m is a Cl-graph, we call G an m-DCI-group. This paper is a
contribution to characterising (connected) m-DCI-groups.

There has been a lot of study on the problem of determining m-DCI-groups in the
literature, see the surveys in [1, 14, 18, 19]. In particular, dependent on the finite simple
group classification, a good description of 1-DCI-groups was obtained by Zhang [24], and
further, a classification of m-DCI-groups for m ^ 2 was obtained by Praeger, Xu and
the author [16]. One of reasons for investigating m-DCI-groups is to decide isomorphic
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classes of Cayley graphs. It is in general very difficult to determine whether or not two
given Cayley graphs are isomorphic. However, if G is an m-DCI-group then two Cayley
graphs Cay(G, S) and Cay(G, T) of valency at most m are isomorphic if and only if 5
and T are conjugate under Aut(G). The latter is often much easier to determine than
the former. By the definition, a Cayley graph Cay(G, 5) is connected if and only if 5 is a
generating subset of G, that is, (S) = G. Since a disconnected Cayley graph is a vertex
disjoint union of isomorphic connected Cayley graphs of smaller order, in some sense only
the isomorphism problem for connected Cayley graphs needs to be considered (see for
example [22]). There have been some results on the problem of determining connected
m-DCI-groups. Delorme, Favaron and Maheo [6] proved that all Abelian groups are
connected 2-DCI-groups; Xu and Meng [23] completely classified the Abelian connected
3-DCI-groups. Some more general results were obtained by the author [11, 12]. For a
finite group G, let p(G) denote the smallest prime divisor of \G\. It was shown in [11]
that

(1) if G is a finite group then G is a connected m-DCI-group for m ^ p{G) — 1.

Further, it was also proved that the conclusion (1) can be extended to m = p(G) if G
is Abelian. But the author [13] constructed an infinite family of groups which are not
connected 2-DCI-groups, so (1) cannot be extended to m = p(G) for arbitrary groups. A
natural question arises here:

QUESTION 1.1. Which groups G are connected p(G)-DCI-groups?

We are inclined to believe that the answer of this question is positive for most groups,
and in particular for simple groups, namely,

CONJECTURE 1.2. Finite simple groups are all connected 2-DCI-groups.

We show that this conjecture is true for the simple groups PSL(2,q).

THEOREM 1 . 3 . Let G = PSL(2, q), and let r be a connected Cayley graph ofG

of valency 2. Then

(i) G ^ Aut T;

(ii) G is a connected 2-DCI-group.

The argument in the proof of this theorem given in Section 3 might be modified to
prove that Conjecture 1.2 holds for some other families of nonabelian simple groups, for
example, Suzuki groups Sz(q). But we do not think it can be used to prove Conjecture 1.2
completely. The next result gives a complete classification of simple 2-DCI-groups.

THEOREM 1 . 4 . A finite nonabelian simple group G is a 2-DCI-group if and only

ifG = A5.

It is proved in [16, Theorem 1.2] that if G is an insoluble 2-DCI-group then G = UxV
where V = A5 or PSL(2,8) such that (\U\, \V\) = 1 and all Sylow subgroups of U are
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homocyclic. Further, it is easy to see that any characteristic subgroup of G is also a
2-DCI-group. Thus we have an improvement on a result of [16]:

COROLLARY 1 . 5 . Suppose that G is an insoluble 2-DCI-group. Then G =
U x A5 for some Abelian group U such that (\U\, 2.3.5) = 1 and all Sylow subgroups of
U are homocyclic.

After we draw together some preliminary results in Section 2, we prove Theorem 1.3
in Section 3. Then in Section 4, we prove Theorem 1.4.

2. PRELIMINARIES

This section collects several preliminary results which will be used. The notation
and terminology used in the paper are standard (see, for example, [4]). For convenience,
we list some of them here. Let Zn denote the cyclic group of order n. For a group G and
its a subgroup H, \G : H\ (= |G| / \H\) denotes the index of H in G. For two groups G
and H, G x H denotes a semidirect product of G by H. Let F be a graph and let Aut F
be the full automorphism group of F. Let T(a) be the neighbourhood of the vertex a of

F, namely the set of all vertices of F which are joined to a. For a subgroup G of Aut F,
the graph F is said to be G-vertex-transitive or G-arc-transitive if G acts transitively on
the set of vertices or on the set of arcs of F, respectively. For a € VT, let Ga denote
the stabiliser of a in G, and let G^a^ denote the permutation group on F(a) induced by
Ga. For a finite group G and its a subgroup H, we can construct arc-transitive graphs
as follows (see [20] and [17]):

DEFINITION 2 . 1 . Let G be a finite group. Suppose that there are a subgroup
H < G and an element g € G. A graph F = F(G, H, g) is defined as VF = {xH | x £ G)
and {xH, yH) is an arc of F if and only if yx~l 6 HgH.

