STRONGLY REGULAR EXTENSIONS OF RINGS

CARL FAITH ${ }^{1)}$

As defined by Arens and Kaplansky [2] a ring A is strongly regular (s.r.) in case to each $a \in A$ there corresponds $x=x_{a} \in A$ depending on a such that $a^{2} x=a$. In the present article a ring A is defined to be a s.r. extension of a subring B in case each $a \in A$ satisfies $a^{2} x-a \in B$ with $x=x_{a} \in A$. S.r. rings are, then, s.r. extensions of each subring. A ring A which is a s.r. extension of the center has been called a ξ-ring (see Utumi [13], Drazin [3], Martindale [11], and their bibliographies).

Arens and Kaplansky showed that a s.r. ring is a subdirect sum of divison rings. Since any s.r. ring is semisimple, a later result stating that any semisimple ξ-ring is a subdirect sum of division rings (see [11]) contains this result. ${ }^{2)}$ In $\$ 2$ of the present article, a further generalization is obtained: (1) If a semisimple ring A is a s.r. extension of a commutative subring B, then A is a subdirect sum of division rings. For the proof, the reduction to the case A is primitive is immediate, but at this stage an innovation is made. Instead of specializing B, as has been done in the previous work along these lines, a structure theorem (Theorem 2.1) for a primitive s.r. extension A of an arbitrary ring B is obtained first of all: (2) If A is a primitive ring, not a division ring, and if A / B is s.r., then B is dense in the finite topology on A. Of course, (1) is an immediate consequence, but more can be squeezed out of (2). For example, (2) shows that in order that a primitive ring A be a s.r. extension of a subring B, it is necessary that B be a primitive ring, or an integral domain. (A bit of duality can be introduced here, since in $\S 1$ it is shown that a directly

Received March 22, 1961.
${ }^{1)}$ This article was written during my tenure as North Atlantic Treaty Organization Postdoctoral Fellow (U.S.A.) in Mathematisches Institut, Heidelberg University, I am presently at the Institute for Advanced Study.
${ }^{2)}$ A generalization in another direction has been given by Utumi [13].
irreducible s.r. extension of an integral domain is necessarily an integral domain.) A fairly easy consequence of this is that in order that a semisimple ring A be a s.r. extension of a subring B, it is necessary that B be a subdirect sum of primitive rings and integral domains (Corollary 2.2 ff .).

Another consequence of (2) is that any s.r. extension of a division ring is a subdirect sum of division rings. This fact is also implied by the theorem of Arens and Kaplansky inasmuch as a s.r. extension of a s.r. ring is a s.r. ring. However, this and the above results are all obtained in a new way independently of the previous results for ξ-rings and s.r. rings.

The structure of A is not known in the general case when A is a s.r. ex tension of a commutative subring B. However the centralizer of B in A is a ξ-ring, so that some information on the structure of A is available.

In $\S 3$ the results on s.r. extensions are applied in extending the results of Nakayama [12] on the commutativity of rings, continuing a program which I began in [4]. Any future improvements in the theory of s.r. extensions will net corresponding improvements in this direction also.

A simple computation shows that a ring is regular ($a x a=a$) in the sense of von Neumann if and only if every principal one-sided ideal has an idempotent generator. Arens and Kaplansky introduced the notion of strong regularity ($a^{2} x=a$), whereby not only are these idempotent generators demanded but also nilpotent elements are banished. Here, and more generally in ξ-rings, the emphasis has shifted from the manufacture of idempotents to the disposition of the nilpotent elements of index two: they must all lie in the center. In §5 the position in a primitive ring A of the subring $T(A)$ generated by the nilpotent elements of index two is investigated. One finds in important special cases (e.g., if A is an algebraic algebra, or if A has a minimal left ideal) that the subring $T(A)$, and also the subring $E(A)$ generated by the idempotents of A, is dense in A, if A is not division. This clearly illustrates my allusion above to the extent to which the structure of an s.r. extension $A_{i}^{\prime} B$ is influenced by the fact that B contains the subring $T(A)$.

