
2 Node Domain Processing

Before developing a frequency representation for graph signals (Chapter 3), in this chap-
ter we introduce tools to process graph signals in the node (or vertex) domain. Node-
centric processing is a natural choice for graph signals, allowing us to process data at
each node on the basis of information from its neighbors. In particular, this will be a
useful tool to infer local information within a large graph or to split processing across
multiple processors. This chapter will continue building on the idea of variation intro-
duced in Chapter 1. We start by introducing several basic definitions. Next, we discuss
more formally the notion of graph locality (Section 2.2) and introduce algebraic repre-
sentations of graphs (Section 2.3) and how these can be used for processing by intro-
ducing graph filters (Section 2.4). Finally, we develop a more formal understanding of
graph signals based on a chosen fundamental graph operator (Section 2.5).

2.1 Basic De�nitions

In this book we focus on simple graphs1 with at most one edge between any two ver-
tices, but we study both undirected and directed graphs.

Definition 2.1 (Graph) A graph G(V,E) is defined by a set of nodes V =

{v1, v2, . . . , vN} and a set of edges E = {e1, e2, . . . , eM}. A directed edge i j in E
goes from node v j to node vi (see below for a discussion of this convention).

If edge i j can take any real positive weight ai j then the graph is weighted.
Unweighted graphs have edges with weights all equal to 1. In both cases, if the
edge i j does not exist then ai j = 0. If ji exists whenever i j exists and ai j = a ji

then the graph is undirected. Otherwise the graph is a directed graph (also called
a digraph): i j and ji may both exist, but in general ai j , a ji.

Directed graph convention For directed graphs we adopt the same convention as
in [15]: ai j is non-zero if there exists an edge from v j to vi, which will be denoted by
an arrow from j to i (see Figure 1.2). We make this choice so that arrows in the graph
are consistent with the flow of information as reflected by the corresponding matrix
operations (see Section 2.3). If ai j , 0, but a ji = 0, then observations at vi will directly
depend on observations at v j, but not the other way around. In the example of Figure 1.2,

1 Hypergraphs are defined as graphs where there can be multiple edges between any two nodes.
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30 Node Domain Processing

the traffic at node B directly depends on the traffic at node A, but the link between the
traffic at A and the traffic at B is not direct. Therefore, on the graph there is an arrow
from A to B but not from B to A.

Paths and cycles Paths and cycles (Section 1.3) are important graphs that allow us
to make a link with conventional signal processing. A path is a simple graph where
two nodes are adjacent if and only if they are consecutive in a list (see Figure 1.8 for
an example). A cycle is a simple graph with an equal number of nodes and edges, and
where two nodes are adjacent if and only if they appear consecutively along a circle.
Alternatively, we can think of a cycle graph as a path graph with N nodes, to which an
edge from vN to v1 has been added (see Figure 1.9).

Complement graph Given an unweighted graphG, its complementGc is a graph with
the same nodes but with connections only between nodes that were not connected in the
original graph; this means that a signal with low variation in G will have high variation
in Gc (see Chapter 3).

Definition 2.2 (Complement) The complement of an unweighted graphGwith-
out self-loops is a graph Gc with same node set V but with edge set Ec, the com-
plement of E in the set of possible edges, i.e., an edge i j ∈ Ec if and only if i j < E.
The set of all possible edges corresponds to all the edges in a complete graph.

Self-loops In some cases we use graphs with self-loops or node weights, i.e., edges
going from vi to vi. Edge weights quantify the similarity between nodes. Since nodes
should be maximally similar to themselves, self-loops can be interpreted by considering
their weight relative to the weight of the other edges (see Section 3.2.2).

Node neighborhood We will define locality in a graph (Section 2.2.2) on the basis
of how the nodes are connected. To do so we define the neighborhood of a node.

Definition 2.3 (Node neighborhood) In an undirected graph, if vi and v j are
endpoints of an edge, we say these nodes are one-hop neighbors or simply neigh-
bors. We denote by N(i) the set of neighbors of vi and, by the definition of an
undirected graph, if v j ∈ N(i) then vi ∈ N( j).

In a directed graph, we define in-neighbors and out-neighbors. If i j is a di-
rected edge from v j to vi then vi is an out-neighbor of v j, while v j is an in-neighbor
of vi.

In Figure 1.2, A is an in-neighbor of B, while B is an out-neighbor of A.

Node degree, regularity and sparsity Graphs can be characterized by the number
of neighbors that each node has (for an unweighted undirected graph this is the same as
the node degree), by how much this quantity changes between nodes (the regularity of
the graph), and by how it relates to the number of nodes (the density or sparsity).
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Definition 2.4 (Node degree) The degree di of node vi is the total weight of the
edges connecting to this node. For an undirected graph this is

di =
∑

j

ai j.

For unweighted undirected graphs, di is the number of neighbors of node i. For a
directed graph we can define in-degrees and out-degrees:

din
i =

N∑
j=1

ai j, dout
i =

N∑
j=1

a ji,

which correspond to the weights of all the edges that end or that start at i, respec-
tively.

In a directed graph, a node i with din
i = 0 and dout

i , 0 is a source, while din
i , 0 and

dout
i = 0 corresponds to a sink.
A graph is regular if all its nodes have the same degree. The cycle graph in Figure 1.9

is exactly regular, with all nodes having degree 2, while the path graph in Figure 1.8 is
nearly regular (two of its nodes have degree 1, the others have degree 2). Likewise the
grid graph Figure 1.10 is not regular; most nodes have degree 4, while the nodes along
the sides and at the corners have degrees 3 and 2, respectively. None of the other graphs
from Chapter 1 is exactly regular. A graph with N nodes is dense if the number of edges
for most nodes is close to N, and sparse if the number of edges for any node is much
smaller than N.

Most graphs encountered in practice are not exactly regular. In this book, we will
often use the terms regularity and sparsity qualitatively. For example, we may say that
a graph is more regular than another if it shows less variation in its degree distribution.
Similarly, if a graph is “nearly regular,” its corresponding frequency definitions are more
likely to resemble those used for conventional signals.

Subgraphs Subgraphs of a given graph contain a subset of nodes and edges and are
important in the context of graph signal processing.

Definition 2.5 (Subgraph) Given a graph G(V,E) a subgraph G1(V1,E1) of G
is such that V1 ⊂ V and E1 ⊂ E, that is, if a, b ∈ V1 and ab ∈ E1 then we must
have that ab ∈ E.

There are several scenarios where using a subgraph can be preferable to using the
original graph. A subgraph that contains all the nodes in the original graph but only
some of the edges leads to lower-complexity graph operations, and may have favorable
properties (e.g., it may be bipartite). A graph with fewer nodes and edges can be used
to replace the original graph signal with a lower-resolution approximation, as part of a
multiresolution representation. This can be particularly useful for datasets such as 3D
point clouds, where the nodes can number in the millions.
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32 Node Domain Processing

Figure 2.1 This graph consists of two
components that are each connected. The
corresponding subgraphs are not connected
with each other.

Graph signals We have defined graph signals as data associated with a graph, e.g.,
measurements in a sensor network or information associated with users in an online
social network (see examples in Chapter 1). More formally:

Definition 2.6 (Graph signal) A graph signal x is a real vector, x ∈ RN , where
the entry x(v), ∀v ∈ V, is the real scalar associated with node v. Unless otherwise
stated we will consider only real graph signals, but extensions to complex and
vector valued signals are also possible.

Recall that a graph signal, x, can only be interpreted with respect to a specific graph
(see Section 1.1.2). Therefore signal smoothness is related to graph locality (see Sec-
tion 2.2), which depends on the graph topology. In particular, the same signal x will
have different interpretations on a graph G(V,E) and on a subgraph G1(V,E1) of G,
where some edges are no longer included.

Box 2.1 Node indexing does not affect graph signal processing

The indexing of nodes on a graph is not important, as all the relevant information
is captured by the connections between nodes (i.e., the set of edges). If vi and v j

are connected and their indices are changed to v′i and v′j, respectively, then the new
edge set E′ will contain v′iv

′
j. Likewise, given a matrix representation for a graph (as

described in Section 2.3), changing the indices corresponds to a permutation of the
rows and columns of the matrix.

Connected graphs An undirected graph is connected if any node can be reached
through a path from any other node. For directed graphs we consider two definitions.
A graph is strongly connected if there is at least one directed path from any node to
any other node; the path can have multiple hops. Note that graphs containing sinks
or sources cannot be strongly connected, since no node is reachable from a sink, and
a source cannot be reached from any node. A directed graph is weakly connected if
we can build a connected undirected graph with the same nodes and where each edge
connects two nodes if at least one directed edge existed between those two nodes in the
original graph. Note that a strongly connected graph is always weakly connected, but
the reverse is not true.
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Connected components From a graph signal processing perspective, a graph with
two connected components (i.e., two components that are internally connected but not
connected to each other, as in Figure 2.1) can be viewed as two separate or independent
graphs.

Box 2.2 A graph with two connected components is equivalent to two indepen-
dent graphs

Without loss of generality we can assume that all graphs are connected. This is so
because, in practice, a graph with two separately connected components that have
no edges linking the components can be treated as two independent graphs. To see
why, note that if a graph is disconnected it can be divided into two sets of nodes
V1 and V2, with no edges connecting those two sets, as shown in the example of
Figure 2.1. Since our definitions of variation and smoothness are based on signal
changes across edges, it is clear that differences between values in V1 and V2 do
not affect variation. Examples of disconnected graphs are as follows:

• two sets of sensors, V1, V2, that are sufficiently far apart that data measured by
sensors inV1 is not correlated with measurements inV2;

• a social network, where no user inV1 has a connection to any user inV2;
• graphs learned from data under probabilistic models (see Section 6.3 and Box 6.4)

where the lack of connection between nodes can be interpreted as conditional
independence.

If a directed graph is not weakly connected then each of the connected components
can be considered as a separate graph, following the arguments laid out in Box 2.2.
However, if a graph is weakly connected this does not guarantee that a meaningful
interpretation of graph signals exists. For example, the signal value of a source node is
not affected by any other node, since there are no incoming edges, while the signal at a
sink node has no effect on any other nodes, since there are no outgoing edges.

Keeping in mind that strong connectedness is indeed a much stricter condition, which
may not be easily met by graphs of interest, the question of interpreting graph signals
and their frequencies for the directed-graph case remains open. Indeed, in Section 2.5.4
and Example 2.9 we will see how graphs that are not strongly connected can lead to
graph operators for which some important properties do not hold.

2.2 Locality

We motivate the importance of “local” processing (Section 2.2.1), define locality in
the context of graphs (Section 2.2.2), and introduce elementary local operations (Sec-
tion 2.2.3) that will serve as the basis for more complex local operations. Efficient dis-
tributed processing typically requires partitioning a graph so that each set of nodes is
processed separately. We discuss two graph partitioning problems. Identifying clusters
and cuts (Section 2.2.4) aims at grouping together nodes that are close. In contrast, sam-
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one-hopthree-hop two-hop

Figure 2.2 Example of locality on a
graph. Each set contains neighbors of the
gray node on the right. The one-hop,
two-hop and three-hop neighborhoods of
that node are shown.

pling and coloring (Section 2.2.5) assigns different labels to neighboring nodes, so that
no connected nodes share the same label.

2.2.1 Importance of Locality

Localized methods are widely used for processing conventional signals such as audio,
images or video. In audio coding, consecutive samples are grouped into windows and
processed separately, so that the coding parameters adapt to local audio content, leading
to increased coding efficiency. Similarly, most image and video coding systems divide
images into non-overlapping blocks, so that each block (e.g., 8×8 pixels) is compressed
separately, adapting to local image properties. Local processing is also useful for graph
signals, since there are differences in behavior across the graph (e.g., separate areas
monitored by a sensor network or different social groups in a social network).

A further benefit of local processing is computational efficiency. For audio process-
ing, we can segment the signal into non-overlapping windows and encode the signal “on
the fly,” without having to wait for all of it to be available. Local operations make it easy
to parallelize the processing: a large image can be divided into several sub-images, each
of which can be assigned to a different processor. Similarly, a large graph can be split
into subgraphs so that processing can be accomplished via distributed computations
across multiple processors.

2.2.2 What Do We Mean by Local Graph Processing?

The notion of proximity can be generalized by extending Definition 2.3, corresponding
to a one-hop neighborhood, and introducing the idea of a k-hop neighborhood.

