A NOTE ON PROJECTIVE CAPACITY

H. ALEXANDER

Introduction. In [1] we defined a capacity in \mathbb{C}^n . Recently Molzon, Shiffman and Sibony [8] have introduced a different capacity which is useful for certain Bezout estimates. The object of this note is to apply the methods of [1] to study the capacity of [8]. We shall obtain an equivalent definition of this capacity via Tchebycheff polynomials, along the lines of [1]. Half of this equivalence was independently obtained by Sibony [9].

To establish the full equivalence of these two approaches to capacity a notion of Jensen measures in a setting more general than uniform algebras is needed. We shall consider Jensen measures for multiplicative semigroups; these are sets of functions in which only the multiplicative structure is postulated. It will also be useful to generalize the notion of polynomial hull in \mathbb{C}^n to a hull with respect to a multiplicative semigroup of polynomials. We can then adapt the approach of [1] to these semigroups.

It is central to know when a set has zero capacity. Molzon, Shiffman and Sibony [8] showed for their capacity, that if Σ is an irreducible closed subvariety of projective space (hence algebraic by Chow's theorem), then a compact subset of Σ which is not locally pluripolar has positive capacity. As an application of the equivalent definition of capacity we shall generalize this by replacing Σ with a local subvariety which of course need not be algebraic. Finally we give a very short proof of the fact that locally pluripolar implies zero capacity (in the sense of [1]); the original proof was inordinately long.

1. Jensen measures and \mathscr{S} **-hulls.** We shall be using the following notations: For a function f on a set X,

$$|| f ||_{x} = \sup\{| f(x)| : x \in X\},\$$

C(X) will denote the set of all continuous complex-valued functions on a space X, $C(\mathbf{R}, X)$ the real-valued functions. For z in $\mathbf{C}^n ||z||$ will be the Euclidian norm; for z and w in \mathbf{C}^n , $z \cdot w = \sum_{k=1}^{n} z_k w_k$.

Let \mathscr{S} be the set of all homogeneous polynomials in \mathbb{C}^n which split into linear factors. For n > 2 this is a proper subclass of the set of all

Received October 6, 1981 and in revised form December 15, 1981. This research was supported in part by a grant from the National Science Foundation.

homogeneous polynomials. For a compact set X in \mathbb{C}^n we define the \mathscr{S} -hull of X by

$$\mathscr{S}$$
-hull $(X) = \{z \in \mathbf{C}^n : |p(z)| \leq \|p\|_X \text{ for all } p \in \mathscr{S}\}.$

This is of course completely analogous to the polynomially convex hull where \mathscr{S} is replaced by the algebra of all polynomials. By convention we take \mathscr{S} to contain the constants. It is clear that (i) for X compact, \mathscr{S} -hull (X) is compact, (ii) for $\alpha \in \mathbb{C}^n$, α is in \mathscr{S} -hull (X) if and only if there is an M > 0 such that $|p(\alpha)| \leq M ||p||_X$ for each $p \in \mathscr{S}$ (by the usual argument of applying this to p^N) and (iii) $\hat{X} \subseteq \mathscr{S}$ -hull (X) where \hat{X} is the polynomially convex hull of X.

Let X be a compact Hausdorff space. We define $\mathscr{G} \subseteq C(X)$ to be a *multiplicative semi-group* (MSG) of continuous functions on X if it satisfies (a) $f, g \in \mathscr{G} \Rightarrow f \cdot g \in \mathscr{G}$ and (b) \mathscr{G} contains the constants. If Γ is a closed subset of X such that $||f||_X = ||f||_{\Gamma}$ for each $f \in \mathscr{G}$, then we say that Γ is a *boundary* for \mathscr{G} .

If \mathscr{A} is a uniform algebra on X with Shilov boundary Γ then \mathscr{A} itself and $\mathscr{G} = \{e^{f}: f \in \mathscr{A}\}$ are MSG's on X with boundary Γ . Our principal interest is in the MSG $\mathscr{G}X$, the restriction of \mathscr{G} to X, where X is a compact set in \mathbb{C}^{n} . If K is a compact set in \mathbb{C}^{n} and X is \mathscr{G} -hull (K) then $\mathscr{G}X$ is an MSG on X with boundary $K \subseteq X$. This example does not arise from a uniform algebra.

