THE PRODUCT OF TWO (UNBOUNDED) DERIVATIONS

BY
STEEN PEDERSEN

Abstract

We characterize when the product of two (unbounded) derivations of a C^{*}-algebra is a derivation.

1. Introduction. The purpose of this note is to show that if δ_{1}, δ_{2} and $\delta_{1} \delta_{2}$ are derivations, defined on a dense subalgebra of a C^{*}-algebra, then $\delta_{1} \delta_{2}=0$. To achieve this we need to impose a technical condition on δ_{1}, that δ_{1} generate a strongly continuous group of automorphisms of A will suffice. Other sufficient conditions may be found in section 3. In [4] Mathieu proved the theorem for bounded derivations, using (i) a stronger result [6], valid for derivations of prime rings, and (ii) that bounded derivations are inner [5] in the double dual. These results are not available for unbounded derivations, although the result in section 2 below imply a version of (i). The main technical tool used in this note is a result, due to Fong and Sourour, about elementary operators on $B(H)$ [2], [3]. We refer to [1] for background material about unbounded derivations, and to [5] for the theory of C^{*}-algebras.
2. The characterization. We show how information about elementary operators on $B(H)$ (from [2]) can be patched together to obtain a global result via the (reduced) atomic representation.

Theorem. Let δ_{1} and δ_{2} be derivations of a C^{*}-algebra A. Assume that D is a subalgebra of A and that D is a subset of the domains of δ_{1}, δ_{2} and $\delta_{1} \delta_{2}$. If $\delta_{1} \delta_{2}$ is a derivation, then there exist unique orthogonal central projections e_{1}, e_{2} and e_{3} in $\pi_{a}(A)^{\prime \prime}$ (the weak closure of the image of A under the atomic representation) such that $e_{1}+e_{2}+e_{3}=1$ and

$$
\begin{aligned}
& \pi_{a}\left(\delta_{1}(b)\right) e_{1}=0, b \in D ; \pi_{a}\left(\delta_{2}(b)\right) e_{1} \neq 0, \text { some } b \in D \\
& \pi_{a}\left(\delta_{2}(b)\right) e_{2}=0, b \in D ; \pi_{a}\left(\delta_{1}(b)\right) e_{2} \neq 0, \text { some } b \in D \\
& \pi_{a}\left(\delta_{1}(b)\right) e_{3}=0, b \in D ; \pi_{a}\left(\delta_{2}(b)\right) e_{3}=0, b \in D .
\end{aligned}
$$

Proof. Expanding $\delta_{1} \delta_{2}(a b)$ twice, first using that $\delta_{1} \delta_{2}$ is a derivation, and secondly using that δ_{1} and δ_{2} are derivations, will lead to

$$
\delta_{1}(a) \delta_{2}(b)+\delta_{2}(a) \delta_{1}(b)=0
$$

for a and b in D. Substituting $a c$ for a yields

$$
\begin{equation*}
\delta_{1}(a) c \delta_{2}(b)+\delta_{2}(a) c \delta_{1}(b)=0 \tag{1}
\end{equation*}
$$

for a, b, and c in D. Now let π be the (reduced) atomic representation of A, that is

$$
\pi=\bigoplus_{t \in \hat{A}} \pi_{t} \text { on } H=\bigoplus_{t \in \hat{A}} H_{t}
$$

It is well known that π is faithful, and that

$$
\pi(A)^{\prime \prime}=\prod_{t \in \hat{A}} B\left(H_{t}\right)
$$

See e.g. [5] for more details. From (1) and the density of D in A we get

$$
\begin{equation*}
\left(\pi_{t} \delta_{1}(a)\right) c\left(\pi_{t} \delta_{2}(b)\right)+\left(\pi_{t} \delta(a)\right) c\left(\pi_{t} \delta_{1}(b)\right)=0 \tag{2}
\end{equation*}
$$

for a and b in D and c in $B\left(H_{t}\right)$. We will apply Theorem 1 of [2] to (2). If $\pi_{t} \delta_{1}(b)$ and $\pi_{t} \delta_{2}(b)$ are linearly independent for some b in D, then [2] give

$$
\pi_{t} \delta_{1}(a)=\pi_{t} \delta_{2}(a)=0
$$

for all a in D, a contradiction. Hence $\pi_{t} \delta_{1}(b)$ and $\pi_{t} \delta_{2}(b)$ are linearly dependent for all b in D. Now take b in D with $\pi_{t} \delta_{2}(b) \neq 0$ (if possible). Then

$$
\begin{equation*}
\pi_{t} \delta_{1}(b)=\lambda_{b} \pi_{t} \delta_{2}(b) \tag{3}
\end{equation*}
$$

for some complex number λ_{b}, a second application of [1] results in

$$
\begin{equation*}
\pi_{t} \delta_{1}(a)=-\lambda_{b} \pi_{t} \delta_{2}(a) \tag{4}
\end{equation*}
$$