Definition 2.7 (k-hop neighborhood) Given a node vi, its k-hop neighborhood,
Nk(i), is the set of all nodes that are part of a path with no more than k edges
starting or ending at vi.

In a k-hop neighborhood (Figure 2.2), for small enough k, “local” processing is possi-
ble, involving only a node and its closest neighbors. For example, in a social network, a
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2.2 Locality 35

two-hop neighborhood represents an extended circle of contacts, those we know directly
and those to whom we could be introduced via one of our direct contacts.

When is a k-hop neighborhood truly local? To put locality in perspective, we can
ask how small k should be for processing on a k-hop neighborhood to be considered
local. This can be done by comparing the number of k-hop neighbors |Nk(i)| of node i
with the size of the graph. If |Nk(i)| � N then processing in a k-hop neighborhood of i
can be considered to be local. Alternative methods to quantify locality require defining
the distance between nodes.

For an undirected and unweighted graph, the geodesic distance between two nodes
is the length, in number of hops, of the shortest path between the two nodes. This idea
can be extended to weighted graphs by assuming that the edge weights are a measure
of node similarity; distance is then obtained as the reciprocal of similarity.2 Thus, we
can define the geodesic distance between any two nodes i and j in a connected graph as
follows.

Definition 2.8 (Geodesic distance) If i, j are connected, ai j , 0, define distance
as di j = 1/ai j, with greater similarity implying shorter distance. If i, j are not
directly connected, let pi j = {i, j1, j2, . . . , jk} be a path connecting i and j. Then
the geodesic distance between i and j is the minimum over all possible paths:

d(i, j) = min
p(i, j)

(
1

ai j1
+

1
a j1 j2

+ · · · +
1

a jk j

)
.

In an unweighted graph ai j ∈ {0, 1}, so that d(i, j) is indeed the length (in number
of hops) of the shortest path between i and j.

Note that geodesic distances are dependent on the graph structure. First, as illustrated
in Example 1.3 the geodesic distance may not be symmetric, if the graph is directed.
Second, the geodesic distance changes if the graph structure changes (e.g., the edge
weights change). Thus if any of the edge weights along p(i, j) does change, the distance
following that path will change and p(i, j) may no longer be the shortest path.

Definition 2.9 (Radius and diameter of a graph) For an arbitrary node vi in a
connected graph G, define Di = max j di j, the distance from vi to the node farthest
from vi. In an unweighted and undirected graph, Di is the maximum number of
hops that can be taken away from vi. The diameter and radius of the graph, d(G)
and r(G), respectively, are:

d(G) = max
i

Di and r(G) = min
i

Di.

Intuitively, we expect d(G) and r(G) to be related to the graph’s regularity. For in-
stance, in the regular cycle graph of Figure 1.9, it is easy to see that r(G) = d(G) = 4.

2 In this setting, similarity is given and distance is derived from it, but in other cases the distance between
nodes is already well defined (e.g., when the nodes correspond to sensors deployed in the environment).

https://doi.org/10.1017/9781108552349.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552349.005
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For an unweighted graph, radius and diameter are defined in terms of numbers of
hops, so that we can define locality based on the following remark.

Remark 2.1 A k-hop localized node domain operation can only be considered
truly “local” if k is significantly smaller than r(G).

As an example, consider carrying out processing on a k-hop neighborhood for k ≥ r(G).
This would imply that, for at least some nodes in G, a k-hop operation would include
all the nodes, which can hardly be described as local.

For a weighted graph it may be sufficient to compute the radius or diameter of the
corresponding unweighted graph, i.e., the graph with the same topology as the origi-
nal weighted graph but where all non-zero edge weights have been set to 1. But it is
also important to distinguish between locality based strictly on connectivity and the lo-
calization implied by similarity. For example, let j be a node in a weighted graph that
is exactly k hops away from i. If its similarity, 1/di j, is very small, then its effect on
a processing operation at i will be low in general. Thus, if all nodes that are k hops
away have low similarity, we can view a k-hop operation as being nearly as localized
as a (k − 1)-hop operation. The topic of localization will be studied in more detail in
Section 5.1.

2.2.3 Node-Centric Local Processing

Graph processing can be viewed as a series of node-centric operations. Consider a sim-
ple one-hop averaging operation:

y(i) =
1
di

∑
j∈N(i)

ai jx( j), (2.1)

where di is the degree of node i and x(i), y(i) denote the ith entries of x and y respectively.
This operation takes an input signal x and produces an output y, where the ith entry is
the average value of the neighbors of node i.

Computing the output y(i) requires access to data from only the one-hop neighbors
of i, N(i), which shows that this computation is local on the graph. Moreover, (2.1) is
a simple forward operation, where the values in x are not modified, so that the outputs
y(i) can be computed in any order, without affecting the result. For example, we can
compute y(i) for i ∈ 1, . . . ,N in increasing index order. Since labels associated with
nodes are arbitrary (Box 2.1), this ordering (node 1, then 2, 3 etc.) does not necessarily
have advantages for processing. This is in contrast with path or grid graphs (see Fig-
ure 1.8 or Figure 1.10), for which some natural ordering of nodes exists, e.g., sequential
traversal, passing all nodes, from one end-point to the other end-point for a path graph.
The following example illustrates further how computation efficiency is closely related
to graph structure.

Example 2.1 For the computation of (2.1) assume that the graph is too large to store
the weights ai j and x, y in the processor memory. Then, the input signal x has to be
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Figure 2.3 Example of clustering.
Loosely speaking, for any node in
a cluster, the number of
connections within the cluster is
much greater than connections to
nodes outside the cluster. The
graph cut is the set of edges which
if removed would disconnect the
two clusters. In this case only one
edge forms the cut.

divided into two smaller signals x1 and x2, associated with a partitioning ofV into two
sets of nodes, V1 and V2, such that V1 ∪ V2 = V and V1 ∩ V2 = ∅. Then x1 and
x2, along with information about the neigborhoods and weights of nodes in each set,
are assigned to different processors that can operate in parallel. Assuming that the two
subsets are required to have approximately the same size, what would be a good choice
forV1 andV2?

Solution

Assume thatV1 andV2 are chosen and the corresponding x1 and x2 have been loaded
into the respective processors. The processing of x1 can be completed for all nodes in
V1, except for those nodes in V1 having a neighbor in V2. If j ∈ V2 and j ∈ N(i)
for i ∈ V1 then the two processors have to exchange data to complete the computation.
Thus, to reduce this communication overhead, we should choose V1 and V2 so as to
minimize the number of edges betweenV1 andV2.

A general version of the solution of Example 2.1 requires dividing the original graph
into multiple subgraphs, while minimizing the number of edges between nodes assigned
to different subgraphs. The problem of dividing a graph into subgraphs in such a way
that the connections across subgraphs (graph cuts) meet some conditions is studied next.

2.2.4 Clustering and Graph Cuts

A favorable grouping for distributed processing (Example 2.1) leads to subgraphs that
are not strongly connected to each other, as illustrated in Figure 2.3. If V1 and V2 are
the respective node sets in the two subgraphs, then the nodes in V1 will have most of
their neighbors inV1, and we can say that the nodes inV1 (andV2) form a cluster.

More formally, assume that we wish to identify L ≥ 2 clusters. A specific solution
can be described by assigning a label l ∈ {1, . . . , L} to each node. Denote by l(i) the
label assigned to node i. Because the idea of clustering is to group neighbors together,
it is natural to define the elementary cost of the labeling needed between two nodes as

ci j = ai j I(l(i) , l( j)),

https://doi.org/10.1017/9781108552349.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552349.005


38 Node Domain Processing

where ai j is the edge weight and I(l(i) , l( j)) is an indicator function: I (l(i) , l( j)) = 1
if l(i) , l( j) (i and j are in different clusters) and I(l(i) , l( j)) = 0 if l(i) = l( j) (i and j
are in the same cluster). The contribution to the overall cost is zero if two nodes are not
connected (ai j = 0). This allows us to define the clustering problem.

Definition 2.10 (Clustering) For L ≥ 2, the L-class clustering problem consists
of selecting labels l(i) ∈ {1, . . . , L} for each node i in a graph in such a way as to
minimize the cost,

C =
∑
i∼ j

ci j =
∑
i∼ j

ai jI(l(i) , l( j)), (2.2)

where the summation is over all pairs of connected nodes (denoted by i ∼ j).
Variations of this problem may require the size of the clusters to be similar.

This is an NP-complete problem for which spectral techniques (Section 7.5.2) can
provide efficient approximations. Clearly, the cost (2.2) can be made zero for a graph
with exactly L connected components: in that case we assign each label to one of the
connected components and there will be no connections between nodes having different
labels. But, as discussed in Box 2.2, when we have multiple connected components we
need to consider each of them as distinct graphs.

Graph cuts The problem of clustering can be related to the problem of finding a graph
cut, where instead of grouping nodes we select edges.

Definition 2.11 (Graph cut) A graph cut is a set of edges Ec ⊂ E in a connected
graph G such that: (i) G is disconnected if all edges in Ec are removed and (ii) after
removing all edges of any set E′ such that E′ ⊂ Ec, G remains connected. A graph
cut is minimal, for given sizes of the resulting connected components, if it has the
minimum number of edges, in an unweighted graph, or the minimum edge weights
in a weighted graph.

Finding a minimum graph cut divides the graph into two sets of nodes, where the
weights of edges connecting nodes in the two sets have minimal weight. We can see
that the optimal solution to the problem of Definition 2.10 in the case L = 2 would
correspond to a minimum cut as well. We will explore further the idea of clustering
in Section 7.5.2, where we will consider how it connects with our definitions of graph
frequencies. Similarly, finding a maximum cut also divides the graph into two sets of
nodes, but this time the edge weights connecting those two sets are maximized. While
a minimum cut can be used for clustering, a maximum cut is useful for coloring.

2.2.5 Graph Coloring

Graph coloring is a classical problem in graph theory, with interesting connections to
graph signal processing. A color is a label associated with a set of nodes. A valid graph
coloring is an assignment of colors to nodes such that no two connected nodes in the
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Figure 2.4 Example of coloring.
The goal is to assign a color to
each node in such a way that no
two connected nodes have the
same color. In this example, the
graph has 10 nodes and is
5-colorable. Each color is
represented by a different node
shading.

graph are assigned the same color.3 Note that clustering and coloring seek opposite
goals: in clustering we try to minimize differences in labels between connected nodes,
while a valid coloring requires labels to be different for connected nodes. A trivial color-
ing for a graph with N nodes is to assign N different colors, one to each node. Therefore
the main challenge in graph coloring is to find the minimum number of colors, also
called the chromatic number, for which a coloring exists. A k-colorable graph can be
defined as follows.

Definition 2.12 (k-Colorable graph) A graph that is k-colorable or k-partite
can be described using k sets of nodes, V1, V2, . . . ,Vk, where Vi ∩ V j = ∅ and
V1 ∪ V2 ∪ · · · ∪ Vk = V for i , j and where all edges e are such that e = vki vk j ,
given that vki and vk j are inVi andV j, respectively, for i , j.

Figure 2.4 shows a coloring (with five colors) for the graph of Figure 2.3. Such bi-
partite graphs (k = 2) are of particular interest for graph signal processing and indeed
for conventional signal processing as well (path graphs are always bipartite, but cycle
graphs are only bipartite if they have an even number of nodes). The definition of a
bipartite graph follows directly from Definition 2.12.

Definition 2.13 (Bipartite graph) A bipartite or 2-colorable graph has two sets
of nodes,V1,V2, whereV1 ∩V2 = ∅ andV1 ∪V2 = V and any edge e can be
written as e = v1v2 or e = v2v1, where v1 ∈ V1 and v2 ∈ V2.

Note that the four nodes forming the right-hand cluster in Figure 2.4 are all connected
with each other, i.e., they form a clique. Because of this, four different colors are needed
for those four nodes, so the chromatic number is 4. Similarly a complete graph with
N nodes will have chromatic number N. More generally, since coloring has to avoid
assigning the same color to two neighbors, the number of colors for a graph with N
nodes will depend on the number of edges.