Our main interest in MSG's comes from the fact that they possess certain Jensen measures. Bishop showed in [3] that homomorphisms of uniform algebras can be represented by Jensen measures and in [1] this was extended to other functionals on uniform algebras. It turns out that Bishop's argument is true in even greater generality; namely, for MSG's. We shall later apply this fact to the MSG $\mathscr{G}X$ with $X = \mathscr{G}$ -hull (K).

For the reader's convenience we shall indicate the proof of the existence of Jensen measures for MSG's; it is merely an adaptation of Bishop's original argument for uniform algebras. A similar extension of Bishop's idea appears in [4].

THEOREM 1.1. Let \mathscr{S} be an MSG on a compact Hausdorff space X, $\Gamma \subseteq X$ a boundary and μ a probability measure on X. Then there exists a probability measure ν on Γ such that

 $\int \log |f| d\mu \leq \int \log |f| d\nu$

for all $f \in \mathscr{S}$.

Remark. We shall say that ν is a Jensen measure for μ .

Proof. Let

 $N = \{ u \in C(\mathbf{R}, \Gamma) : u < 0 \text{ on } \Gamma \}$

and set

$$K = \left\{ h \in C(\mathbf{R}, \Gamma) : \exists f \in \mathscr{S} \text{ such that} \right.$$

(a) $\int_{X} \log |f| d\mu \ge 0$ and (b) $rh > \log |f|$ on Γ for some $r > 0 \right\}$.

One checks that K is convex and, using the fact that Γ is a boundary for \mathscr{S} , that $K \cap N = \emptyset$. By the Hahn-Banach separation theorem, there exists a linear functional $L \in C(\mathbf{R}, \Gamma)^*$ with ||L|| = 1 such that

 $\sup\{L(h): h \in N\} = 0 = \inf\{L(h): h \in K\}.$

It follows that *L* can be represented by a probability measure ν on Γ .

Suppose $f \in \mathscr{S}$ with $\int \log |f| d\mu = 0$. Then if $h > \log |f|$ on Γ , we have $h \in K$ and so

 $\int h d\nu = L(h) \ge 0.$

Hence

 $\int \log |f| d\nu \ge 0.$

Now in general if $f \in \mathscr{S}$, let $c = \int \log |f| d\mu$ and apply this $e^{-c}f$ to get the theorem.

COROLLARY. Let X be compact in \mathbb{C}^n . Then for $\alpha \in \mathbb{C}^n$, $\alpha \in \mathscr{S}$ -hull(X) if and only if there exists a probability measure ν on X such that

 $\log |\beta \cdot \alpha| \leq \int \log |\beta \cdot \zeta| d\nu(\zeta) \text{ for all } \beta \neq 0 \text{ in } \mathbf{C}^n.$

2. Capacity. We shall consider several capacities for subsets of \mathbf{P}^{n-1} . Using the natural projection

$$\Pi: \mathbf{C}^n \setminus \{0\} \to \mathbf{P}^{n-1},$$

we shall identify subsets of \mathbf{P}^{n-1} with circled subsets of the unit sphere ∂B in \mathbf{C}^n ; namely, $E \subseteq \mathbf{P}^{n-1}$ will be identified with $\Pi^{-1}(E) \cap \partial B$.

First recall the definition of projective capacity [1] for compact sets K in \mathbf{P}^{n-1} ; we view K as a compact circled set in $\partial B \subseteq \mathbf{C}^n$. We say that a homogeneous polynomial f of degree k in \mathbf{C}^n is *normalized* if

 $\int \log |f| d\sigma = k \int \log |z_n| d\sigma$

where σ is unit surface volume on ∂B . Denote by \mathscr{P}_k the set of all normalized homogeneous polynomials of degree k in \mathbb{C}^n . Let

$$m_k = m_k(K) = \inf\{ \| f \|_{\mathcal{K}} : f \in \mathscr{P}_k \}.$$

Then the projective capacity of K is defined by $cap(K) = \lim m_k^{1/k}$.