1. Directly irreducible strongly regular extensious. If A is a $\hat{\varsigma}$-ring with center Z, and if $a, x \in A$ satisfy $a^{2} x-a \in Z$ then [11, Theorem 1] states that $a x=x a$. The verbatim proof (accredited to Herstein) given there establishes
this implication for $C N$-rings ${ }^{3)}$, a fact which is stated in the proposition below. By reproducing its proof here, I have been able to make this section, and the section following, relatively self-contained.

Proposition 1.1. In any CN-ring, any two clements a and x which satisfy $a^{2} x-a \in Z$ are commutative, that is, then $a x=x a$.

Proof. Since $a^{2} x-a \in Z,\left(a^{2} x-a\right) a=a\left(a^{2} x-a\right)$, and so (1) $a^{2}(a x-x a)=0$. Using (1), it follows that $[a(a x-x a) a]^{2}=0$, so that, since A is $C N$, (2) $a(a x-x a) a \in Z . \quad$ Commuting this with a and using (1), there results (3) $a(a x-x a) a^{2}=0$. Since $a^{2} x-a \in Z$, one easily verifies that

$$
\text { (4) } a x-x a=[a(a x-x a)+(a x-x a) a] x \text {. }
$$

If (4) is multiplied on the left by a, using (1), the result can be simplified to $a(a x-x a)=a(a x-x a) a x$, so that, by (2), one has

$$
\text { (5) } \quad a(a x-x a)=a(a x-x a) a x=x a(a x-x a) a \text {. }
$$

Multiplying (5) on the right by a produces (6) $a(a x-x a) a=x a(a x-x a) a^{2}$, which is $=0$ by (3). Reapplying this latter fact to (5) yields (7) $a(a x-x a)$ $=0$. Thus, (4) can be simplified to (8) $a x-x a=(a x-x a) a x$. From (7) $[(a x-x a) a]^{2}=0$, so that $(a x-x a) a \in Z$. Commuting this with a, and using (7), one obtains (9) $(a x-x a) a^{2}=0$. Since $(a x-x a) a \in Z$, (8) becomes $(a x-x a)$ $=x(a x-x a) a$, and so, by (9), one has (10) $(a x-x a) a x=x(a x-x a) a^{2} x=0$. Then (8) reduces to $a x=x a$, which is the desired result.

Corollary 1.2. If a and x are elements of a ring A, and if the element $a^{2} x-a$ and all nilpotent elements of A commute with both a and x, then a and x commute.

Proof. Let Q denote the subring of A generated by a and x, and let z denote the center of Q. Then the condition of the corollary implies that Q is a $C N$-ring, and that $a^{2} x-a \in \mathcal{J}$, so that the corollary follows from the proposition.

An element a of a ring A is (von Neumann) regular if $a x a=a$, and strongly

[^0]regular (Arens and Kaplansky) if $a^{2} x=a$, for suitable $x \in A$. The next corollary in the case $n=1$ shows that in $C N$-rings strong regularity of an element a implies its regularity. The corollary follows from the proposition by observing that $a^{n+1} x=a^{n}$ implies $\left(a^{n}\right)^{2} x^{n}=a^{n}$.

Corollary 1.3. If A is a CN-ring, then the equation $a^{n+1} x=a^{n}$ for two elements a and x in A, and a natural number n, implies the equation $a^{n} x^{n}$ $=x^{n} a^{n}$.

Lemma 1.4. A directly irreducible $C N$-ring A has an identity element $1 \neq 0$ if and only if there exist $a, x \in A$ such that $a^{2} x=a \neq 0$. Then $a x=x a=1$.

Proof. By the corollary $a^{2} x=a$ implies $a x=x a$, so that $e=a x$ is a nonzero idempotent when $a \neq 0$. Since the sets $e A(1-e),(1-e) A e$ are central, they commute with e, whereby they are $=0$. By the direct irreducibility of $A, e=1$. The converse is trivial.