Trees Path graphs are bipartite and do not have any cycles. More generally, graphs
that have no cycles are trees. Any node on a tree can be chosen as the root and assigned

3 The term graph coloring originates from the problem of assigning colors to countries on a map, where for
clarity two countries sharing a border should not be assigned the same color.
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to the first level. Nodes connected to the root are its descendants, or children, and
belong to the second level, and a node reached through a path with K edges is at level
K + 1. A node at any level with no descendants is called a leaf node. Trees where every
node has the same number of descendants are called regular, and if it is possible to
choose a root node such that all leaf nodes are at the same level then the tree is called
balanced. Note that every tree is bipartite, but every bipartite graph is not a tree, since
bipartite graphs can have cycles; however, the cycles can only have even length.

Approximate k-partition From previous observations it follows that after removing
edges from a graph, the chromatic number of the modified graph can only be the same
or smaller. If a k-colorable graph for some prespecified k is needed (e.g., a bipartite
graph as in Section 5.6.2) the graph can be modified (keeping all nodes, but removing
some edges) to achieve the desired chromatic number. Clearly, we can always reach this
goal by removing a sufficiently large number of edges, but this can lead to a graph that is
very different from the original one. Thus, the more relevant (and challenging) problem
is to find the best approximation, i.e., the graph having the desired chromatic number,
while requiring the removal of the least number of edges or the removal of edges with
the least total weight.

To illustrate this point, compare the cases of maximum and minimum cuts, which
both divide a graph into two subgraphs and produce a bipartite approximation (where
only edges that form the cut are kept, and all other edges are removed). However, the
maximum cut would lead to the better approximation, since it selects edges with maxi-
mum weight across the two sets, and therefore the sum of edge weights within each set
will be minimized. Since those are the edges to be removed in the bipartite approxima-
tion, minimizing their weight is a reasonable target. Graph approximations are studied
in Chapter 6.

Coloring and signal variation We can use the concept of coloring to gain some in-
sights about graph signal variation. By definition, two nodes that are assigned the same
color cannot be immediate neighbors. Consider the bipartite graph of Figure 2.5, with
two different signals (Figure 2.5(a) and (b)) defined on the graph. These two signals are
similar: both have four positive and three negative values. Notice that the signal in Fig-
ure 2.5(b) assigns the same sign to all nodes corresponding to one color. Since the graph
is bipartite, all edges connect nodes with values of different signs and the correspond-
ing signal has high variation. In contrast, there are fewer sign changes in the signal of
Figure 2.5(a) leading to overall less signal variation.

Coloring and sampling In graph signal sampling (Chapter 4), the goal is to select
a subset of nodes (the sampling set) such that the signal obtained from these observed
nodes can be used to estimate the signal at unobserved nodes. If we are going to select
K out of N nodes it is desirable for these to be “spread out” so as to provide local
information from all parts of the graph. This suggests that, after coloring a graph, one
should sample all nodes with one color (since these are automatically kept separate).
Thus, in the example of Figure 2.5 if three nodes are to be selected, the nodes on the
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(a)

(b)

Figure 2.5 Example of bipartite graph with two different graph signals, indicated by the sets of
vertical lines. A positive entry is denoted with a vertical line with a black circle above the node.
The black circles are below the nodes for negative entries. Notice that both signals have three
negative values and four positive values. (a) There is only one sign change across the edges of
the graph. (b) There are sign changes across all edges.

left (corresponding to one color) would be a good choice: since they are not connected
they are less likely to provide redundant information.

2.3 Algebraic Representations of Graphs

As just described, locality can be established on the basis of how nodes are connected.
Local linear operations on graphs can be represented more compactly using matrix rep-
resentations, leading to the definition of graph signal frequencies in Chapter 3.

2.3.1 Adjacency, Incidence and Degree Matrices

For a simple graph G = (V,E) with sets of nodes V = {v1, v2, . . . , vN}, and edges
E = {e1, e2, . . . , eM}, the adjacency matrix, of size N × N, captures all the connectivity
and edge weight information.4

4 For directed graphs we follow the edge direction convention described in Section 2.1.
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Definition 2.14 (Adjacency matrix) The adjacency matrix A is an N×N matrix
where the entry ai j corresponding to the ith row and jth column is equal to the
weight of the edge from v j to vi, for i , j. If aii = 0 for all i then the graph has no
self-loops, while ai j = a ji indicates that the graph is undirected.

As an example, the adjacency matrix for a four-node unweighted path graph similar
to that of Figure 1.8 can be written as

A =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 ,

labeling the nodes from 1 to 4, left to right. As discussed in Box 2.3, different node
labeling leads to a permutation of the adjacency matrix (and of the graph signals) and
does not affect processing. Thus, if nodes in the undirected path graph were labeled (left
to right) 1, 3, 2, 4, the corresponding adjacency matrix would be

A′ =


0 0 1 0
0 0 1 1
1 1 0 0
0 1 0 0

 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 A


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

where A′ is obtained by pre- and post-multiplying A by a permutation matrix repre-
senting the change in node indices (nodes 1 and 4 are unchanged, while 2 and 3 are
exchanged with each other). We can now restate the ideas of Box 2.1 using permutation
matrices.

Box 2.3 Node indexing and permutation

A change in node labeling or indexing can be written as a permutation of A which
leaves unchanged the properties of interest. Let P be an N × N permutation matrix
obtained by reordering the columns of the N × N identity matrix, I. Given an input
signal x, x′ = Px is a vector with the same entries as x, but where the entries have
been reordered. If the ith column of I is the jth column of P then x′( j) = x(i). Then
the adjacency matrix A′, given by

A′ = PTAP,

has the same connections as A but with indices that are modified by permutation.
Assume node a is connected to node b in A and that, after applying permutations,
a and b become a′ and b′, respectively. Then there will be a connection between a′

and b′ in A′.
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(a)

(b)

Figure 2.6 Examples of
graphs. (a) A graph with two
connected components leads
to a block diagonal matrix
with two non-zero blocks. (b)
A 3-colorable graph leads to a
matrix with three zero blocks
along the diagonal.

Directed graphs For an unweighted directed (left to right) path graph with four
nodes, the corresponding adjacency matrix is

A =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 , (2.3)

so that multiplying a signal by A corresponds to shifting its entries between nodes along
the direction of the edge arrows: if the input signal is x = [1, 0, 0, 0]T, then Ax =

[0, 1, 0, 0]T.

Block-structured adjacency matrices Relabeling can be used to simplify the no-
tation, in particular if a suitable permutation allows us to write adjacency matrices in
block form. Two cases of interest are: (i) disconnected graphs, which can be written in
block diagonal structure (one block for each connected component) and (ii) k-colorable
graphs, which have identically zero diagonal blocks, corresponding to the nodes in each
color. These two cases are illustrated in the following example.

Example 2.2 Write down the block form of the adjacency matrices corresponding to
the graphs of Figure 2.6(a) and (b).
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Solution

The graph in Figure 2.6(a) has two connected components, so its adjacency matrix A
can be written as

A =

[
A1 0
0 A2

]
where A1 and A2 are adjacency matrices that can have different sizes and the remaining
two entries in A are all-zero matrices.

The graph in Figure 2.6(b) is 3-colorable, and its adjacency matrix can be written as

A =


0 A12 A13

A21 0 A23

A31 A32 0



Incidence matrix In the adjacency matrix each column (or row) represents all con-
nections of the corresponding node. However, in the incidence matrix each column
represents one edge, and each row corresponds to a node.

Definition 2.15 (Incidence matrix – directed graph) The incidence matrix B of
a graph with N nodes and M directed edges is a rectangular N × M matrix. If the
kth edge is ek = viv j, from j to i with weight ai j, then the kth column of B, bk, has
only two non-zero entries, b jk = −

√ai j and bik =
√ai j. Note that by construction

each column adds to zero:

1Tbk = 0 so that 1TB = 0 and BT1 = 0, (2.4)

where 1 = [1, . . . , 1]T is a vector with all entries equal to 1. Each row i contains
the square root of the weights of the edges for which vi is an end-point, where the
sign of an entry is a function of the orientation of the edge.

Thus an incidence matrix B is such that: (i) each column of B represents an edge, with
two non-zero entries with equal absolute values, the positive one corresponding to the
end-point of the edge and (ii) each row of B represents a node, and non-zero row entries
correspond to edges going in or out of that node.

Incidence and signal processing The incidence matrix of a directed graph allows
us to represent the evolution of a graph signal in terms of flows between neighboring
nodes: if nodes i and j are connected, a quantity flowing through the edge from j to i is
added to i and subtracted from j, or shifted from j to i as in (2.3). Denote by y ∈ RM a
vector of flows, where the kth entry of y represents the flow along the kth edge. Then,
multiplying y by the incidence matrix produces

By =

M∑
k=1

ykbk, (2.5)
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2

34

1
a

b

c

d

Figure 2.7 Graph for Example 2.3.

where yk is the kth entry of y and bk is the kth column of B. Thus, if the kth edge goes
from node j to node i then yk

√ai j will be added to i and yk
√ai j will be subtracted from

j, corresponding to the kth vector in the summation in (2.5). If the original graph signal
is x and a flow y is applied along the edges, then the resulting graph signal x′ is

x′ = x + By (2.6)

so that whatever is subtracted from node j is added to node i and, using (2.4), the sums
of the entries of x′ and x are the same:

1Tx′ = 1Tx.

Note that an undirected graph with M edges can be viewed as a directed graph where
edges in both directions have equal weights, i.e., a ji = ai j, and we can define the corre-
sponding incidence matrix as an N × 2M matrix where each edge in the graph appears
twice, once in each direction. A more compact definition of the incidence matrix for the
undirected case includes each edge just once.

Definition 2.16 (Incidence matrix – undirected graph) The incidence matrix B
can also be defined as a rectangular N ×M matrix where row i contains the square
root of the weights of edges for which vi is an end-point. If edge k connects i and
j with weight ai j then bik =

√ai j and b jk = −
√ai j, where the sign can be chosen

arbitrarily as long as one of the two entries is negative and the other is positive.

Example 2.3 Write down the incidence matrix B for the undirected graph of Figure 2.7.

Solution

The label that we associate with each edge is not important, and, from Definition 2.16,
we can choose arbitrary signs as long as each column sums to zero. Then we can write

B =


√

a 0 0
√

d
−
√

a
√

b 0 0
0 −

√
b

√
c 0

0 0 −
√

c −
√

d

 .
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Degree matrix Given a graph with adjacency matrix A we can define the degree
matrix, which will allow us to characterize the graph’s regularity.

Definition 2.17 (Degree matrix) The degree matrix D of an undirected graph
is an N × N diagonal matrix such that each diagonal term represents the degree
(number of edges or sum of edge weights) for the corresponding node, i.e., dii =∑

j ai j, where ai j is the i, j entry of A. If the graph is directed then we can define
in-degree and out-degree matrices by summing only the weights of the incoming
and outgoing edges, respectively.

The degree matrix for an undirected graph can be written more compactly as

D = diag(A1),

where diag(x) is a diagonal matrix with the entries x along the diagonal. For directed
graphs we can obtain the in-degree and out-degree matrices in a similar way:

Dout = diag(1TA) and Din = diag(A1),

since the ith row represents the weights of edges ending in node i (Definition 2.4).
As was the case for the incidence matrix, the adjacency and degree matrices define

operations on graph signals. That is, we can multiply a graph signal x by one of those
matrices to obtain a new graph signal. Since D is diagonal, Dx is simply a scaling of
the signal values at each node, while Ax can be interpreted as a “diffusion operation”
where the ith entry of Ax is obtained as a weighted sum of the entries in x corresponding
to neighbors of i on the graph. General node domain operations constructed with these
matrices and the graph Laplacian will be studied in Section 2.4.

Matrix computations and large graphs Since graphs can be large, it is important to
note that their algebraic representation is useful conceptually, but also may be practical
for the storage of computation. For storage a straightforward representation of an adja-
cency matrix is as a 2D array where each element of the array corresponds to one edge,
or contains a zero if no edge exists. As an alternative, an adjacency list representation
stores for each node a linked list of all neighboring nodes so that total required storage
increases with the number of edges |E|, which can be significantly smaller than N2 [16].
This approach is much more efficient for very large and sparse graphs. Also note that
software packages such as Matlab include special representations for sparse matrices.

2.3.2 Graph Laplacians

We introduce several types of graph Laplacians for undirected graphs, which will be
used to develop the concepts of graph frequency in Chapter 3.
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Definition 2.18 (Combinatorial graph Laplacian matrix) The combinatorial
graph Laplacian matrix L of an undirected graph with adjacency and degree ma-
trices A and D is the N × N matrix

L = D − A. (2.7)

Notice that the Laplacian does not include any additional information that was not
already available, since D is given once A is known. We can get some insight on how to
interpret L by considering the following example.