Next we recall the definition of the capacity $\mathscr{C}(K)$, for K compact in \mathbf{P}^{n-1} , introduced by Molzon, Shiffman and Sibony [6]. For $\mu \in \mathfrak{M}(K)$ (= the set of probability measures on K), let

$$u_{\mu}(z) = \int \log(||z||/|z \cdot w|) d\mu(w)$$
 for $z \in \mathbb{C}^n$;

here K is a compact circled subset of ∂B . Then

$$\mathscr{C}(K) = \sup_{\mu \in \mathfrak{M}(K)} \frac{1}{\sup_{z \in \partial B} u_{\mu}(z)}.$$

For n > 2, $\mathscr{C}(K)$ and cap(K) are inequivalent capacities.

We now define a third capacity \mathscr{S} -cap(K) by using the elements of \mathscr{S} in the definition of cap in place of the \mathscr{P}_k . Namely let $\mathscr{S}_k = \mathscr{P}_k \cap \mathscr{S}$ and set

$$\mathscr{G}m_k(K) = \inf \{ \| f \|_K : f \in \mathscr{G}_k \}.$$

Define \mathscr{G} -cap $(K) = \lim (\mathscr{G}m_k(K))^{1/k}$. Then \mathscr{G} -cap is equivalent to \mathscr{C} in the following sense.

THEOREM 2.1. For $K \subseteq \mathbf{P}^{n-1}$,

$$A \cdot \mathscr{G}$$
-cap $(K) \leq \exp\left(\frac{-1}{\mathscr{C}(K)}\right) \leq \mathscr{G}$ -cap (K)

where $A = \exp(\int \log |z_1| d\sigma)$.

Remark. The definition of \mathscr{S} -cap was independently arrived at by Sibony [9] who obtained the second inequality of the theorem and also the relation cap $K \leq \mathscr{S}$ -cap (K) (which follows from $\mathscr{S}_k \subseteq \mathscr{P}_k$). He uses the fact, for $f \in \mathscr{P}_k$, that $f \in \mathscr{S}_k$ if and only if $f = \prod_{j=1}^k \alpha_j \cdot z$ where $\|\alpha_j\| = 1$.

For the proof of Theorem 2.1 we shall need the following.

THEOREM 2.2. Let K be a compact circled subset of ∂B in \mathbb{C}^n . Then \mathscr{G} -cap(K) > 0 if and only if \mathscr{G} -hull(K) contains a neighborhood of the origin. In particular,

 \mathscr{S} -hull $(K) \supseteq \{z : ||z|| \leq \mathscr{S}$ -cap $(K)\}.$

Remarks. This is directly analogous to the results of [1] where \mathscr{S} -cap and \mathscr{S} -hull are replaced by cap and polynomial hull respectively. Combining the last two theorems, we can assert that the following are equivalent for $K \subseteq \mathbf{P}^{n-1}$ compact: (i) $\mathscr{C}(K) > 0$, (ii) \mathscr{S} -cap(K) > 0and (iii) \mathscr{S} -hull(K) contains a neighborhood of the origin.

LEMMA 2.3. For K compact and circled in ∂B and $f \in \mathscr{S}_k$,

 $(\mathscr{G}\operatorname{-cap} K)^k \leq (\mathscr{G}m_k(K)) \leq ||f||_{\kappa}.$

Proof. As in [1], one shows that

$$\mathscr{G}\operatorname{-cap}(K) \equiv \lim(\mathscr{G}m_k(K))^{1/k} = \inf(\mathscr{G}m_k(K))^{1/k}.$$

Proof of Theorem 2.2. First suppose that \mathscr{S} -cap $(K) = \rho > 0$. Observe that for $z \in \mathbb{C}^n$, $z \in \mathscr{S}$ -hull(K) if and only if $|f(z)| \leq ||f||_{\kappa}$ for all $f \in \mathscr{S}_k$ for all k. Now if $f \in \mathscr{S}_k$, Lemma 2.3 gives

$$||f||_{\partial B} \leq 1 \leq ||f||_{\kappa}/\rho^{k}.$$

Hence

$$||f||_{\rho B} = \rho^{k} ||f||_{B} \leq ||f||_{K};$$

i.e., $\rho B \subseteq \mathscr{G}$ -hull(*K*).