In a s.r. extension of a division ring, to each element a there corresponds an element x such that $a^{2} x-a$ has certain regularity properties. This situation for directly irreducible rings is slightly generalized directly below, and following this a similar generalization of s.r. extensions of integral domains is considered.

Theorem 1.5. Let A be a directly irreducible CN-ring containing a left identity $1 \neq 0$, and such that to each $a \in A$ there correspond $b \in A$ and a natural number $n=n_{a}$ such that either $a^{n+1} b-a^{n}=0$, or else $a^{n+1} b-a^{n}$ has a right inverse in A. Then the totality N of nilpotent elements of A is an ideal, and $A-N$ is a division ring.

Proof. By Lemma 1.4, 1 is a two-sided identity. If $a^{n+1} b-a^{n}$ has the right inverse x, then a has the right inverse $a^{n} b x-a^{n-1} x$. If $a^{n+1} b=a^{n}$, then, by Corollary 1.3, $a^{n} b^{n}=b^{n} a^{n}$, so that $e=a^{n} b^{n}$ satisfies $e^{2}=e$. Then, by Lemma 1.4, either $e=1$, whence a has right inverse $a^{n-1} b^{n}$, or else $0=e=e a^{n}=a^{n}$. Thus, every nonnilpotent element has a right inverse. It is easy to see that this means that every nonnilpotent element has a two-sided inverse. Then (e.g., [9, p. 21]), since N is a (central) ideal of $A, A-N$ is division.

Remark. One can show in general that in a ring A with identity such that every nonnilpotent element has an inverse, that N is a two-sided ideal such
that $A-N$ is division (cf. the proof of Lemma 1.9 below.)
Corollary 1.6. If A is directly irreducible with a left identity $1 \neq 0$ such that to each $a \in A$ there corresponds $b \in A$ such that either $a^{2} b-a=0$, or else $a^{2} b-a$ has a right inverse, then A is division.

Proof. It is trivial to show that $N=0$, so that A is $C N$, and the theorem applies.

The corollary shows that a nonzero directly irreducible s.r. ring is division if only if there exists a left identity. In such a ring a two-sided identity exists, according to Lemma 1.4.

Corollary 1.7. A nonzero directly irreducible ring is s.r. if and only if it is division.

Theorem 1.8. If A is a directly irreducible $C N$-ring, and if to each $a \in A$ there correspond $b \in A$ and a natural number $n=n_{a}$ such that $a^{n+1} b-a^{n}$ is not a proper right divisor of zero in A, then the set N of nilpotent elements of A is a nil ideal, and $A-N$ is an integral domain.

Proof. In a way completely analogous to the proof of the last theorem, one sees that N coincides with the set D of all right divisors of 0 in A. Thus, the theorem is a consequence of the following lemma. The lemma no doubt is known, but I have not been able to find a published proof. For this reason, I include one here.

Lemma 1.9. If $N=D$ in a ring A, then N is an ideal of A, and $A-N$ is an integral domain.

Proof. If $N=\mathbf{0}$, there is nothing to prove. Now let $0 \neq x \in N$ have index of nilpotency $=m$. Then, since $(a x) x^{m-1}=0, a x \in D=N$, for all $a \in A$, that is, $A x \cong N$, for all $x \in N$. Since $(a x)^{n}=0$ implies that $(x a)^{n+1}=0$, this shows that $A x \subseteq N$ implies that $x A \cong N$, so that $A x A \cong N$, for all $x \in N$. In order to show that N is an ideal, it. renains to show that N is closed under addition. If $x, y \in N$, then, since $(x+y)^{3} \in A x A+A y A$, it follows that $(x+y) \in N$. It remains to show that $A-N$ is integral. It suffices to show that $a \notin N, b \notin N$, $a b=q \in N$ leads to a contradiction. Clearly, $q \neq 0$, so q is nilpotent of index $m \geqq 2$. Since $(a b)^{m}=\left[(a b)^{m-1} a\right] b=0, b \notin D$ implies that $(a b)^{m-1} a=0$. But $a \notin D$ implies that $(a b)^{m-1}=0$, which is the desired contradiction.