Example 2.4 Compute BBT for the incidence matrix of Example 2.3 and express it in
terms of A.

Solution

We can easily compute

BBT =


a + d −a 0 −d
−a a + b −b 0
0 −b b + c −c
−d 0 −c c + d

 .
Recall that

A =


0 a 0 d
a 0 b 0
0 b 0 c
d 0 c 0

 and D =


a + d 0 0 0

0 a + b 0 0
0 0 b + c 0
0 0 0 c + d


and therefore BBT = D − A = L.

The result of Example 2.4 holds in general.

Proposition 2.1 For any undirected graph, with incidence matrix B, we have

L = D − A = BBT. (2.8)

Proof Let bk be the kth column of B which has non-zero entries −√ai j and √ai j,
corresponding to rows i and j, respectively. Then we can write BBT as a sum of rank-1
matrices:

BBT =
∑

k

bk bT
k with Lk = bk bT

k =



...
...

. . . ai j · · · −ai j · · ·

...
...

· · · −ai j · · · ai j · · ·

...
...


, (2.9)
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b

cd

a 1

1

1

1

B =
−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1

B⊤ =
−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

b − a
c − b
d − c
a − d

= B⊤
a
b
c
d

b − a

c − b

d − c

a − d
2a − b − d
2b − a − c
2c − b − d
2d − a − c

= B
b − a
c − b
d − c
a − d

Figure 2.8 Interpretation of incidence matrix B.

where only the non-zero terms of Lk are shown. Therefore the sum of all the Lk has
diagonal terms equal to the degree of each node and (since there is only one edge be-
tween nodes i and j) the off-diagonal terms correspond to the negative of the adjacency
matrix, from which the result follows. �

With Lk = bk bT
k and denoting xk = Lkx we can write

Lx =

∑
k

Lk

 x =
∑

k

xk, (2.10)

where each entry of xk can be written as follows:

xk(i) = ai j (x(i) − x( j)) , xk( j) = ai j (x( j) − x(i)) and xk(n) = 0,∀n , i, j, (2.11)

where we see that xk(i) + xk( j) = 0 and thus the sum of the entries of xk is 0 (1Txk = 0).
Thus, adding xk = Lkx can be viewed as the result of a flow along the kth edge, where
the amount added to node i is the amount subtracted from j and we have

1T(x + Lx) = 1Tx. (2.12)

This interpretation is valid for both directed and undirected graphs: the operation BBT

first creates a flow y from x (y = BTx) and then maps it back to produce an output
x′ = By. See Figure 2.8 for a directed graph example.
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2.3.3 Normalized Graph Operators

Consider a weighted graph with adjacency matrix A and denote the output of the corre-
sponding one-hop operation by y = Ax. Then the new signal value at node i is

y(i) =
∑

j∈N(i)

ai jx( j), (2.13)

where node i contributes ai jx(i) to node j, while node j contributes ai jx( j) to node i.
The ith column of A provides the weights of all outgoing edges from node i, while the
jth row includes the weights of all incoming edges for node j. The one-hop operation
(2.13) needs to be modified (normalized) in order to provide a suitable model for some
specific systems. We consider two important scenarios where normalization is required.

Graph normalization strategies In a physical distribution network, the signal at
each node represents some physical quantity (e.g., goods being exchanged between
nodes) so that the amounts “sent” through all links, i.e., the outflows, have to sum up to
the original quantity (i.e., each of the items can be sent through only one of the links).
Thus the signal at a given node has to be “distributed” across links. In this case, the total
outflow of node i, with initial value x(i), can at most be x(i). Since by definition the sum
of all outgoing weights is d(i), where d(i) is the degree of node i, normalized outflows
are achieved by computing

y = AD−1x,

where each column of AD−1 adds to 1.
Conversely, in a consensus network, a node receiving inputs from multiple nodes,

i.e., inflows, may not simply add them. Instead, it could “summarize” them by com-
puting a consensus or average. This can be achieved with using the one-hop average
operation of (2.1), which is written in matrix form as

y = D−1Ax,

where each row of D−1A adds to 1.

Normalized Laplacians The same normalizations can be applied when the Laplacian
L = BBT is chosen as the one-hop operator, leading to one-hop operators LD−1 and
D−1L for the physical and consensus networks, respectively. These two normalizations
can be seen as column or row normalization of the rank-1 matrix Lk in (2.9), leading to

LkD−1 =



...
...

· · ·
ai j

di
· · ·

−ai j

d j
· · ·

...
...

· · ·
−ai j

di
· · ·

ai j

d j
· · ·

...
...


, D−1Lk =



...
...

· · ·
ai j

di
· · ·

−ai j

di
· · ·

...
...

· · ·
−ai j

d j
· · ·

ai j

d j
· · ·

...
...


.

(2.14)
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The second normalization in (2.14) leads to

D−1BBT = D−1L = D−1(D − A) = I − D−1A,

which we define as the random walk Laplacian:

Definition 2.19 (Random walk graph Laplacian matrix) The random walk
graph Laplacian matrix T is an N × N matrix

T = I − D−1A. (2.15)

Note that these two forms of normalization lead to matrices that are not symmetric, as
can be observed in (2.14).

The rows of Q = D−1A and the columns of P = AD−1 respectively add to 1, showing
that they are row and column stochastic matrices, but the same is not true in general
for the columns of Q and the rows of P.

Symmetric normalized Laplacian An alternative approach, which provides normal-
ization while preserving the symmetry in L, is the symmetric normalized Laplacian,
where the columns of BT and the rows of B are normalized by the same factor D−1/2.

Definition 2.20 (Symmetric normalized graph Laplacian matrix) The symmet-
ric normalized graph Laplacian matrix L is an N × N matrix

L = D−1/2LD−1/2 = I − D−1/2AD−1/2. (2.16)

Note that since we can writeL = I−D−1/2AD−1/2,Lwould appear to have the form of
a graph Laplacian with degree matrix I and normalized adjacency matrix D−1/2AD−1/2.
But in fact the degree matrix for this normalized graph does not equal I, that is, in
general,

D−1/2AD−1/21 , 1,

and thus, unless all nodes have the same degree,L1 , 0, so that nodes in the normalized
graph do not have degree equal to 1. Also note that

(L)i, j = −ai j
1√

di
√

d j
, i , j, (2.17)

where ai j is the original weight between i and j, and di, d j are the degrees of i and j. We
compare T and L in the following example.

Example 2.5 Find T and L for

L =


2 −1 0 −1
−1 3 −2 0
0 −2 4 −2
−1 0 −2 3

 .
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Solution

We have

T =


1 − 1

2 0 − 1
2

− 1
3 1 − 2

3 0
0 − 1

2 1 − 1
2

− 1
3 0 − 2

3 1

 and L =


1 − 1

√
6

0 − 1
√

6
− 1
√

6
1 − 1

√
3

0
0 − 1

√
3

1 − 1
√

3
− 1
√

6
0 − 1

√
3

1

 ,
where we can see that T is not symmetric but has rows that add to zero, whileL is sym-
metric but its rows do not add up to zero. Thus, while we can create a graph with edge
weights obtained with the normalization in Definition 2.20, L is not the combinatorial
Laplacian of that graph.

Matrix representations of graphs are summarized in Table 2.2. In what follows we
study how these matrices are used to process graph signals.

2.4 Node Domain Graph Filters

From Definition 2.6, a graph signal is a vector x ∈ RN . In analogy with conventional
signal processing, a linear graph filter is a linear operator (i.e., a transformation) that
can be applied to any signal x to obtain an output y ∈ RN :

y = Hx, (2.18)

where H is an N × N matrix. We starting by defining filtering operations based on the
one-hop graph operators of Section 2.3.

2.4.1 Simple One-Hop Filters and Their Interpretation

Adjacency matrix Letting A be the adjacency matrix of an undirected graph, the ith
entry of the filter output y = Ax, i.e., the output at node i, is

y(i) =
∑

j∈N(i)

ai jx( j), (2.19)

where the sum is over all the neighbors of node i. Therefore we can view A as a one-hop
operator, since the output at any one node depends only on the graph signal value at the
neighboring nodes. We can modify the operation in (2.19) and replace the sum of the
neighboring values by their average, leading to:

y′(i) =
1
di

∑
j∈N(i)

ai jx( j), (2.20)

where di = |N(i)| if the graph is unweighted. More compactly,

y′ = D−1Ax = Qx,
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so that the random walk matrix, Q = D−1A, can be seen as a one-hop operator that
replaces the signal entry at node i by the average of its neighbors’ values.

Random walk Laplacian The random walk Laplacian of Definition 2.19, T = I−Q,
can be interpreted as subtracting from the signal at node i the average of its one-hop
neighborhood:

y′′(i) = x(i) −
1
di

∑
j∈Ni

ai jx( j) = x(i) − y′(i), (2.21)

where the second term in the equation, corresponding to Qx, computes a weighted aver-
age in which those nodes that are the most similar (with the largest ai j) are given more
weight. Thus, y′′(i) can be viewed as a prediction error, i.e., if x(i) is close to the neigh-
borhood average then y′′(i) will be close to zero. In Chapter 3 we will develop further
the link between the properties of graph signals and the output of operators such as T .
Signals for which T x is close to zero will be deemed smooth or low frequency, while
signals for which |y′′(i)| is larger will be considered non-smooth or high frequency.

Weighted and unweighted prediction errors If we think of (2.21) as computing a
prediction error, it is interesting to note that this expression does not provide any other
information about how reliable the prediction is. In particular this prediction error does
not depend on the number of neighbors or their weights. Example 2.6 illustrates why
this lack of information may be problematic.

Example 2.6 Consider an unweighted and undirected graph and recall that di = |N(i)|
(see Definition 2.3). Let two nodes i and j be such that (i) |N(i)| = 1, |N( j)| = k > 1,
(ii) x(i) = x( j) = 2 and (iii) ∀l ∈ N(i) ∪ N( j) we have x(l) = 1. Use (2.21) to compute
y′′(i) and y′′( j). For a smooth signal the prediction error (2.21) will be small. Let x
be a noisy version of a signal x0 which is not observed but is assumed to be smooth.
We would like to determine whether the observed values at nodes i and j are equally
“reliable.” That is, if we take x(i) and x( j) as estimates of x0(i) and x0( j), respectively,
do we have the same confidence on both estimates? Discuss how the reliability of x( j)
may depend on k.

Solution

From (2.21) we can see easily that y′′(i) = y′′( j) = 1. Thus the prediction error is the
same in both cases. However, if we assume that the nodes inN(i) andN( j) can provide
predictions for the signals at i and j, respectively, we might perhaps expect a more
reliable estimate when the neighborhood has more nodes.

Nevertheless, since vi has only one neighbor, while v j has k, a prediction error of 1
may be considered to be worse for j, since the number of neighbors of v j is greater.
Mathematically, we can define a weighted error z(i) = |N(i)|y′′(i), which then leads to

z(i) = 1, z( j) = k,
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which makes it explicit that the error is actually worse for node j.

As a concrete illustration of the ideas of Example 2.6, consider temperature mea-
surements, where nodes represent sensors and each sensor is connected on a graph to
other sensors that are within a certain distance. Then, if vi and its single neighbor have
different measurements, it is possible that the temperature changes relatively quickly in
the environment of vi. On the other hand, if all neighbors of v j have the same temper-
ature as each other but different from that of vi, it may be that the measurement x( j)
is incorrect and there is a problem with the corresponding sensor. Thus we expect the
prediction error to be more informative (e.g., as an indication of a sensor malfunction)
if more nodes are used to compute the prediction (i.e., the node has more neighbors).

Combinatorial Laplacian On the basis of Example 2.6 we define a weighted pre-
diction error z(i), which gives more weight to errors corresponding to nodes with more
neighbors (or, more generally, with higher degrees):

z(i) = di

x(i) −
1
di

∑
j∈N(i)

ai jx( j)

 (2.22)

which can be written in matrix form as

z = DT x = D(I − D−1A)x = (D − A)x = Lx. (2.23)

Thus, the combinatorial graph Laplacian, L and the random walk Laplacian, T , are
one-hop prediction operators using different weights.

Symmetric normalized Laplacian Using the edge weights for the symmetric nor-
malized Laplacian of (2.17) we can write z′ = Lx as a prediction error at node i:

z′(i) = x(i) −
∑

j∈N(i)

ai j
√

di
√

d j
x( j), (2.24)

where, similarly to (2.21), the prediction error does not depend on the size of the neigh-
borhood, but where the weights have been normalized. Also, unlike in (2.21), the pre-
diction weights do not add to 1.