Conversely if
$$\rho B \subseteq \mathscr{G}$$
-hull(K) for $\rho > 0$, we get for any $f \in \mathscr{G}_k$,

 $\rho^{k} \| f \|_{B} = \| f \|_{\rho B} \leq \| f \|_{\kappa}.$

Hence

cap
$$(\mathbf{P}^{n-1}) \leq ||f||_{B}^{1/k} \leq \frac{1}{\rho} ||f||_{K}^{1/k}.$$

This implies that \mathscr{G} -cap $(K) \ge \rho \cdot \operatorname{cap}(\mathbf{P}^{n-1}) > 0$.

Proof of Theorem 2.1. We shall first derive the second inequality. Let $\mu \in \mathfrak{M}(K)$ with $u_{\mu}(z) \leq q < \infty$ for all $z \neq 0$. Thus for $||\alpha|| = 1$,

 $\int \log |\alpha \cdot w| d\mu(w) = - u_{\mu}(\alpha) \ge -q.$

For $p \in \mathscr{S}_k$, since $p(w) = \Pi(\alpha_j \cdot w)$ with $||\alpha_j|| = 1$, we get

$$\log \|p\|_{\kappa} \ge \int \log |p|d\mu = \sum_{j=1}^{k} \int \log |\alpha_j \cdot w| d\mu(w) \ge -kq.$$

Hence $\|p\|_{\kappa^{1/k}} \ge e^{-q}$ and \mathscr{G} -cap $(K) \ge e^{-q}$. As 1/q can be chosen arbitrarily close to $\mathscr{C}(K)$, the second inequality follows.

Let $\rho = \mathscr{G}$ -cap(K), we may assume that ρ is strictly positive. Then by Theorem 2.2, \mathscr{G} -hull $(K) \supseteq \overline{B}\rho$. Now apply Theorem 1.1 on Jensen measure for the MSG $\mathscr{G}(X)$, where X is \mathscr{G} -hull(K), with boundary K. For the measure μ take unit surface measure on $\partial B_{\rho} \subseteq X$; namely

$$\int_{\partial B\rho} g d\mu = \int_{\partial B} g(\rho z) d\sigma(z)$$

Let ν be the associated Jensen measure on $K \subseteq \partial B$.

Now take z with ||z|| = 1. Viewing $P(z) \equiv z \cdot w$ as an element of \mathscr{S}_1 we have

$$\int \log |P| d\mu \leq \int \log |P| d\nu.$$

This yields

$$\log \rho + \int_{B} \log |z \cdot w| d\sigma(w) \leq \int \log |z \cdot w| d\nu.$$

The integral on the left is equal to $\log A \equiv \int \log |w_1| d\sigma(w)$. We get

$$\int \log \frac{\|z\|}{|z \cdot w|} d\nu(w) \leq -\log (A \cdot \rho).$$

This implies $\mathscr{C}(K) \geq -1/\log(A \cdot \rho) > 0$ which gives the first inequality of (2.1).

The capacity \mathscr{C} in some sense measures the size of a set of hyperplanes while cap measures complex lines. The next result reflects this fact. For $K \subseteq \mathbf{P}^{n-1}$ define

$$K^* = \{z \in \mathbf{P}^{n-1} : z \cdot w = 0 \text{ for some } w \in K\}$$

= $\bigcup \{H^w : w \in K\}$

where

 $H^w = \{z \in \mathbf{P}^{n-1} : z \cdot w = 0\}.$

PROPOSITION 2.4. If $\mathscr{C}(K) > 0$ then $\operatorname{cap}(K^*) > 0$.

Remark. The converse is false: take K to be a hyperplane. Then $K^* = \mathbf{P}^{n-1}$ but $\mathscr{C}(K) = 0$.