A consequence of Corollary 1.6 is that a directly irreducible s.r. extension of a division ring is a division ring. In analogy with this fact one has

Corollary 1.10. A directly irreducible s.r. extension of an integral domain is an integral domain.

Proof. If A is the extension, and B the integral domain, then A contains no nilpotent elements $\neq 0$. Thus, if $a, y \in A$, then $a y=0$ if and only if $y a=0$. Since A is a $C N$-ring, by the theorem it suffices to show that $a-a^{2} b \in B$ is not a proper right divisor of zero in A. Hence assume that $0 \neq y \in A$ is such that $y\left(a-a^{2} b\right)=0$, and $a-a^{2} b \neq 0$. Then $\left(a-a^{2} b\right) y=0$, so that $\left(a-a^{2} b\right)\left(y-y^{2} c\right)=0$, where c can be chosen such that $y-y^{2} c \in B$. Since B is integral, $y=y^{2} c$, so that, by Lemma $1.4, y c=c y$ is the ring identity, which contradicts the choice of y as a proper left divisor of 0 .

Since a s.r. ring is a s.r. extension of every subring, it would seem that the hypothesis " A is a s.r. extension of B " would have more force if one assumes at the outset that A is not an s.r. ring. (Then B is not s.r.!) For these rings the structure theory can be reduced in some cases to that of directly irreducible s.r. extensions.

Proposition 1.11. Let B be a simple ring with identity e, and let A be a s.r. extension of B, A not a s.r. ring. Then $A=Q \oplus P$, where Q is a directly irreducible s.r. extension of B having the identity e, and P is a s.r. ring. Conversely, $Q \oplus R$ is a s.r. extension of B, if Q is any s.r. extension of B, and P is any s.r. ring.

Proof. The sufficiency is clear. The necessity requires the following lemma which is also of interest in more general situations.

Lemma. If B is a ring with a central idempotent e, and if A / B is a s.r. extension, then e is a central element of A.

Proof of the Lemma. B contains all nilpotent elements of index two, so that B contains the sets $e A(1-e),(1-e) A e$. Since e is central in B, these sets $=0$, so $A=e A e \oplus(1-e) A(1-e)$, and e is central.

Going back to the proof of the proposition, since $(1-e) A(1-e) \cap B=0$, $P=(1-e) A(1-e)$ is s.r. as required. It remains to show that $Q=e A e$ is directly irreducible. To this end assume that $Q=M \oplus N$, where M and N are
ideals. $\quad M \cap B=0$ implies that M is s.r. If both M and N were s.r., then so would Q, whence A, be s.r., contrary to assumption. On the other hand, if $M \cap B \neq 0$, then $M \supseteqq B$, so that $M=Q, N=\mathbf{0}$, and Q is directly irreducible.

The existence of directly irreducible s.r. proper extensions, not division rings, of simple rings is guaranteed by the example in §4 of [4].
§2. Semisimple strongly regular extensions. The next theorem shows that in order that a ring B possess a primitive s.r. extension, it is necessary that B be a primitive ring, or an integral domain.
2.1. Structure Theorem. Let A be a primitive ring, not a division ring, which is represented as a dense ring of l.t.'s in a vector space V over a division ring D. Then: if B is any subring of A such that A / B is s.r., then B is isomorphic to a dense ring of l.t.'s in V.