2.4.2 Polynomials of One-Hop Operators

From this point forward, denote by Z a generic one-hop operator, which could be one
among those considered so far (A, D−1A, T = I−D−1A,L and L). We now make a key
observation that will help us interpret more complex operations based on a chosen Z.

Remark 2.2 If Z is a one-hop graph operator then Z2 is a two-hop graph operator
and, more generally, Zk is a k-hop graph operator.
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Proof Let δi be a signal that is zero everywhere except at node i. By definition, one-
hop operators are such that Zδi can only have non-zero entries at node i and at nodes
j ∈ N(i). Therefore we will be able to find some scalars α j such that

Zδi =
∑

j∈N(i)

α jδ j,

and then, by linearity, we can write

Z2δi = Z
∑

j∈N(i)

α jδ j =
∑

j∈N(i)

α jZδ j,

which only has non-zero values in the one-hop neighbors of j ∈ N(i); by definition these
constitute the two-hop neighborhood of i,N2(i). The same argument can be applied iter-
atively to show that Zkδi has non-zero values only in Nk(i). Then, using superposition,
it is easy to see that the output of Z2x at node i depends only on the values at the nodes
j in the two-hop neighborhood of i. A value at node k < N2(i) will not affect the output
Z2x at node i. �

More generally, from Remark 2.2 it follows that p(Z), an arbitrary polynomial of Z
of degree K, will produce localized outputs. That is, p(Z)δi will be identically zero for
nodes that do not belong to NK(i). Note that in our initial definition of a graph filtering
operation in (2.18) we simply required the operator H to be linear, so that any arbitrary
N ×N matrix could have been chosen for H. Instead, we now restrict ourselves to filters
that can be written as polynomials of Z.

Definition 2.21 (Graph filters) For a given one-hop operator Z, a graph filter
H is an N × N matrix that can be written as a polynomial p(Z) of Z:

H = p(Z) =

K∑
k=0

akZk, (2.25)

where Z0 = I and the scalars ak are the coefficients of the polynomial.

With this definition, the degree of the polynomial defines the localization of the oper-
ator, with the caveat that K-hop localization may lead to a global operation if the radius
or the diameter of the graph is small (see Section 2.2.2).

Polynomial graph filters commute While matrix multiplication is not commutative
in general, matrices that are polynomials of a given Z do commute. This property is
analogous to that of shift invariance in conventional signal processing (Box 2.4).

Theorem 2.1 (Commutativity of polynomial operators) Let p(Z) be an arbitrary
polynomial of Z; then p(Z) Z = Z p(Z), so that Z and p(Z) commute, and, for any
polynomial q(Z)

p(Z) q(Z) = q(Z) p(Z).
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Proof Let p(Z) =
∑p−1

i=0 αiZi; then

Z p(Z) =

p−1∑
i=0

αiZi+1 =

 p−1∑
i=0

αiZi

 Z

= p(Z) Z

and the commutativity of two polynomials follows directly from this result. �

Box 2.4 Graph operators versus graph shift operators

Focusing on only those graph filters that can be written in the polynomial form of
Definition 2.21 is fundamental to the development of GSP. This also leads to strong
analogies with conventional signal processing [15]. Specifically, in a linear shift in-
variant system, we can define an elementary shift or delay operator, z−1, and the
z-transforms of a filter H(z) and of an input signal, X(z). Then, the output Y(z) of a
linear shift-invariant system can be written as [17]

Y(z) = H(z)X(z).

The shift-invariance property for conventional discrete-time linear systems is ex-
pressed as

H(z)
(
z−1X(z)

)︸           ︷︷           ︸
(A)

= z−1 (H(z)X(z))︸           ︷︷           ︸
(B)

which states that output of the system when a shift is applied to the input (A) can also
be obtained by shifting the output of the original, non-delayed, system (B). Notice
that this implies that

H(z)z−1 = z−1H(z),

which clearly shows the analogy with Theorem 2.1, where p(Z) and Z commute. On
the basis of this analogy, Z is often called the graph shift operator, and the property
of Theorem 2.1 is described as shift invariance [15]. The correspondence between
Z and z is indeed exact when we consider a directed graph cycle [15].
While this analogy is interesting and insightful, in this book we do not use the term
“graph shift operator” to describe Z and instead call Z the fundamental graph op-
erator, one-hop graph operator or just graph operator for short. This is simply a
difference in names, and in all other respects our definition of Z is the same as that
commonly used in the graph signal processing literature [15, 11].
We choose not to use the term “shift” to avoid potential confusion, given the differ-
ences that exist between Z and z. In particular, for a time-based signal X(z), we can
always reverse the delay, i.e., X(z) = z−1zX(z), while in general the graph operators
Z are rarely invertible. Thus if we compute y = Zx, we cannot guarantee that this
operation can be reversed.
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2.5 Graph Operators and Invariant Subspaces

In this section, we develop tools to characterize the output of a graph operator (Def-
inition 2.21) applied to an arbitrary graph signal. We work with polynomials of Z, a
one-hop fundamental graph operator (Box 2.4) and make use of the basic linear algebra
concepts reviewed in Appendix A.This section addresses two fundamental questions:

• For a graph with N nodes, with Z of size N × N, how many degrees of freedom5 are
there to construct filters in the form of Definition 2.21? Essentially, the answer to this
question will tell us what is the maximum degree of a polynomial that has the form
of Definition 2.21. We will see that, when we are constructing polynomial operators,
the degree can be no greater than N, and is often less than N.

• Can we express Zx as a function of the outputs Zui for a series of elementary signals
ui? The answer is obviously yes, since Z is a linear operator and the response can
be expressed as a linear combination of responses to elementary signals forming a
basis for the space. We can construct basis sets obtained from invariant subspaces
(where the signals in each subspace Ei are invariant under multiplication by Z: Zui ∈

Ei if ui ∈ Ei). When Z is diagonalizable each of these subspaces corresponds to one
of the N linearly independent eigenvectors.

While the answer to these questions builds on elementary linear algebra concepts
(refer to Appendix A for a review), we introduce them step by step so as to highlight
their interpretation in the context of graph signal filtering.

2.5.1 Minimal Polynomial of a Vector

As a starting point, consider an arbitrary vector x ∈ RN and apply the operator Z suc-
cessively to this vector. This will produce a series of vectors,

x, Zx, Z2x, . . . , Zp−1x.

Are these p vectors linearly independent? The answer depends on both x and p. First,
note that if p > N then these vectors must be linearly dependent: in a space of dimension
N, any set of more than N vectors must be linearly dependent.6

Next, for a given x, find the smallest p such that x, Zx, Z2x, . . . , Zp−1x, Zpx are
linearly dependent. For this p, by the definition of linear dependence, we can find
a0, a1, . . . , ap−1 such that

Zpx =

p−1∑
k=0

akZkx, (2.26)

where as before Z0 = I. Therefore,

px(Z)x =

− p−1∑
k=0

akZk + Zp

 x = 0, (2.27)

5 By degrees of freedom we mean the number of different parameters that can be selected.
6 The span of x, Zx ,Z2x, . . . , Zpx is the order-p Krylov subspace generated by Z and x.
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where px(Z) = −
∑p−1

k=0 akZk + Zp is the minimal polynomial of x.

Definition 2.22 (Minimal polynomial of a vector) For a given non-zero graph
signal x and a graph operator Z, the minimal polynomial px(Z) of x is the lowest-
degree non-trivial polynomial of Z such that

px(Z)x = 0.

The minimal polynomial px(Z) allows us to simplify operations on x. Any p(Z) can
be written as

p(Z) = q(Z)px(Z) + r(Z) (2.28)

where q(Z) and r(Z) are the quotient and residue polynomials, respectively, and r(Z)
has degree less than that of px(Z). The polynomials q(Z) and r(Z) can be obtained
using long division as shown below in Example 2.7. Then, by the definition of px(Z),
we have

p(Z)x = q(Z)px(Z)x + r(Z)x = r(Z)x.

Example 2.7 Let x be a vector with minimal polynomial px(Z) = Z2 + 2Z + I. Find
q(Z) and r(Z) such that p(Z) = Z4 can be written as in (2.28): p(Z) = q(Z)px(Z)+ r(Z).

Solution

We can express Z4x as a function of px(Z) using long division. In the first step we ap-
proximate p(Z) by Z2 px(Z) to cancel out the highest-degree term in p(Z) and compute
the resulting residue,

r1(Z) = Z4 − Z2(Z2 + 2Z + I) = −2Z3 − Z2;

then we approximate r1(Z) to find

r2(Z) = (−2Z3 − Z2) + 2Z(Z2 + 2Z + I) = 3Z2 + 2Z

and finally

r(Z) = (3Z2 + 2Z) − 3I(Z2 + 2Z + I) = −4Z − 3I

so that we have

Z4 = (Z2 − 2Z + 3I)(Z2 + 2Z + I) − 4Z − 3I,

where q(Z) = Z2 − 2Z + 3I. Given that px(Z) is the minimal polynomial of x we have

Z4x = (Z2 − 2Z + 3I)px(Z)x − (4Z + 3I)x = −(4Z + 3I)x.
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2.5.2 Eigenvectors and Eigenvalues

Clearly, the lowest degree of px(Z) for a non-zero vector x is p = 1. Let u be a vector
having minimal polynomial, pu(Z), of degree 1. Then, from (2.26), u and Zu are linearly
dependent and so there exists a scalar λ such that Zu = λu. Thus u is an eigenvector of
Z, with λ the corresponding eigenvalue.

Definition 2.23 (Eigenvectors and eigenvalues) Let Z be a square matrix. A
vector u and a scalar λ are an eigenvector and an eigenvalue of Z, respectively, if
we have

Zu = λu.

An eigenvalue and a corresponding eigenvector form an eigenpair (λ,u).

If u is an eigenvector, the minimal polynomial of Z with respect to u is

pu(Z) = Z − λI (2.29)

and multiplication by Z simply scales u. By linearity, any vector along the direction u
is scaled in the same way, so that Z(αu) = αZu = λ(αu). Then Eu = span(u) is called
an eigenspace associated with Z (see Definition A.1 and Definition A.2). Given |λ|, the
magnitude of the eigenvalue λ, if |λ| > 1 then all vectors in Eu are amplified by the
transformation, while if |λ| < 1 they are attenuated. When λ = 0, Zu = 0 and u belongs
to the null space of the transformation Z.

Characteristic polynomial By definition of pu(Z) in (2.29) we have that pu(Z)u = 0
and, since u is assumed to be non-zero, we will need to have det(Z−λI) = 0, so that the
null space of Z−λI,N(Z−λI), contains the non-zero vector u. To find the eigenvectors
u we need to find all the eigenvalues λ, scalars such that Z−λI is a singular matrix, i.e.,

det(λI − Z) = 0.

This determinant can be written out as a polynomial of the variable λ, leading to the
characteristic polynomial of Z:

pc(λ) = λN + cN−1λ
N−1 + · · · + c1λ + c0λ0, (2.30)

where the ci are known values that depend on Z and result from the determinant compu-
tation. By the fundamental theorem of algebra, pc(λ) will have N roots in C, the space
of complex numbers. Given these roots (real or complex, simple or multiple), we can
write

pc(λ) =
∏

i

(λ − λi)ki , (2.31)

where the roots of this polynomial, λ1, λ2, . . ., are the eigenvalues of Z. From the same
theorem, calling ki the algebraic multiplicity of eigenvalue λi, we have that∑

i

ki = N.
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Invariant subspaces As noted earlier, each subspace Eu corresponding to an eigen-
vector u is invariant under Z. This idea can be easily extended, so that any subspace of
RN (or CN) having a basis formed by a set of eigenvectors of Z is also invariant. More
generally, for any non-zero vector x we can construct an invariant subspace Ex.

Proposition 2.2 (Invariant subspace for x) For a given vector x (not necessarily
an eigenvector of Z), with minimal polynomial px(Z) of degree p, a subspace Ex,
defined as

Ex = span(x, Zx, Z2x, . . . , Zp−1x)

contains x and is invariant under multiplication by Z, that is,

∀y ∈ Ex, Zy ∈ Ex,

where we emphasize that Zy is simply required to be in Ex and in general Zy , αy.