Proof. We view K as a subset of the unit sphere in \mathbb{C}^n . There exists a probability measure μ on K such that

$$\varphi(z) \equiv \int \log |z \cdot w| d\mu(w) \ge -M > -\infty$$
 for $||z|| = 1$.

Arguing by contradiction, suppose that $\operatorname{cap}(K^*) = 0$, so that K^* is locally pluripolar in \mathbf{P}^{n-1} . It follows that $\Pi^{-1}(K^*)$ is locally pluripolar in \mathbf{C}^n where $\Pi: \mathbf{C}^n \setminus \{0\} \to \mathbf{P}^{n-1}$ is the natural projection. Set $L = \{0\} \cup \Pi^{-1}(K^*)$.

Now for $z \in \mathbb{C}^n \setminus L$ and $w \in K(\subseteq \partial B)$ we have $z \cdot w \neq 0$. It follows that φ is a pluriharmonic function on $\mathbb{C}^n \setminus L$. Since φ is locally bounded above and below (except at the origin) and L is locally pluripolar, it follows that φ extends to be pluriharmonic on all of \mathbb{C}^n , the origin included since $n \geq 2$. But $\varphi(\lambda z) = \log |\lambda| + \varphi(z)$ implies $\varphi(z) \to -\infty$ as $z \to 0$. This is a contradiction.

COROLLARY. $\operatorname{cap}(K) > 0 \Rightarrow \mathscr{C}(K^*) > 0$. Proof. $\operatorname{cap}(K) > 0 \Rightarrow \mathscr{C}(K) > 0 \Rightarrow \operatorname{cap}(K^*) > 0 \Rightarrow \mathscr{C}(K^*) > 0$.

3. An application. The following is a version of the classical Hartogs lemma (see [6], p. 21).

LEMMA 3.1. Let Ω be a complex manifold and L a compact subset of Ω with non-empty interior L^0 . Let $\{\varphi_n\}_1^{\infty}$ be plurisubharmonic on Ω , uniformly bounded on compact subsets, with $\limsup \varphi_n \equiv -\infty$ on L. Then $\{\varphi_n\}$ converges uniformly to $-\infty$ on each compact subset of Ω .

Proof. Let $\varphi = \lim \sup \varphi_n$ and let φ^* be its upper semicontinuous regularization, which is known to be plurisubharmonic on Ω . Then $\varphi \equiv -\infty$ on L^0 implies $\varphi^* \equiv -\infty$ on L^0 and so $\varphi^* \equiv -\infty$ on Ω . Hence $\varphi \equiv -\infty$ on Ω and the conclusion now follows from the classical Hartogs lemma in \mathbb{C}^n .

LEMMA 3.2. Let Ω be a complex manifold, L a compact subset of Ω and K a compact subset of Ω which is not pluripolar. Then there exists an α , $0 < \alpha < 1$, such that

 $||f||_{L} \leq ||f||_{\kappa}^{\alpha} ||f||_{\Omega^{1-\alpha}}$

for all holomorphic functions f on Ω .

Remark. This generalizes the Three Regions Lemma of Bishop [3] where L and K are taken as the closures of open sets. Although we shall not need the converse, the validity of such inequalities characterizes non-locally pluripolar sets K in Ω . An alternate proof could be based on the work of Gamelin–Sibony [5]. Or one can consider the class \mathscr{F} of negative psh functions on Ω which are ≤ -1 on K. One shows that the uppersemicontinuous regularization of sup \mathscr{F} is again in \mathscr{F} and hence bounded from zero on L and then one applies the fact that an appropriate multiple of log |f| lies in \mathscr{F} .

Proof. By enlarging L we may suppose that L^0 is non-empty. We argue by contradiction and suppose that no such α exists. Then for n = 1, 2, ... there exist f_n holomorphic on Ω such that

- (i) $||f_n||_{\Omega} = 1$, and
- (ii) $||f_n||_L > ||f_n||_{\kappa^{1/n}}$.

Choose $c_n > 0$ so that

 $\max_L c_n \log |f_n| = -1,$

and set $\varphi_n = c_n \log |f_n|$. Then φ_n is plurisubharmonic on Ω , $\varphi_n < 0$, and

(iii) $\max_L \varphi_n = -1$.