Such a graph has the following properties.

LEMMA 2 . 2 . ([20] and [17, Theorems 1 and 2].) Let F = F(G, H, g) be a graph
defined as in Definition 2.1. Then

(1) G ^ Aut F and Ga — H, where a is a vertex of F corresponding H;

(2) F is a G-arc-transitive graph of valency \H : H n H9\;

(3) F is connected if and only if (H, g) = G.

For a Cayley graph F of G, the normaliser of G in Aut F is often useful for charac-
terising the structure of F.

LEMMA 2 . 3 . (See [7, Lemma 2.1]) Let G be a finite group and S a subset of

G, let A := AutCay(G,5) and Aut(G,5) := {a € Aut(G) | 5" = 5}. Then NA(G) =

Gx Aut(G,5).

Next we have a criterion for a Cayley graph to be a Cl-graph, which was obtained
by Babai[3], and also by Alspach and Parsons [2].
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THEOREM 2 . 4 . Let F be a Cayley graph of a finite group G, and let Sym(G)
denote the symmetric group on G. Then F is a Cl-graph if and only if, for any r G Sym(G)
with GT ^ Aut F, there is o G Aut F such that G" = GT.

A graph F is called a cover of a graph E if there is a surjection <j> from the vertex-set
of F to the vertex-set of E which preserves adjacency and is such that, for each vertex
a of F, the set F(a) and E(a^) of neighbours of a and a? in F and E respectively have
the same size. In this case, S is called a quotient graph of F. If F is a G-vertex-transitive
graph and TV is a normal subgroup of G which acts regularly on VT, then F has a quotient
graph FN, for which VTN is the set of all /V-orbits on VT, and two vertices U, V G VFN

are adjacent in Fjv if and only if there exist f3 € U and a G V which are adjacent in F.
The graph Tpj is said to be induced by N.

LEMMA 2 . 5 . Let F be a connected G-vertex-transitive di-graph where G ^
Aut F. Let N be a normal subgroup of G and a € VT. Assume that G£'Q' is primi-
tive and that N is not transitive on VT. Tien either F is a cycle, or N is semi-regular
on VT and F^ is G/N-arc transitive of valency |F(a)|.

P R O O F : Suppose that N is not semiregular on VT. Then A£(Q> ^ 1. Since 7V£(Q) ^
G £ ( Q \ we have that 7V£(Q) is transitive on T(a). Thus the quotient graph FN is of valency
1, and so F is a cycle. Therefore, if F is not a cycle, then TV is semi-regular on VT and
it is then easy to see that Fjv is G/N-axc transitive of valency |F(a)|. D

3. P R O O F OF THEOREM 1.3

This section is devoted to proving Theorem 1.3. First we prove some simple prop-
erties of Cayley graphs of valency two.

PROPOSITION 3 . 1 . Let G be a finite nonabelian simple group, and let F be a
connected G-vertex-transitive digraph of G of valency two.

(1) Let A ^ AutF be such that G ^ A, and let a G VT. Let N be a normal
subgroup of A. Then either N is a 2-group such that \N\ \Aa\, orG^N
and if in addition N is minimal normal in A then N is nonabelian simple
and is characteristic in A;

(2) Suppose further that F is a Cayley graph of G and that G is normal in

Aut F. Then F is a Cl-graph.

P R O O F : (1) Since GnN^G and G is simple, either G(~)N = 1, or G ^ N. Assume
first that G n N = 1. Then \N\ divides \GN\ / \G\ which divides \A\ / \G\ = \Aa\. Since
the valency of F is 2, we have that Aa and so TV is a 2-group. Assume now that G ^ N.
Then N is insoluble and \N : G\ |̂ 4 : G| = |j4a|. Further assume that N is a minimal
normal subgroup of A. Then TV = 7\ x . . . x TT where T\ = ... = Tr is nonabelian simple.
Since T{ ^ N, T{ D G «3 G for alH G { 1 , . . . , r} , and hence either T{ n G = 1 or G ^ Tt. If
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Tt n G = 1 for some t, then \(TU G)\ = \1\\ \G\ divides \A\ = \GAa\ = \G\ \A*\ / \G n Aa\,
which is a contradiction since |Ti| / |;4O|. Thus G ^ 7} for each i. It follows that r — 1
and so TV is simple. This argument also proves that N is a unique insoluble minimal
normal subgroup of A. Thus N is a characteristic subgroup of A.

(2) Let A = Aut F. Then .4 = G xi Aa such that A^ is a 2-group. Let r € Sym(G)
be such that GT ^ A. If GT ^ G then since G ' n G ^ GT, we have GT D G = 1.
Thus (G,GT) = G xi GT, and so \GT\ = \(G,GT) : G\ divides \A:G\ = \Aa\, which is a
contradiction since Aa is a 2-group. Therefore, GT = G, and so by Theorem 2.4, F is a
Cl-graph. D

Now we are ready to prove Theorem 1.3.