Proof By the definition of the span of a set of vectors (Definition A.2), any y ∈ Ex can
be written as

y = a0x + a1Zx + · · · + ap−1Zp−1x, so that Zy = a0Zx + a1Z2x + · · · + ap−1Zpx.

However, from (2.26), if px(Z) has degree p then x, Zx, Z2x, . . . ,Zp−1x, Zpx are lin-
early dependent and ap−1Zpx can be written as a function of x, Zx, Z2x, . . . , Zp−1x, so
that Zy ∈ Ex, which proves the space is invariant. �

Since Ex is invariant under multiplication by Z the following properties hold for any
y ∈ Ex and any polynomial p(Z): (i) Ex is invariant under multiplication by p(Z), i.e.,
p(Z)y ∈ Ex and (ii) p(Z)y can be simplified as in Example 2.7 given that7 px(Z)y = 0.

Complex eigenvalues Assume Z is real and µ is a complex root of its characteristic
polynomial with multiplicity 1. Since Z is real, the characteristic polynomial has real
coefficients, so that both µ and µ∗ are eigenvalues. If Zu = µu, by conjugating both
sides we have (Zu)∗ = Zu∗ = (µ)∗u∗, which shows that (µ,u) and (µ∗,u∗) are both
eigenpairs of Z. Thus we have a subspace Eµ = span(u,u∗) ⊂ CN that is invariant under
multiplication by Z, since the basis vectors are eigenvectors of Z.

Note that for vectors in span(u) and span(u∗) the minimal polynomials are Z−µI and
Z − µ∗I, respectively. From this we can see that, for any z ∈ Eµ, pµ(Z)z = 0 with

pµ(Z) = (Z − µI)(Z − µ∗I) = Z2 − (µ + µ∗)Z + |µ|2I,

where pµ(Z) is a real polynomial. Thus, we can construct a basis (z, Zz) for Eµ by
choosing z ∈ Eµ such that z < span(u) ∪ span(u∗), where we see that the basis vectors
are no longer eigenvectors. Also, from the definition of pµ(Z)

Z2v = (µ + µ∗)Zv − |µ|2v.

If we are processing real-valued signals with real-valued polynomials of Z, we can also
define a real basis for the space of real vectors in Eµ (Eµ∩RN). This is shown in Box 2.5.
7 Note that px(Z)y = 0 but py(Z) , px(Z).
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Box 2.5 Real invariant spaces for complex eigenvalues

From the above discussion, (x,Zx) is a real basis for Eµ ∩ RN for any non-zero and
real x ∈ Eµ. Alternative real-valued basis choices are possible. If x ∈ Eµ, x = αu+βu∗

and x is real we have that x∗ = x and therefore

αu + βu∗ = (αu + βu∗)∗ = β∗u + α∗u∗,

so that α = β∗. Thus, any real vector x in Eµ can be written as

x = (α1 + jα2)u + (α1 − jα2)u∗ = α1(u + u∗) + α2( j(u − u∗)),

where both α1 and α2 are real and v1 = u+u∗ and v2 = j(u−u∗) are real vectors, that
form a basis for Eµ ∩ RN (where ∩ denotes the intersection). Since u = 1

2 (v1 − jv2)
and u∗ = 1

2 (v1 + jv2), we have

Zv1 = µu + µ∗u∗ =
1
2
µ(v1 − jv2) + µ∗

1
2

(v1 + jv2) = Re(µ)v1 + Im(µ)v2

and similarly

Zv2 = j(µu − µ∗u∗) =
1
2
µ( jv1 + v2) − µ∗

1
2

( jv1 − v2) = Im(µ)v1 + Re(µ)v2.

Then for any real vector in the space Eµ ∩ RN we will have

Zx = Z(α1v1 + α2v2) = (α1Re(µ) + α2Im(µ))v1 + (α1Im(µ) + α2Re(µ))v2,

showing explicitly that Eµ ∩ RN is invariant under multiplication by Z.

2.5.3 Minimal Polynomial of Z and Invariant Subspaces

So far we have defined minimal polynomials of individual vectors x and of eigenspaces.
Now we study the minimal polynomial for all vectors in RN (or CN). This will allow us
to characterize all polynomial filtering operations for graph signals. We start by defining
the Schur decomposition, which allows us to develop a series of invariant subspaces
such as those introduced in Proposition 2.2 but with the added advantage that they lead
to a representation for any signal in the space.

Theorem 2.2 (Schur decomposition) Any N × N (complex) matrix Z can be
written as

Z = UHTU, (2.32)

where U is unitary, UHU = UUH = I (the superscript H denotes the Hermitian
conjugate) and T is upper triangular, with diagonal elements that are the eigenval-
ues of Z. A decomposition can be obtained for any ordering of the eigenvalues,
leading to different U and T in each case.
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Proof Let λ1, λ2, . . . , λN be an ordering of the eigenvalues of Z (note that eigenvalues
of multiplicity greater than 1 are repeated). Let u1 be an eigenvector corresponding to
λ1, uH

1 u1 = 1. Choose a unitary matrix using u1 as its first column so that U = (u1 U2),
then

UHZU =

uH
1

UH
2

 Z
[
u1 U2

]
=

uH
1 Zu1 uH

1 ZU2

UH
2 Zu1 UH

2 ZU2

 =

λ1 uH
1 ZU2

0 UH
2 ZU2

 ,
where the last equality uses the facts that u1 is an eigenvector, so that uH

1 Zu1 = λ1uH
1 u1 =

λ1, and that UH
2 u1 = 0 because U is unitary. Next denote Z2 = UH

2 ZU2 and observe that
Z and UHZU have the same eigenvalues. From this it follows that Z2 must have eigen-
values λ2, λ3, . . . , λN , so that we can apply recursively the approach above (define u2 as
an eigenvector, find a unitary matrix, etc.) until we obtain the decomposition (2.32). �

Let U be a unitary matrix given by the Schur decomposition of Z in (2.32). This
decomposition is not unique: a different U is obtained for each possible ordering of
the eigenvalues8 of Z. Denote by ui the ith column of U and let Ei = span(ui). Then,
because U is unitary, we have that CN =

⊕N
i=1 Ei, i.e., CN is the direct sum of the Ei

subspaces and the following property holds.

Proposition 2.3 (Invariant subspaces from Schur decomposition) The subspaces
Fk =

⊕k
i=1 Ei, k = 1, . . . , N are invariant under Z, that is, if x ∈ Fk then Zx ∈ Fk.

Proof Choose an arbitrary x ∈ Fk. By the definition of Fk that means that x = UHy,
where y is such that its last N − k entries are zero. Then

Zx = UHTUUHy = UHTy = UHy′,

where the last N − k entries of y′ are also zero, because T is upper triangular, and thus
UHy′ ∈ Fk. �

As in Proposition 2.2, the invariance in Proposition 2.3 is not as strong as that as-
sociated with eigensubspaces (i.e., there is no scalar α such that Zx = αx), but it is
important because it applies to any square Z, including a Z lacking a complete set of
eigenvectors.

The Schur decomposition of Theorem 2.2 can be used to identify minimal polyno-
mials for all vectors in the space. First, we write a matrix polynomial for an arbitrary
N × N matrix, X, with the same coefficients as the characteristic polynomial of (2.30):

pc(X) = XN + cN−1XN−1 + · · · + c1X + c0I. (2.33)

For a given X, pc(X) is also an N ×N matrix. The Cayley–Hamilton theorem states that
Z is a root of the characteristic polynomial.

8 In addition, for a given ordering of the eigenvalues, the representation may not be unique if there are
eigenvalues of multiplicity greater than 1.
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Theorem 2.3 (Cayley–Hamilton) Let pc(λ) be the characteristic polynomial of
the matrix Z. For an arbitrary square matrix X let the corresponding matrix poly-
nomial be pc(X), as defined in (2.33). Then, we have that Z is a root of pc(X), i.e.,
for any x ∈ RN ,

pc(Z)x = 0

so that

pc(Z) = 0.

Proof From Theorem 2.2 we can write Z = UHTU with U unitary and T upper tri-
angular with λi along the diagonals. Since T and Z are similar they will have the same
characteristic polynomial. To show that Z is a root of pc(X), we need to show that
pc(Z)x = 0 for any x. Since

pc(Z)x = UH pc(T)Ux,

all we need to do is show that Pc(T) = 0. Recall that we can write

pc(T) =
∏

i

(T − λiI)ki (2.34)

and note that the entries in the first column of T−λ1I are all zero, so that the first column
of the product of matrices in (2.34) is 0. Then, the product of the first two matrices in
pc(T) is

0 t21 · · ·

0 λ2 − λ1 · · ·

0 0
...

...



0 t21 · · ·

0 λ2 − λ2 · · ·

0 0
...

...

 =


0 t21 · · ·

0 λ2 − λ1 · · ·

0 0
...

...



0 t21 · · ·

0 0 · · ·

0 0
...

...


which shows that the second column is 0. Applying the same reasoning for successive
columns shows that they are all 0 and thus pc(T) = 0 and pc(Z) = 0. �

As a consequence of Theorem 2.3 we can factor p(Z) as follows:

pc(Z) =
∏

i

(Z − λiI)ki = 0, (2.35)

where ki ≥ 1 is the multiplicity of the root λi of pc(λ). Note that Theorem 2.3 implies
that there exist c0, c1, . . . , cN−1 such that for any x

ZNx = −

N−1∑
i=0

ciZi

 x. (2.36)

Thus, we can write ZNx as a linear combination of N vectors, x, Zx, . . . , ZN−1x. From
Theorem 2.3 pc(Z)x = 0 for any x. Then we can ask what is the lowest degree (minimal)
polynomial for a specific x, px(Z). The degree of the minimal polynomial px(Z) depends
on x and in general it can be lower than the degree of pc. For example, if u is an
eigenvector of Z with eigenvalue λ then we will have pc(Z)u = 0 and (Z − λI)u = 0, so
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that pu(Z) = (Z−λI) is the minimal polynomial for u. This leads us to ask the following
question: what is the minimal-degree polynomial pmin(Z), for which pmin(Z)x = 0 for
all x?

Minimal polynomial The minimal polynomial of Z, pmin(·), is the polynomial of
minimal degree for which Z is a root. In other words, for any x ∈ RN we have that

pmin(Z)x =

Zp +

p−1∑
i=0

aiZi

 x = 0.

The importance of the minimal polynomial for node domain processing (graph signal
filtering) is that it determines the maximum degree of any polynomial operator on Z
(see Box 2.6 below). The minimal polynomial is closely related to the characteristic
polynomial.

Proposition 2.4 (Roots of minimal polynomial) The polynomial pmin(Z) divides
pc(Z) without residue and therefore can be factored as follows:

pmin(Z) =
∏

i

(Z − λiI)pi , (2.37)

where pi ≤ ki and
∑

pi = p ≤ N. For each eigenvalue λi, ki is the algebraic
multiplicity of the eigenvalue.

Proof By definition of the minimal and characteristic polynomials we must have that
pmin(Z) = 0 and pc(Z) = 0. Since pmin(X) corresponds to the minimal polynomial
of Z, pmin(λ), its degree has to be p ≤ N, because pc(λ), and thus pc(X), has degree
N by construction. Then, we can use long division as in Example 2.7 to express the
characteristic polynomial as a function of the minimal polynomial and a remainder:

pc(X) = q(X)pmin(X) + r(X),

where the degree of r(X) has to be less than p. Then, by Theorem 2.3,

0 = pc(Z) = q(Z)pmin(Z) + r(Z);

but, given that pmin(Z) = 0 and is the minimal-degree polynomial, the polynomial r(Z)
must be zero otherwise there would be a non-zero polynomial of lower degree than pmin

for which r(Z) = 0. Therefore, we can write

pc(Z) = q(Z)pmin(Z),

which means that pmin(Z) has the same roots as pc(Z), and therefore (2.37) follows. �

The main implication of the existence of pmin is that some polynomial operations on
the graph can be simplified, which allows us to answer the first question we posed at
the beginning of this section: the number of degrees of freedom is determined by the
degree of the minimal polynomial.
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Box 2.6 Maximum-degree polynomials for a given graph

Let p(Z) be an arbitrary polynomial of Z of degree greater than that of pmin(Z). Then
we can write

p(Z) = q(Z)pmin(Z) + r(Z),

where q(Z), the quotient, and r(Z), the remainder, are polynomials of Z that can be
obtained by long division (see Example 2.7). Then for any input signal x it is easy to
see that

p(Z)x = (q(Z)pmin(Z) + r(Z))x = r(Z)x, (2.38)

since pmin(Z) = 0. An important consequence of this observation is that the locality
of polynomial operations on the graph depends on both the graph’s radius and diam-
eter (as discussed in Section 2.4.2) and also on the algebraic characteristics of the
one-hop operator (i.e., the degree of its minimal polynomial).