Proof. Let V_{n} be a vector subspace of V of finite dimension n, let $U=\left\{a \in A \mid V_{n} a \cong V_{n}\right\}$, and let $K=\left\{a \in A \mid V_{n} a=\mathbf{0}\right\}$. Then, as is well known [9], the difference ring $\bar{U}=U-K$ is isomorphic to D_{n}, the complete ring of $n \times n$ matrices over D. First assume that $n>1$, and let $u \in U$ be such that $u^{2} \in K$. Then, if $c \in A$ is such that $u-u^{2} c \in B$, then, since $u^{2} c \in K$, it follows that $u-u^{2} c \in Q=B \cap U$. Thus, the subring \bar{Q} determined by Q under the canonical homomorphism $U \rightarrow \bar{U}$ contains every $\bar{u} \in \bar{U}$ satisfying $\bar{u}^{2}=0$. By [7, p. 602, Proposition 1], $\bar{Q}=\bar{U}$, that is, $U=Q+K$, and, consequently, every l.t. of V_{n} is induced by an element of B, in case $n>1$. Now V_{1} is contained in a subspace V_{2}, and if \bar{a}_{1} is any l.t. in V_{1}, there exists a l.t. \bar{a}_{2} in V_{2} such that a_{2} induces \bar{a}_{1}. Then, if $b \in B$ induces \bar{a}_{2}, then b also induces \bar{a}_{1}. Thus, in all cases, the 1.t.'s in V_{n} can be induced by elements of B. This establishes that B is isomorphic to a dense ring of l.t.'s in V.
(1) of the next corollary is immediate.

Corollary 2.2. Let A be a s.r. extension of a ring B. (1) If A is a primitive ring, not a divison ring, then B is a primitive ring, and so is any intermediate ring of A / B. (2) If A is semisimple, then B is a subdirect sum of primitive rings, and integral domains.

Proof. (2) Let $\{P\}$ denote the collection of primitive ideals in A. Since
$\cap P=0$, necessarily $\cap(P \cap B)=0$, so that B is a subdirect sum of the rings $\{B-(P \cap B)\}$. Now $A-P$ is a s.r. extension of $(P+B)-P$, so that by the theorem: if $A-P$ is not a division ring, then $(P+B)-P$ is primitive; $(P+B)-P$ is an integral domain, otherwise. (2) is completed by observing that $(P+B)-P$ is isomorphic to $B-(P \cap B)$, for each $P \in\{P\}$.

Corollary 2.3. Let A be a semisimple ring which is a s.r. extension of a commutative subring B. Then A is a subdirect sum of division rings, and B is a subdirect sum of (commutative) integral domains. (If in addition A is subdirectly irreducible, then A is a division ring).

Proof. Let A^{\prime} be any primitive homomorph of A, and let B^{\prime} denote the corresponding map of B. Since A^{\prime} / B^{\prime} is s.r., and B^{\prime} is commutative, density of B^{\prime} in A^{\prime} would imply commutativity of A^{\prime}, which in turn would imply that A^{\prime} is a field. Thus, by the theorem, A^{\prime} is a division ring, so that A is a subdirect sum of division rings. By the corollary, B must be a subdirect sum of (commutative) primitive rings and integral domains. Since a commutative primitive ring is a field, B has the desired struture. (The parenthetical remark is obvious).
3. Commutativity theorems. If S is a nonempty subset of a ring A, then $[S]$ denotes the subring generated by S. If R is a subring, then $R[S]$ denotes the subring generated by R and S. If A is a division ring, and if R is a division subring, $R(S)$ is the division subring generated by R and S.

Let $₫$ be a commutative ring with identity. A ring A is a \emptyset-ring (in the sense of Jacobson [8, p. 55]) if A is a unitary left \mathscr{D}-module satisfying $c(x y)=(c x) y=x(c y)$ for all $c \in \mathscr{D}$, and all $x, y \in A$.