Put $\varphi = \limsup \varphi_n$ on Ω . By (ii) and (iii), $\varphi_n < -n$ on K and so $\varphi \equiv -\infty$ on K. We claim that φ is not $\equiv -\infty$ on L. Otherwise, by the Hartogs Lemma 3.1, φ_n would converge uniformly to $-\infty$ on L, contradicting (iii). Hence we can choose $z_0 \in L$ and $q \neq -\infty$ and

 $n_j \ge j$ for $j = 1, 2, \ldots$ such that $\varphi_{n_j}(z_0) > q$ for each j. Now set

$$\psi = \sum_{1}^{\infty} \frac{1}{j^2} \varphi_{n_j};$$

 ψ is plurisubharmonic (as a decreasing sequence of psh functions). We have $\psi(z_0) \neq -\infty$ and $\psi \equiv -\infty$ on K, contradicting the assumption that K is not pluripolar. This proves the lemma.

THEOREM 3.3. Let Σ be an irreducible local subvariety of \mathbf{P}^{n-1} which is not contained in a hyperplane and let E be a compact subset of Σ which is not a locally pluripolar subset of Σ . Then $\mathscr{C}(E) > 0$.

Remarks. Molzon, Shiffman and Sibony proved this in the case when Σ is a global (closed) subvariety of \mathbf{P}^{n-1} (hence algebraic by Chow's theorem). Theorem 3.3 also contains another of their results; namely, if γ is a non-degenerate real analytic arc imbedded in \mathbf{P}^{n-1} , then $\mathscr{C}(\gamma) > 0$. In fact, γ is then a non-locally polar set in the holomorphic curve Σ obtained by extending the imbedding map for γ from the real axis to a domain in the complex plane.

We shall apply the following fact which will be proved below.

LEMMA 3.4. With Σ as in Theorem 3.3, let $F \subseteq \Sigma$ be a closed ball in some local coordinates. Then $\mathscr{C}(F) > 0$.

Proof of Theorem 3.3. We may assume that Σ is a local submanifold of \mathbf{P}^{n-1} (since *E* could not be contained in the singular set of Σ). With $\Pi: \mathbf{C}^n \setminus \mathbf{0} \to \mathbf{P}^{n-1}$ the natural projection, let Ω be the complex manifold

$$\Pi^{-1}(\Sigma) \cap \{z \in \mathbf{C}^n \colon 1/2 < \|z\| < 2\}$$

and let

 $K = \Pi^{-1}(E) \cap \partial B \subseteq \Omega.$

It is straightforward to deduce that K is not locally pluripolar in Ω from the fact that E is not locally pluripolar in Σ (cf. [8], Lemma 2.5).

Choose a compact set $F \subseteq \Sigma$ which is a ball in local coordinates and let $L = \Pi^{-1}(F) \cap \partial B \subseteq \Omega$. By Lemma 3.4, $\mathscr{C}(L) > 0$. By Lemma 3.2, there exists α , $0 < \alpha < 1$, such that

(*) $|| f ||_{L} \leq || f ||_{\kappa}^{\alpha} || f ||_{\Omega}^{1-\alpha}$

for all f holomorphic on Ω .

Arguing by contradiction we suppose that $\mathscr{C}(K) = 0$. Then, by Theorem 2.1, \mathscr{S} -cap(K) = 0 and so there exists a sequence $\{f_k\}$ with $f_k \in \mathscr{S}_k$ such that $||f_k||_{K}^{1/k} \to 0$. Since ||z|| < 2 for $z \in \Omega$ we have

$$\|f_k\|_{\Omega} \leq 2^k \|f_k\|_B \leq 2^k.$$

Thus, taking a kth root in (*) gives

$$||f_k||_L^{1/k} \leq (||f_k||_{\kappa}^{1/k})^{\alpha} 2^{1-\alpha}.$$

This implies that $||f_k||_{L^{1/k}} \to 0$; i.e., \mathscr{S} -cap(L) = 0. Hence, by Theorem 2.1, $\mathscr{C}(L) = 0$, a contradiction.