Given pc(Z), in order to identify pmin(Z) all we need to do is find the powers pi ≤ ki

associated with each of the factors in (2.37) that guarantee that pmin(Z) x = 0 for all x.
Recall that polynomials of Z commute (Theorem 2.1) and thus we can write the factors
in (2.37) in any order. Note that if the factor (Z − λiI)pi is present in (2.37), any vector
x ∈ N((Z − λiI)pi ), the null space of (Z − λiI)pi , will be such that p(Z)x = 0 for any
polynomial p(Z) including a term (Z− λiI)pi . Thus, the problem of finding the minimal
polynomial pmin(Z) is the problem of finding pi such that we can construct a basis for
CN where each basis vector is in one of the null spacesN((Z− λiI)pi ). The choice of pi

thus depends on the dimension of N((Z − λiI)pi ). We consider this next.

2.5.4 Algebraic and Geometric Multiplicities and Minimal Polynomials

We have seen already that the algebraic multiplicity ki of eigenvalue λi is the power
of the corresponding factor in the characteristic polynomial of (2.35), i.e., (Z − λiI)ki .
Since λi is an eigenvalue there must be at least one non-zero vector (an eigenvector) in
N(Z − λiI). The geometric multiplicity mi of λi is the dimension of N(Z − λiI), i.e.,
the maximum size of a set of linearly independent vectors in N(Z − λiI).

Consider a specific case where (Z − λiI)ki is a term in the characteristic polynomial
and (Z − λiI)pi is the corresponding term in the minimal polynomial. Denote by Ei the
subspace associated with eigenvalue λi. As discussed above our goal is to represent any
x as follows:

x =
∑

i

xi

where xi ∈ Ei = N((Z − λiI)pi ). For each of the following two cases, depending on
whether ki and mi are equal or not, we discuss how pi can be obtained.
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Case 1 mi = ki, ki ≥ 1
In this case Ei = N(Z − λiI) has dimension ki and we are able to express all vectors
in Ei in terms of a basis comprising mi = ki linearly independent eigenvectors, so that
Ei = span(ui,1, ui,2, . . . , ui,mi ), where each ui, j is one of the eigenvectors associated with
the eigenvalue λi. Thus, for any x ∈ Ei we have

x =
∑

j

α jui, j

and as a consequence

(Z − λiI)x = 0, ∀x ∈ Ei,

so that Z − λiI is the minimal polynomial for vectors in Ei, and pi = 1. Moreover

Zx = λi

∑
j

α jui, j ∈ Ei,

which shows that Ei is invariant under multiplication by any polynomial of Z. Denote
by Ui the N ×mi matrix of the linearly independent eigenvectors that form a basis for Ei

and let Ũi be N × mi and such that ŨH
i Ui = Imi , where Imi is the identity matrix of size

mi × mi. For any x ∈ Ei there is a vector a = [α1, . . . , αmi ]
T such that:9

x = Uia, where a = ŨH
i x,

and the graph operator for x ∈ Ei can be written as

Zx = Ui(λiImi )Ũ
H
i x.

If in addition mi = ki for all i, then Z is diagonalizable and can be written as:

Z = UΛU−1

where each column of U is one of N linearly independent eigenvectors and Λ is diago-
nal, with each diagonal entry an eigenvalue.

Case 2 mi < ki, ki > 1
In this scenario, Z is defective or non-diagonalizable: mi, the dimension ofN(Z−λiI),
is less than ki, the dimension of N((Z − λiI)ki ). Note that x ∈ N(Z − λiI) implies that
x ∈ N((Z − λiI)2), so that N(Z − λiI) ⊆ N((Z − λiI)2).

The term in the minimal polynomial (Z−λiI)pi has to set to zero all the vectors in Ei =

N((Z−λiI)ki ). Thus we are looking for the minimal pi such thatN((Z−λiI)pi ) = N((Z−
λiI)ki ). Then Ei = span(ui,1, ui,2, . . . , ui,ki ), where the linearly independent vectors ui, j

span N((Z − λiI)pi ) = N((Z − λiI)ki ), so that

(Z − λiI)ki x = (Z − λiI)pi x = 0, ∀x ∈ Ei. (2.39)

Note that in Case 1 the basis for Ei was formed with linearly independent eigenvectors

9 As discussed in Appendix A, Ũi is the dual basis of Ui, which always exists and is unique because the
column vectors in Ui are linearly independent. If U has columns forming a basis for RN then Ũ = U−1.
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corresponding to λi. In contrast, in Case 2 the basis vectors cannot all be eigenvec-
tors and the basis for Ei can be constructed in different ways. One approach for basis
construction is illustrated in Example 2.8 below.

Example 2.8 Basis for invariant subspaces of a defective matrix Let Z be a defective
matrix having an eigenvalue λ of algebraic multiplicity k = 2 and geometric multiplicity
m = 1. Find a basis for the space E of all vectors x such that (Z − λI)2x = 0.

Solution

If u(0) is an eigenvector corresponding to λ, we have that (Z− λI)u(0) = 0, by definition,
and thus (Z − λI)2u(0) = 0 so that u(0) ∈ E. Since the algebraic multiplicity is 2, the
invariant space E has dimension 2 but its geometric multiplicity is 1, so that we cannot
find two linearly independent eigenvectors. Thus, we need to find a vector u(1) such that
u(0) and u(1) are linearly independent and (Z − λI)2u(1) = 0. Choose u(1) such that

(Z − λI)u(1) = u(0). (2.40)

For any such u(1), we have (Z − λI)2u(1) = (Z − λI)u(0) = 0 and, since u(0) is non-zero,
this means that u(1) does not belong toN(Z− λI) and therefore u(0) and u(1) are linearly
independent.

Jordan canonical form The construction sketched in Example 2.8 forms the basis for
the Jordan canonical form. For any λi of algebraic multiplicity ki > 1, if the geometric
multiplicity is mi < ki then we can find mi linearly independent eigenvectors. For each
of these eigenvectors we can follow the procedure sketched in Example 2.8 to create a
Jordan chain. As in Example 2.8, u(1) can be found by first solving (2.40); the next step
is to find u(2) such that

(Z − λI)u(2) = u(1), (Z − λI)2u(2) = u and (Z − λI)3u(2) = 0,

or, equivalently, such that

Zu(0) = λu(0), Zu(1) = λu(1) + u(0) and Zu(2) = λu(2) + u(1).

For any vector x ∈ span(u(2),u(1),u(0)), so that x = x2u(2) + x1u(1) + x0u(0), multiplication
by Z can be written in a compact form:

y = Zx = Z(x2u(2) + x1u(1) + x0u(0)) = λx2u(2) + (λx1 + x2)u(1) + (λx0 + x1)u(0),

where we can see that y and x are in the same subspace (since both are linear combina-
tions of u(2), u(1), u(0)) and therefore span(u(2), u(1), u(0)) is invariant under multiplica-
tion by Z; y can then be written as

y0

y1

y2

 =


λ 1 0
0 λ 1
0 0 λ



x0

x1

x2

 . (2.41)

https://doi.org/10.1017/9781108552349.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552349.005


2.5 Graph Operators and Invariant Subspaces 67

The matrix in (2.41) is an example of a Jordan block. A Jordan chain starts with each of
the mi eigenvectors and pi will have the length of the longest Jordan chain.

Example 2.9 Defective graph As a concrete example, consider a directed path graph
with four nodes, leading to the adjacency matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


where we note that one node has only one outgoing link, while another only has an
incoming link. Prove that A is defective, find three independent vectors in the invariant
subspace and interpret their behavior.

Solution

First note that, since the determinant of an upper triangular matrix is the product of
its diagonal terms, we have det(λI − A) = λ4, where λ = 0 is an eigenvalue with
multiplicity 4. Then, solving for an eigenvector leads to u(2) = u(3) = u(4) = 0, so that
u1 = e1 = [1, 0, 0, 0]T is the only eigenvector. Notice that u2 = e2 is such that Au2 = u1,
and therefore A2u2 = 0, so that u2 is not an eigenvector but belongs to the invariant
space with polynomial A4. Likewise e3 and e4 are also in that invariant subspace. For
any vector in R4 we have A4x = 0. We can also observe directly that A is a Jordan
block as in (2.41) with diagonal values λ = 0. In conclusion, since λ = 0 has algebraic
multiplicity 4, but there is only one eigenvector, e1, corresponding to this eigenvalue,
the geometric multiplicity is smaller than the algebraic multiplicity and A is defective.

Diagonalization and invariance Our goal in this section is to understand graph fil-
ters, polynomials of Z, from the perspective of their invariance properties. It is important
to emphasize that invariance under multiplication by Z exists whether or not Z can be
diagonalized.

Remark 2.3 Let eigenvalue λi have algebraic multiplicity ki, and define Ei =

N
(
(Z − λiI)ki

)
. Then Ei is invariant under multiplication by Z.

Proof By definition x ∈ Ei if (Z − λiI)ki x = 0, so that, using the commutativity of
polynomials (Theorem 2.1),

(Z − λiI)ki Zx = Z(Z − λiI)ki x = 0,

which shows that Zx ∈ Ei and proves that the space is invariant. �

Any vector in RN can be written as a linear combination of vectors belonging to sub-
spaces E1, E2, . . . , EM , where M is the number of distinct eigenvalues. The only differ-
ence between the diagonalizable and defective cases is that in the former we can form
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a basis for Ei consisting of eigenvectors, while this is not possible for all Ei in the latter
case. For a given subspace Ei the power pi of the term (Z − λiI)pi in the minimal poly-
nomial is the minimal value such that (Z − λiI)pi x = 0 for any x ∈ Ei. These ideas are
summarized in Table 2.1.

Table 2.1 Summary: Diagonalizable and non-diagonalizable operators

Diagonalizable Non-diagonalizable

Multiplicity mi = ki,∀i mi < ki for at least one i

dim(N((Z − λiI)ki )) dim(N(Z − λiI)) dim(N((Z − λiI)pi ))

Invariant subspaces N M =
∑

i mi

pc(Z)
∏

i(Z − λiI)ki
∏

i(Z − λiI)ki

pmin(Z)
∏

i(Z − λiI)
∏

i(Z − λiI)pi

U N eigenvectors
∑

i mi eigenvectors

Λ Diagonal Block diagonal

Schur decomposition for defective matrices The Jordan canonical form for a de-
fective Z has well-known numerical problems. An alternative approach is to start from
the Schur decomposition (see Theorem 2.2) and obtain a block diagonal form from it.
See for example [18, 19] for a general description. The idea of using the Schur decom-
position as an alternative to the Jordan form was first proposed in the context of GSP in
[20] and also implemented in the GraSP Matlab toolbox [21] described in Appendix B.
Denote Ui as a matrix with ki columns forming a basis for Ei and let Ũi be N × ki and
such that ŨH

i Ui = Iki , where Iki is the identity matrix of size ki × ki. In this case we
again have, for xi ∈ Ei,

xi = Uia, (2.42)

and therefore

a = ŨH
i xi (2.43)

so that

Zxi = UiΛiŨH
i xi (2.44)

where the main difference with respect to Case 1 is that Λi is not diagonal.

Importance of the defective case In some cases making use of the original graph is
important and so it will be necessary to work with a defective Z. In other cases we may
consider changing the graph. Informally, it is always possible to find a diagonalizable
matrix “close” to any non-diagonalizable one. Thus, if Z cannot be be diagonalized, we
could look for an alternative, Z̄, that: (i) can be diagonalized, (ii) is close to Z (e.g., in
terms of the Frobenius norm of the difference) and (iii) represents a graph (e.g., Z̄ is a
valid adjancency matrix).
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If selecting a new Z̄ is an option, several methods can be used. Recalling that symmet-
ric matrices can always be diagonalized, one approach would be to convert the directed
graph into an undirected one. For a directed Z = A, a natural symmetrization would be
Z̄ = A + AT, with the bibliometric symmetrization Z̄ = AAT + ATA as a possible alter-
native [5]. Other approaches that preserve the directed nature of the graph can be based
on structural criteria, which modify the graph for a specific application. An example
of this approach is the teleportation idea in PageRank [4]. Moreover, since some graph
structures (such as path sources or path sinks) lead to a defective Z, removing those can
lead to graphs with better behavior.