Definition. Let \mathscr{D} be a commutative ring with identity which contains a (possibly 0) subring K with the property that (1) a nonzero homomorph K^{\prime} of K is an integral domain if and only if K^{\prime} is an algebraically closed field, and (2) there exist finitely many $c_{1}, \ldots, c_{r} \in \mathscr{D}$ such that $\mathscr{D}=K\left[c_{1}, \ldots, c_{r}\right]$. Let A be a \emptyset-ring, and B a \emptyset-subring of A such that to each $a \in A$ there corresponds a polynomial $P_{a}(x)$ in the polynomial ring $\mathscr{D}[x]$ such that

$$
a^{n}-a^{n+1} p_{a}(a) \in B
$$

for some natural number n depending on a. Then A / B is an N-extension. If
A / B is an N-extension, then it is an N_{1}-extension if $n=1$ for all $a \in A$, and it is an N_{2}-extension if B contains all idempotents of A.
N-extensions have been studied extensively by Nakayama [12] (and others, see [12, References]) where the main result states that any ring A which is an N_{1}-extension of its center Z is commutative (or, more generally, any $C N$. ring which is an N-extension of its center is commutative.) This result had been obtained earlier by Nakayama in the case $K=\mathbf{0}$. In this case it is also true that a division ring A is commutative if it is an N-extension of a division \mathscr{D}-subring $\neq A$ (Faith [4, Theorem 1]), a result which is extended to the $K \neq 0$ case below.

Theorem 3.1. Let A be a division \emptyset-ring, \mathscr{D} as in the definition, and let B be a \mathscr{D}-subring such that A / B is an N-extension. Then: if B is commutative, or if B is a division subring $\neq A$, then A is a field.

Proof. If B is commutative, so is the division subring (B) generated by B. If $(B)=A$, then A is a field as required. Hence, it suffices to consider only the case where $A(\neq Z)$ is an N-extension of the division ring $B \neq A$. Let 1 be the identity of A, and set $\varphi=\emptyset 1$. Since $\varphi \neq 0, A$ and B are algebras over the field $\bar{\varphi}$ of quotients of φ. In this case the results of [6] are applicable. The hypotheses imply that to each $a \in A$ there corresponds $p_{a}(x)$ with coefficients in $\varphi(\cong \bar{\varphi})$ such that $a^{n}-a^{n+1} p_{a}(a) \in B$, Under these conditions [6, Theorem 1.5] asserts that to each $b \in A$ there corresponds a polynomial $F_{b}(x)$ over $\bar{\varphi}$ such that (i) $F_{b}(b) \in Z$, and (ii) $F_{b}(x)$ is the composition of finitely many of the polynomials in the set

$$
\left\{x^{n}-x^{n+1} p_{a}(x) \mid a \in A, n=1,2, \ldots\right\} .
$$

Clearly, then, the polynomial $F_{b}(x)$ has the form

$$
F_{b}(x)=x^{m}-x^{m+1} g_{b}(x),
$$

with $m=m(b)>1$, and $g_{b}(x) \in \varphi[x]$. (It is important to note that the $F_{b}(x)$ are polynomials over φ.) The effect of all of this is to show that A / Z is an N-extension, as defined above, so that $A=Z$ by the result of Nakayama.

Theorem 3.2. Let A be a \emptyset-ring, \mathscr{D} as in the definition, and let B be a commutative \mathbb{D}-subring such that A / B is an N_{1}-extension. If either A is semi-
simple, or $B \cap J(A)=\mathbf{0}$, where $J(A)$ denotes the Jacobson radical of A, then A is commutative.

Proof. Since A is semisimple (if $B \cap J(A)=\mathbf{0}$, then J is s.r., so $J=0$), A is a subdirect sum of division rings A^{\prime} by Corollary 2.3. Each A^{\prime} can be regarded as a \emptyset-ring, and it follows that each A^{\prime} is an N_{1}-extension of a commutative subring, so that each A^{\prime} is commutative by Theorem 3.1. Then A is commutative.