P R O O F OF T H E O R E M 1.3: By Proposition 3.1(2), part (ii) follows from part (i).
Thus we need only prove part (i). Suppose to the contrary that G is not normal in
Aut F. Our task in the rest is to seek a contradiction. Let A = Aut F and a € VT.
Then A — GAa such that G f~l Aa = 1 and Aa is a nontrivial 2-group. In particular, G
is a proper subgroup of A of a 2-power index. If A is a simple group then by a result of
Guralnick [8], (G,A) = (An_!, An) for some n — 2r with r > 3, which is not the case.
Therefore, A is not a simple group.

Let M be the largest soluble normal subgroup of A. Then M D G = 1, and M is a
2-group (by Proposition 3.1). Let A = A/M, and let B be a minimal normal subgroup
of A. By the maximality of M, B is insoluble, and therefore by Proposition 3.1 (1), B
is simple and G := MG/M ^ B. Note that G is a subgroup of B of 2-power index. If
G ^ B, then by [8], we have that (G, B) = (An_!, An) for some n = 2r with r ^ 3, which
is not the case. Thus G — B. Let S be the full preimage of B under A —> A Then
B = M x G and S is characteristic in A If G centralises M, then B = M x G and
therefore, G is characteristic in B and so is normal in A, which is a contradiction. Thus
G does not centralise M.

Take a (principal) series of subgroups of B:

1 = Mo < Mi < . . . < Mt = M < B ^ A,

where every M* < B and Mj/Mj_i is a minimal normal subgroup of B/Mi-\. Since G
does not centralise M, there exists i € { 0 , 1 , . . . ,t — 1} such that G centralises Mj but
does not centralise Mi+i. We claim that G := MiG/M, does not centralise M i + i :=
Mi+i/Mi. Suppose to the contrary that G centralises Mi+l. Let F = (Mi+1,G). Then
F := F/Mi — (M i + i ,G) = Mi+i x G. Thus G is characteristic in F and so the full
preimage M* xi G of G under F —»• F is normal in F . Since G centralises M^, we have
Mi xi G = M{ x G. Thus G is characteristic in M; xi G and so normal in F . Since
Mi+l < F and M,+ 1 n G = 1, we have that F = M i + 1 x G so G centralises M i + i , which
is a contradiction. Therefore, G does not centralise Mi+i.
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For convenience, write M i + 1 as X, G as Y and the quotient graph TMi (induced
by Mi) as E, respectively, and set Z := X x Y. It follows from Proposition 3.1 that
X = Z" for some n ^ 1. Further, X is a minimal normal subgroup of Z, Y (S G) does
not centralise X and acts transitively on V£, and by Lemma 2.5, E is a Z-arc-transitive
digraph of valency 2. Therefore, Y is irreducible on X. If X is not semiregular on VE
then the quotient graph Ex induced by X is a cycle and Z := Z /X = PSL(2, q) is
transitive on VE, which is not possible. Hence X is semiregular on VE. Since Y is
transitive on VE, LY| | \Y\.

Suppose first that q = 2r for some r ^ 1. Then a Sylow 2-subgroup of Y (=
PSL(2,g)) is isomorphic to Z£ and any two Sylow 2-subgroups have trivial intersection
(see for example [21, p. 417] and [9, p. 295]). Let ~Z = Z/X and £ = £ x . Then Z =
P S L ( 2 , Q ) and E is a Z-arc-transitive digraph of valency 2 (by Lemma 2.5). Thus H := Z0

is a 2-subgroup of Z where (3 € VE and Zp is the stabiliser of /? in Z. Now Z S F and Y is
transitive on VE. Since \ZP\ = | Z | / |VS X | = |^ |( |VE| / |Jf |) = \X\. \Y\ / |V£|, we have
that |X| 1^1 = \H\. By Lemma 2.2, there exists g e~Z such that \H : H9 n H\ = 2.
Since any two Sylow 2-subgroups of Z have trivial intersection, Z has a unique Sylow
2-subgroup P containing H as a subgroup and either g normalises P, or P9 n P = 1. If
P * n F = l then H3 n H - 1 and so | # | = 2. Thus X = Z2 and so Y centralises X,
which is a contradiction. If g normalises P, then 2" = {H, g) ^ (P, #) < Z, which is also
a contradiction.