for all a in D. Taking $a=b$ and comparing (3) and (4) yields $\lambda_{b}=0$; so that

$$
\pi_{t} \delta_{1}(a)=0
$$

for all a in D by (4). It is now easy to complete the proof.
Note we could replace the atomic representation by any faithful direct sum of disjoint irreducible representations as in [4]. Also we did not use that D is dense in A, but only that $\pi_{a}(D)$ is weakly dense in $\pi_{a}(A)^{\prime \prime}$.
3. Consequences. If γ is an operator on A with domain D, denote by γ^{a} the operator on $\pi_{a}(A)$ with domain $\pi_{a}(D)$ given by

$$
\gamma^{a}\left(\pi_{a}(b)\right)=\pi_{a}(\gamma(b))
$$

for b in D.

Corollary. $\delta_{1} \delta_{2}=0$ provided either (i) e_{1} is in $\pi_{a}(D)$; (ii) δ_{1}^{a} is (σ-weakly) closable and e_{1} is in the domain of the closure; or (iii) δ_{1}^{a} is σ-weakly closable derivation and the closure generate a σ-weakly continuous one-parameter group of automorphisms of $\pi_{a}(A)^{\prime \prime}$. By the closure of δ_{1}^{a}, we understand the closure of the restriction of δ_{1}^{a} to $\pi_{a}(D)$.

Proof. We will work entirely in the atomic representation, so let us drop the superscript designating this. First note that we can take b in the domain of the closure of δ_{1}, in the conclusions (that involve δ_{1}) of the theorem.
If $e_{1} \in D$, then

$$
\delta_{1} \delta_{2}(b)=\delta_{1}\left(e_{1} \delta_{2}(b)\right)=\delta_{1}\left(e_{1}\right) \delta_{2}(b)+e_{1} \delta_{1} \delta_{2}(b)
$$

for b in D. But both terms in this sum are zero by the theorem. This proves (i) and (ii). Now let us prove (iii). Let α denote the automorphism group generated by δ_{1}. Then

$$
\begin{equation*}
\alpha_{t}(a)=e_{2} \alpha_{t}(a)+\left(e_{1}+e_{3}\right) a \tag{5}
\end{equation*}
$$

for a in $\pi(A)^{\prime \prime}$, because it is true if a is analytic for δ_{1} by the usual series expansion of $\alpha_{t}(a)$, in fact

$$
\alpha_{t}(a)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \delta_{1}^{n}(a)=a+e_{2} \sum_{n=1}^{\infty} \frac{t^{n}}{n!} \delta_{1}^{n}(a)
$$

since $\delta_{1}(a)=e_{2} \delta_{1}(a)$. By (5) and the theorem

$$
\begin{equation*}
\alpha_{t} \delta_{2}(b)=e_{2} \alpha_{t} \delta_{2}(b)+e_{1} \delta_{2}(b) \tag{6}
\end{equation*}
$$

for b in $\pi(D)$, since $e_{3} \delta_{2}(b)=0$. Applying α_{-t} to (6) yields

$$
\begin{equation*}
\delta_{2}(b)=\alpha_{-t}\left(e_{2}\right) \delta_{2}(b)+\alpha_{-t}\left(e_{1} \delta_{2}(b)\right) \text { for } b \text { in } \pi(D) \tag{7}
\end{equation*}
$$

It is easy to see that the first term in (7) is zero, indeed take $a=e_{2}$ in (5) and get

$$
\alpha_{-t}\left(e_{2}\right) \delta_{2}(b)=e_{2} \alpha_{-t}\left(e_{2}\right) e_{1} \delta_{2}(b)=0
$$

since $\delta_{2}(b)=e_{1} \delta_{2}(b)$. Hence (7) reduces to

$$
\alpha_{t} \delta_{2}(b)=\delta_{2}(b)
$$

for $b \in \pi(D)$.
Acknowledgment. The author would like to thank Martin Mathieu for a fruitful conversation, and for preprints of [3] and [4].

References

1. O. Bratteli and D. W. Robinson, Operator algebras and quantum Statistical Mechanics I, SpringerVerlag, New York-Heidelberg-Berlin, 1979.
2. C K. Fong and A. R. Sourour, On the operator identity $\Sigma A_{k} X B_{k} \equiv 0$, Canad. J. Math. 31 (1979), 845-857.
3. M. Mathieu, Elementary operators on prime C^{*}-algebras, I, Math. Ann. (1989), in press.
4. ——, Properties of the product of two derivations of a C^{*}-algebra, Canad. Math. Bull. 32 (1989), 490-497.
5. G. K. Pedersen, C^{*}-algebras and their automorphism groups, Academic Press, London, 1979.
6. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.

Department of Mathematics
Wright State University
Dayton, Ohio 45435, USA