Below, if a ring is an N_{1}-extension of $\mathbf{0}$, then it is an N_{1}-ring. By Nakayama's result, every N_{1}-ring is commutative. If A is an N_{1}-extension of a simple subring B, and if B has an identity e, it follows from the lemma to Proposition 1.11 that $A=e A e \oplus(1-e) A(1-e)$. Since $(1-e) A(1-e)$ is an N_{1}-ring, it is commutative. Now suppose that $e A e=M \oplus N$, where M and N are ideals. If both M and N are disjoint from B, then both M and N are N_{1} rings, whence they are commutative. Thus, if $e A e$ is noncommutative, it can be assumed that, say, $B \cap M \neq 0$. Then, by the simplicity of $B, B \cong M$, and, since M now contains the identity e of $e A e, M=e A e, N=0$, so that $e A e$ is directly irreducible. This establishes the lemma.

Lemma 3.3. If A is an N_{1}-extension of a simple \mathbb{D}-subring B, and if B contains an identity element e, then

$$
A=Q \oplus P
$$

where $Q=e A e$, and $P=(1-e) A(1-e)$ is a (commutative) N_{1} ring. Further more, either A is commutative, or else $e A e=Q$ is directly irreducible.

Now suppose that B in the lemma is a division \emptyset-subring. Then, if A is noncommutative, Q is a directly irreducible N_{1}-extension of B. Since Corollary 1.7 shows that Q is a division ring, it follows from Theorem 3.1 that either $B=Q$, or else Q is a field. This completes the proof of the next theorem.

Theorem 3.4. Let A be a Ø-ring, and B a division \emptyset-subring such that A / B is an N_{1}-extension. Then, either A is commutative, or else $A=B \oplus P$, where P is a (commutative) N_{1}-ring. Furthermore, if A is directly irreducible, and $B \neq A$, then A is a field.

The theorem and the discussion preceding have the corollary.

Corollary 3.5. If A is a 0 -ring which is an N_{1}-extension of $a \operatorname{D}$-subfield B, then A is commutative.
§4. ξ_{2}-extensions. The extension A / B is a ξ-extension in case to each $a \in A$ there exist $x=x_{i} \in A$ and a natural number $n=n_{1}$ such that $a^{n}-a^{n+1} x \in B$. If x can be chosen such that x^{n} commutes with a^{n}, for every $a \in A$, then a ξ-extension is a ξ^{\prime}-extension. A ξ-extension is ξ_{2}, if B contains all idempotents of A, and ξ_{2}^{\prime} if it is both ξ_{2} and ξ^{\prime}.

If A is a \mathscr{D}-ring, where \mathscr{D} is a commutative ring with identity, and if B is a \mathscr{D}-subring such that to each $a \in A$ there correspond $p_{a}(x) \in \Phi[x]$ and a natural number $n=n_{a}$ such that $a^{n}-a^{n+1} p_{a}(a) \in B$, then A / B is a ξ^{\prime}-extension ; it is ξ_{2}^{\prime} if $p_{e}(e)=0$ for each idempotent $e \in A$. Thus, the results of this section are applicable to these extensions; in particular, they are applicable to N extensions.

A ring A is a ξ_{2}^{\prime}-ring if it is a ξ_{2}^{\prime}-extension of 0 . It is trivial to verify that any ξ_{2}^{\prime}-ring is a nil ring, and conversely. If A / B is ξ_{2}^{\prime}, and if L is any left ideal disjoint from B, then L is nil. To see this, if $a \in L$, and if $a^{n}-a^{n+1} x$ $\in B$, then $0=a^{n}-a^{n+1} x \in B \cap L=0$. Since $a^{n} x^{n}=x^{n} a^{n}$, this implies that $e=a^{n} x^{n}$ is idempotent. Since $e \in L \cap B=0$, then $a^{n}=e a^{n}=e=0$, so that L is nil. This fact is used several times below.

Theorem 4.1. If A is $a \xi_{2}^{\prime}$-extension of a simple ring B, and if $J(A) \neq A$, then $J(A)$ is nil, and $A-J(A)$ is primitive.