Proof of Lemma 3.4. This can be deduced from the work of Molzon, Shiffman and Sibony [8] but we shall give a direct proof based on the following elementary lemma.

LEMMA 3.5. Let $\varphi_1, \varphi_2, \ldots, \varphi_n$ be holomorphic functions on the closed unit ball B in \mathbb{C}^s . Suppose that $\{\varphi_k\}_1^n$ are linearly independent over \mathbb{C} . Then there exists a real constant C such that

$$\int_{B} \log \left| \sum_{k=1}^{n} z_{k} \varphi_{k}(\zeta) \right| d\lambda(\zeta) \geq \log ||z|| - C$$

where $d\lambda$ is unit volume on $B \subseteq \mathbf{C}^s$.

Proof. Without loss of generality we may assume that $\sum \|\varphi_k\|_{B^2} \leq 1$ and hence that

 $|\sum z_k \varphi_k(\zeta)| \leq ||z||$ for $\zeta \in B$.

Then there exists A > 1 such that

$$(*) \qquad \int_{B} \log \left(\frac{\left| \sum_{k=1}^{n} z_{k} \varphi_{k}(\zeta) \right|}{\|z\|} \right) d\lambda(\zeta) \geq A \cdot \sup_{||\zeta|| \leq 1/2} \log \left(\frac{\left| \sum_{k=1}^{n} z_{k} \varphi_{k}(\zeta) \right|}{\|z\|} \right)$$

for $z \neq 0$. In fact Jensen's inequality is the case with $\zeta = 0$ in the quotient on the right hand side, with the sup deleted and with A = 1; (*) follows from this by applying automorphisms of the ball which move the origin, using the negativity of the integrand. We get

$$(**) \quad \int_{B} \log \left| \sum z_{k} \varphi_{k}(\zeta) \right| d\lambda \ge A \log |||z||| - (A - 1) \log ||z||$$

where

$$|||z||| \equiv \sup \{ |\sum z_k \varphi_k(\zeta)| : ||\zeta|| \leq \frac{1}{2} \}.$$

The assumption of linear independence implies that $|||z||| \neq 0$ for $z \neq 0$. It follows easily that $||| \cdot |||$ is a norm for \mathbb{C}^n and since these are all equivalent, we have D > 0 such that $|||z||| \ge D||z||$. Thus the right hand side of (**) dominates

$$\log \|z\| + A \log D.$$

This gives Lemma 3.5.

Now Lemma 3.4 follows easily. Let μ be the probability measure on F which is induced from the unit volume measure λ on the ball B in \mathbb{C}^s by the local coordinates on Σ . With $\zeta_1, \zeta_2, \ldots, \zeta_n$ the homogeneous global projective coordinates on \mathbb{P}^{n-1} (we may assume that $\zeta_n \neq 0$ on F) let ψ_k , $1 \leq k \leq n$, be the holomorphic function on B which correspond to ζ_k/ζ_n on F. From the fact that Σ does not lie in a hyperplane in \mathbb{P}^{n-1} it follows that $\{\varphi_k\}_1^n$ are linearly independent in B. Now Lemma 3.5 transplanted back to F yields

 $\int \log(|z \cdot \zeta| / \|\zeta\|) d\mu(\zeta) \ge \log \|z\| - C$

for some C; i.e., $\mathscr{C}(F) > 0$.

4. Zero capacity and locally pluripolar sets. We shall end with short proofs of Theorems 6.4 and 6.7 of [1]. The original proof of the latter involved a complicated application of a proposition of Josefson [7]. It is much simpler to apply the basic theorem of Josefson that locally polar in \mathbb{C}^n implies globally polar; a nice proof of this, based on their theory of the Monge-Ampere operator, has recently been given by Bedford and Taylor [2].

THEOREM 4.1. Let $K \subseteq \mathbf{P}^{n-1}$ be a compact locally pluripolar set. Then $\operatorname{cap}(K) = 0$.