More generally, as discussed in Chapter 6, in many cases the choice of graph is in
itself a problem, and thus, when deciding what graph to choose in a particular case, the
relevant properties of the corresponding graph operator Z should be taken into account.

2.5.5 Practical Implications for Graph Filter Design

To conclude this chapter we summarize the key consequences of our study of polyno-
mials Z for the design of practical graph filters.

Localization depends on polynomial degree and graph topology As discussed in
detail in Section 2.2, a degree-k polynomial corresponds to k-hop localized processing
around every node in the graph. But the choice of an appropriate parameter k should
be a function of prior knowledge about the graph signal of interest (e.g., over what size
subgraphs can we expect to see locally similar behavior) as well as properties of the
graph topology, such as radius or diameter. It is clear that a polynomial of degree k1 < k2

will provide more localized processing than one of degree k2, but just how localized this
is depends on the graph properties. This is particularly important in applications where
graphs are reduced (see Section 6.1.5) and become denser as the number of nodes is
decreased. Thus, if a k-hop filter is appropriate for the original graph, it may not be the
right choice for a smaller graph derived from the original one.

Invariant subspaces and graph signal analysis We have described in detail sub-
spaces of vectors that are invariant under multiplication by Z. From a graph signal
analysis perspective the corresponding minimal polynomials, which by definition pro-
duce a zero output for any signal in that subspace, may be useful. If E is an invariant
subspace, and if PE(Z) is the corresponding minimal polynomial, then PE(Z)x = 0 for
any x ∈ E. Therefore, when analyzing some arbitrary signals y ∈ RN we can use PE(Z)
to eliminate any component of such a signal that belongs to E. The signal PE(Z)y will
contain no information corresponding to subspace E.

In Chapter 3 we will discuss the problem of filter design, with an emphasis on the case
where the graph operator Z can be diagonalized. But, more generally, even for defective
Z the effect of a polynomial P(Z) can be completely characterized by its effect on each
invariant subspace. In particular, the dimension of each of these invariant subspaces is
important, since for spaces of dimension greater than 1 the choice of basis functions is
not unique, as discussed below in Box 2.7.
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Box 2.7 Non-uniqueness of bases for invariant subspaces

If an eigenvalue λi is not simple, ki > 1, we have a fundamental ambiguity. The
invariant subspace Ei has dimension greater than 1 and thus an infinite number of
basis functions can be selected for Ei. Since we are characterizing signals by their
response to Z all the vectors in Ei have the same properties and same minimal poly-
nomial (Z − λiI)pi . Thus, any bases for vectors in Ei should be equivalent.
As noted in [22], unless there is a standardized way of selecting a basis for an invari-
ant space Ei with dim(Ei) > 1 we may not be able to compare representations of the
same signal x produced with different implementations. The alternative proposed in
[22] is to use the expressions (2.42) and (2.43). Letting x be any vector in RN we
choose its (non-orthogonal) projection xi onto Ei as follows:

xi = UiŨH
i x. (2.45)

The vector xi is independent of the basis chosen to represent Ei. This is not an orthog-
onal projection: the approximation error is orthogonal to the dual vectors, Ũi, rather
than the spanning vectors, Ui, as would be the case for an orthogonal projection:

ŨH
i (x − xi) = ŨH

i (I − UiŨH
i )x = (ŨH

i − ŨH
i )x = 0

where we have used the fact that ŨH
i Ui = 0, from the definition of biorthogonal

bases (Definition A.8), and the conjugate transpose appears because the basis may
be complex.
In summary, given invariant subspaces Ei the representation

x =
∑

i

xi,

where xi is computed as in (2.45) and there is one term xi per subspace Ei, which is
unique and eliminates any ambiguity due to the choice of basis vectors for each Ei.

Chapter at a Glance

In this chapter we started by introducing basic definitions associated with graphs and
using those to develop an understanding of node domain processing. Since graphs are
characterized by one-hop connections between nodes, we explored how these induce a
notion of locality, and how it can be extended so that a one-hop connection induces a
k-hop neighborhood around a node. A natural follow-up step is to consider neighbor-
hoods around multiple close nodes, leading to the notion of cuts and clustering. We then
introduced algebraic representations of graphs and discussed how these can be viewed
as one-hop operations (see Table 2.2). This was then generalized to define graph fil-
ters as polynomials of an elementary graph operator Z. We showed that the algebraic
properties of Z determine what operations can be performed on a graph. In particular,
vectors that are invariant under multiplication by Z can be used to understand the effect
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Table 2.2 Summary of one-hop operators

Z y = Zx

Adjacency matrix A y(i) =
∑

j∈N(i) ai j x( j)

Random walk Q = D−1A y(i) = 1
di

∑
j∈N(i) ai j x( j)

Combinatorial Laplacian L = D − A = BBT y(i) = di x(i) −
∑

j∈N(i) ai j x( j)

Normalized Laplacian L = I − D−1/2AD−1/2 y(i) = x(i) −
∑

j∈N(i)
ai j

√
di
√

d j
x( j)

Random walk Laplacian T = I − Q = D−1BBT y(i) = x(i) − 1
di

∑
j∈N(i) ai j x( j)

of polynomials of Z on arbitrary vectors. When Z is diagonalizable there exists a full set
of linear independent invariant vectors (i.e., eigenvectors). When Z is not diagonaliz-
able, we can instead find invariant subspaces and use bases for those subspaces to create
a complete representation for graph signals in the space. In either case every vector in
the space can be written as a linear combination of elementary vectors, each belonging
to a space invariant under multiplication by Z.

Further Reading

Graph theory is a classical topic, with many textbooks available to cover topics such as
graph coloring, graph cuts and so on [23]. Texts more focused on spectral graph theory,
such as [8], also provide basic graph definitions and cover the elementary algebraic op-
erators described in this chapter. For the development of graph signal processing from
the perspective of a polynomial of an elementary one-hop operator and its connection
with conventional signal processing see [15, 10] as well as the general algebraic sig-
nal processing framework of [24, 25]. The representation of a space in terms of a basis
derived from invariance under multiplication by a matrix Z is developed in [26]. A de-
tailed discussion of graph Fourier transforms in the context of non-diagonalizable Z is
provided by [22]. The main difference in our presentation with respect to that of [22]
is that we show that the Jordan blocks, which we also used, are only one of the pos-
sible block diagonal representations that could be chosen. Because of the well-known
numerical issues associated with the Jordan form, other block diagonal representations
may be preferable.

GraSP Examples

Section B.3 provides several examples of node domain filtering operations to illustrate
the different approaches that can be used for a specific filter defined as a function of
a fundamental graph operator. A direct approach, where a full matrix is computed and
applied to the signal, is shown first. This approach may not be efficient for a large graph,
however. Thus, a second example considers implementation via successive applications
of the fundamental graph operator, where the filter is a polynomial of the operator.
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Problems

2.1 Coloring
Finding a graph coloring can be simple. If we have N nodes we can assign a different
color to each node and the graph will be N-colorable. The challenge is finding the
minimum coloring, i.e., the one with the minimum number of colors.
Find the minimum coloring for the following graphs:
a. a complete unweighted graph with N nodes;
b. a star graph with N nodes;
c. a tree with K levels.

2.2 Coloring and number of edges
(True/False) Given an unweighted graph with N nodes and chromatic number C (see
Section 2.2.5), if we add an edge to connect two nodes that are not yet connected, then
the chromatic number always increases.

2.3 Trees
In this problem we consider an unweighted tree with K levels. Discuss whether your
answers depend on specific tree properties (balanced or not, minimum and maximum
number of children per node, etc.).
a. Find its diameter and radius.
b. Is it possible to remove an edge in such a way that the diameter is increased while

the graph remains connected?
c. Is it possible to add one edge to the graph (which then may no longer be a tree) in

such a way that the diameter is reduced while the radius remains unchanged?
d. What is the chromatic number of the tree?

2.4 Connectedness
In this problem we consider an unweighted directed graph with N nodes with corre-
sponding adjacency matrix A. Assume that A is reducible, so that it is possible to find a
permutation of A to put it into block upper triangular form:

A =

[
A1 A12

0 A2

]
where A1 and A2 are square matrices of sizes N1 × N1 and N2 × N2 with N1 + N2 = N.
a. Prove that the corresponding graph is not strongly connected.
b. Assuming that the graph is weakly connected, what would be the minimum number

of edges to be added in order to make it strongly connected?
c. Consider the special case where only entries directly above the diagonal are non-

zero. What is this graph? Is it weakly connected?

2.5 Processing signals on a tree
Consider a balanced binary tree with K levels.
a. Assuming there are two processors, what is the best way to split the tree for pro-

cessing into two roughly equal subgraphs?
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b. Assuming we are performing a k-hop localized graph filter on this tree, how much
data has to be exchanged between the two processors?

2.6 Normalization
In Section 2.3.3 we discussed two normalization strategies, one where the goal was to
achieve consensus, the other where some physical goods were transported. Here we
consider an extension of the latter case, where physical goods are transported but where
a percentage of the goods is lost while being stored at a node before being distributed.
Assume only a fraction 0 < α < 1 of the goods at any node is actually transported.
a. Let L be the combinatorial Laplacian of the original graph. For a given α propose a

normalization matrix K as an alternative for the above approach using normalization
strategies mentioned above.

b. In the case in part a, given an initial signal x(0) with all positive entries and defining
Nk = 1Tx(k), find k such that Nk/N0 < ε for a given 0 < ε < 1.

c. Repeat parts a and b for the case where the loss is node-dependent, that is, there is
an 0 < αi < 1 associated with each node i.

2.7 Adjacency matrices and permutations
a. Write the adjacency matrix of an eight-node undirected and unweighted cycle graph

with consecutive labeling of the nodes along the cycle.
b. Repeat this for the case where the labels along the cycle are 1, 3, 5, 7, 2, 4, 6, 8.
c. With the first labeling the adjacency matrix is circulant, that is, each row can be

obtained by shifting by one entry the row immediately above (and the first row can
be obtained from the eighth). Assuming we add an edge from node 1 to node 4, what
other edges should be added so that the resulting adjacency matrix is still circulant?

2.8 Minimal polynomials of vectors
Let x1 and x2 be two graph signals with respective minimal polynomials p1(Z) and
p2(Z) having degrees n1 and n2. Assume that Z is n × n and that all its eigenvalues are
simple.
a. What is the minimal polynomial for the vectors in the set S = span(x1, x2)?
b. Letting pmin(Z) be the minimal polynomial of Z, is it possible for the minimal

polynomial of S to be pmin(Z)? If not, justify why this is so. If on the other hand it is
possible then give an example of two vectors x1, x2 for which this is true.

2.9 Non-diagonalizable Z
Consider a directed unweighted path graph of length 4.
a. Prove that the the operator Z = A is not diagonalizable.
b. What are the invariant subspaces of Z as defined in a?

2.10 Directed acyclic graphs
Let A be the adjacency matrix of a directed acyclic graph (DAG). Prove that A is not
diagonalizable.

2.11 Path sinks and path sources
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In a directed graph G we define a path sink (or source) with n nodes as a structure where
a node i0 is connected to the rest of the graph by only one incoming edge (for a sink)
or one outgoing edge (for a source) and where the connection to the rest of the graph is
via a directed path connecting nodes (i1, i2, . . . , in).
a. Using a suitable permutation, write the adjacency matrices for two graphs having

a single path sink and a single path source, respectively, with both paths having n
nodes.

b. Prove that for n > 1 the corresponding adjacency matrices cannot be diagonalized.

2.12 Nilpotent Z
Let Z be nilpotent, such that there is a k > 1 for which Zk = 0 while Zl , 0 for 1 ≤ l < k.
Prove that Z cannot be diagonalized.

2.13 Symmetrization
Let A be the adjacency matrix of a directed graph, with the corresponding incidence
matrix B, where there are M = |E| edges and bk denotes the kth column of B.
a. Find the incidence matrix of A + AT.
b. Find the incidence matrices for AAT, ATA and AAT + ATA.
c. Provide a qualitative comparison of the symmetrizations A1 = A + AT and A2 =

AAT + ATA with the corresponding incidence matrices B1 and B2 in terms of their
number of edges (sparsity).
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