Now suppose that q is odd, and let s be the order of a Sylow 2-subgroup of Y. It
is easy to see that if q = 1 (mod 4) then s divides q - 1, and if q = - 1 (mod 4) then s
divides q + 1. Thus in either case s ^ g + 1 . Since |JV| divides |F | , 2n = LY| < s ^ g + 1.
Since Y is irreducible on X, by [10, Theorem 5.3.9], we have n > (g - l ) /2 . Therefore,
2(«-1)/2 ^ 2" < g + 1. Solving this inequality, we find q < 7, that is, 9 = 5 or 7. If
q = 5 then s = 4 and so |X| 4 but Y £ GL(2,2), which is a contradiction. Therefore,
we have q = 7 and Z =* T\ x PSL(2,7). Let Z = Z/X and E = E*. Then 1^1 = 8
where /? € VE. Thus E is of order 21 and 3-arc-transitive. By [4, Lemma 16.3], S is a
Cayley graph, that is, E = Cay(Z7 x Z3,5) for some subset 5 of Z7 » Z3. Since £ is
3-arc-transitive, it follows that 5 consists of elements of order 7. But such an S is such
that (5) = Z7, which is a contradiction to the connectivity of E. This completes the
proof of the theorem. D

4. P R O O F OF THEOREM 1.4

Here we shall prove that the only nonabelian simple 2-DCI-group is A5. First we
consider the alternating group A4.

LEMMA 4 . 1 . Le tG = A4. Then

(i) any connected Cayley graph ofG of valency 2 is not 2-arc transitive;
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(ii) G is a 2-DCI-group.

PROOF: It is known that Aut(G) = S4, and so it follows that G is a 1-DCI-group
and that all undirected Cayley graphs of G of valency 2 are Cl-graphs. Thus we only
need to consider subsets which have the form 5 — {a, b} such that | 5 | = 2 and (S) = G.
Let T = Cay(G,S), and let A - AutF and a e VT. If F is not arc-transitive, then
Aa = 1 and so F is a Cl-graph by Theorem 2.4. If F is arc-transitive, then it follows
that o(a) = o(b) = 3. Now it is easy to see that F is not 2-arc-transitive. Thus \Aa\ = 2
and so \A\ = \GAa\ = 2 \G\. For any r € Sym(G) such that GT ^ A, if GT ± G then
|G T nG | = (|G| \GT\)/\GGT\ = |G|/2, which is a contradiction since G does not have
a subgroup of index 2. Thus GT — G and F is a Cl-graph by Theorem 2.4, so G is a
2-DCI-group. D

P R O O F OF THEOREM 1.4: Assume that G is a nonabelian simple 2-DCI-group. By
[16] (or [15]), G = A5 or PSL(2,8). Suppose that G = PSL(2,8). Then G has a subgroup
H ^ AGL(1,23) = Z3, x Z7. By [13, Corollary 2.7], AGL(1,23) is not a connected 2-
DCI-group. Hence there exist two Cayley graphs Cay(G, S) and Cay(G, T) of valency 2
such that (S) = (T) = H, Czy(H,S) £ Cay(H,T) and 5 is not conjugate in Aut(F) to
T. It follows that Cay(G, 5) ^ Cay(G, T). If there exists a e Aut(G) such that S" = T,
then H" — H and so a induces an automorphism T of H which sends 5 to T, which is a
contradiction. So PSL(2,8) is not a 2-DCI-group, and therefore, G = A5.

Conversely, we need to verify that A5 is really a 2-DCI-group. Set G := A5, and
let F := Cay(G, 5) be of valency at most 2. By [15, Theorem 3], if F is undirected then
F is a Cl-graph, and on the other hand, by Theorem 1.3, if F is connected then F is
a Cl-graph. Further, since Aut(G) = S5, any two elements of G of the same order are
conjugate in Aut(G), so if | 5 | = 1 then F is a Cl-graph. Thus we may assume that
5 ^ S~\ \S\ = 2 and (S) < G. Let H be a maximal subgroup of G which contains S.
By the Atlas [5], H = A4, Dl0 or S3, and any maximal subgroup of G of order |H| is
conjugate to H. If (5) < H then (5) S Z5 (since at this moment 5 ^ S~l and \S\ = 2).
Since all elements of order 5 are conjugate in Aut(G), it follows that F is a Cl-graph of
G. Thus we may further assume that (5) = H. Then by [3] and Lemma 4.1, F is a
Cl-graph of H. Let T C G be such that Cay(G,5) £* Cay(G,T). Then (T) ^ H. Since
all subgroups of G of order \H\ are conjugate to H, there exists j e G such that T9 c H.
Thus Cay(#,S) ^ Cay(#,T9)- Since F is a Cl-graph of H, there exists a € Aut(#)
such that Sa = T9. By the Atlas [5], Aut(tf) ^ NA u t ( G )(/f)/CA u t ( G )(if) , and hence
S" = T9 for some a € NAut(G)(#)- Therefore, S is conjugate in Aut(G) to T, and so
Cay(G, S) is a Cl-graph of G. Hence A5 is a 2-DCI-group, and this completes the proof
of Theorem 1.4. D
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