Proof. Let $\Pi: \mathbb{C}^n \setminus \{0\} \to \mathbb{P}^{n-1}$ be the natural projection. The fact that K is locally pluripolar in \mathbb{P}^{n-1} implies that $\Pi^{-1}(K)$ is locally pluripolar in \mathbb{C}^n and hence globally polar in \mathbb{C}^n . Say $\Pi^{-1}(K) \subseteq \{\varphi = -\infty\}$ with φ psh on \mathbb{C}^n , $\varphi \not\equiv -\infty$. Let $E = \Pi^{-1}(K) \cap \partial B$. We want to show that $\operatorname{cap}(E) = 0$. It suffices by [1] to show that \hat{E} does not contain a neighborhood of the origin. Suppose otherwise, that $\hat{E} \supseteq B_{\delta}$. Then, as the polynomial hull agrees with the psh hull (see [6], p. 91), we have

 $\sup_{B_{\delta}}\varphi \leq \sup_{E}\varphi = -\infty.$

Therefore $\varphi = -\infty$ on B_{δ} and hence on \mathbb{C}^n , a contradiction.

THEOREM 4.2. Let L be a compact non-locally pluripolar subset of \mathbf{P}^{n-1} or, more generally, let K be a non-locally pluripolar subset of an irreducible subvariety Σ of \mathbf{P}^{n-1} . (In the first case take Σ to be \mathbf{P}^{n-1} .) Then \hat{K} contains a neighborhood of 0 in $\Pi^{-1}(\Sigma) \cup \{0\} \subseteq \mathbf{C}^n$.

Remark. The general case was obtained in [8] as a consequence of the case $\Sigma = \mathbf{P}^{n-1}$ which is Theorem 6.4 of [1]. The following proof shows that it is a direct consequence of Lemma 3.2 and the method of [1].

Proof. We view K as a circled subset of ∂B which (as noted in the proof of Theorem 3.3) is non-locally polar in

 $\Omega \equiv (\Pi^{-1}(\Sigma) \cup \{0\}) \cap B_2.$

Take $L = \Omega \cap B_1$ in Lemma 3.2 to get

$$\|f\|_{B_1 \cap \Omega} \leq \|f\|_{\kappa}^{\alpha} \|f\|_{\Omega}^{1-\alpha}$$

for f holomorphic on Ω . Apply this to a homogeneous polynomial f of degree k to get

$$||f||_{B_1 \cap \Omega} \leq ||f||_{\kappa^{\alpha}} (2^k ||f||_{B_1 \cap \Omega})^{1-\alpha}.$$

Hence

(*)
$$||f||_{B_1 \cap \Omega} \leq \frac{1}{\rho^k} ||f||_K$$

for $\rho = 1/2^{(1/\alpha-1)}$. Now, by the argument of [1] Section 4, (*) implies $\hat{K} \supseteq B_{\rho} \cap \Omega$, as claimed.

References

- H. Alexander, *Projective capacity*, Conference on Several Complex Variables, Ann. Math. Studies 100 (1981), 3–27 (Princeton University Press).
- 2. E. Bedford and B. A. Taylor, Some potential theoretic properties of plurisubharmonic functions, preprint.
- 3. E. Bishop, Holomorphic completions, analytic continuations, and the interpolation of seminorms, Ann. Math. 78 (1963), 468-500.
- 4. D. Edwards, Choquet boundary theory for certain spaces of lower semicontinuous functions, Function Algebras (Scott, Foresman and Co., 1966), 300-309.
- 5. T. Gamelin and N. Sibony, Subharmonicity for uniform algebras, J. of Functional Analysis 35 (1980), 64-108.
- 6. L. Hormander, An introduction to complex analysis in several complex variables (Van Nostrand, 1966).
- 7. B. Josefson, On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on Cⁿ, Arkiv for Math. 16 (1978), 109-115.
- 8. R. Molzon, B. Shiffman and N. Sibony, Average growth estimates for hyperplane sections of entire analytic sets, Math. Ann. 257 (1981), 43-59.
- 9. N. Sibony, Une capacité projective lieé a la croissance des ensembles analytiques, preprint.

University of Illinois, Chicago, Illinois