Proof. Suppose for the moment that $J(A) \supseteqq B$. Then $A-J(A)$ would be a ξ_{2}^{\prime}-ring, whence it is a nil ring. This would imply that $A=J(A)$, which is excluded by hypothesis. Hence $J(A) \not \equiv B$, so that $J(A) \cap B=\mathbf{0}$, whence $J(A)$ is nil. Now B cannot be contained in every primitive ideal of A, since the intersection of these is $J(A)$. Hence there exists a primitive ideal P which is disjoint from B. Then P is nil, whence $P=J(A)$, and $A-J(A)$ is primitive.

Now suppose that A is a ring with no nil ideals $\neq 0$ which is a ξ_{2}^{\prime}-extension of a division subring B. By the theorem, A is primitive, but, as a matter of fact, A is division. The proof of this is similar to the proof of the theorem, except that one considers the modular maximal left ideals (m.m.l.-ideals) of A instead of the primitive ideals. Since A contains no nil left ideals, one concludes that $\mathbf{0}$ is a m.m.l.-ideal, that is, that A is a division ring. This fact is stated
in the next theorem.
Theorem 4.2. If A is a ring with no nil ideals $\neq \mathbf{0}$, and if A is a $\xi_{2}^{\prime}-$ extension of a division subring, then A is a division ring.

The corollary below is a consequence of the theorem, and of Theorem 3.1.
Corollary 4.3. If A is a ring with no nil ideals $\neq \mathbf{0}$, and if A is a N_{2} extension of a division subring $B \neq A$, then A is a field.

The last two results can be restated as follows: If A is a ring containing no nonzero idempotents $\neq 1$, and containing no nonzero nil ideals, and if A is a ξ^{\prime}-extension (resp. N-extension) of a division subring $B \neq A$, then A is a division ring (resp. field.)

The corollary generalizes results on radical extensions of [4] and [5].
If A is a radical extension of an integral domain, then to each $a \in A$ there corresponds a natural number n such that a^{n} has certain regularity properties. The situation is generalized below.

Theorem 4.4. Let A be a ring wiih the property that to each $a \in A$ there corresponds a natural number $n=n_{a}$ such that a^{n} is not a proper right divisor of zero in A. Then the set N of nilpotent elements is an ideal, and $A-N$ is an integral domain.

Proof. Let D denote the set of all right divisors of zero in A. The condition of the theorem implies that $N=D$, so that the theorem follows from Lemma 1.9.

Remark. If A is a ring with a nil ideal N such that $A-N$ is integral, then, of course, $D=N$ in A, and A has the property of the theorem.

Now let A be a radical extension of an integral domain B, that is, such that to each $a \in A$ there corresponds a natural number $n=n_{a}$ such that $a^{n} \in B$. Assume that A contains no nil left ideals $\neq 0$, let $x \in A$ be nonnilpotent, and let $y \in L_{x}=\{a \in A \mid a x=0\}$. Then, since $y^{m} x^{n}=0, m=m_{y} . n=n_{x}$, since B is integral, and since $x^{n} \neq 0$, then $y^{m}=0 . L_{x}$ is therefore nil, so $L_{x}=0$. This shows that each $a \in A$ has the property stated in the theorem, and completes the proof of the corollary.

Corollary 4.5. If A is a ring with no nil left ideals $\neq \mathbf{0}$, and if A is a radical extension of an integral domain, then A is an integral domain.

A commutative integral domain A can be radical over a subring B only under very special circumstances. For then, if A^{*} and B^{*} denote the respective quotient fields of A and B, then A^{*} is radical over B^{*}. It follows from the work of Kaplansky [Canad. J. Math. vol. 3 (1951) 290-292] that either $A^{*}=B^{*}$, or else, A^{*} has characteristic $p>0$, and either A^{*} / B^{*} is purely inseparable, or else A^{*} is algebraic over $G F(p)$. It would be interesting to know the corresponding situation for noncommutative integral domains (cf. [5] for some results with added hypotheses on A and B).
5. Generation of primitive rings. If A is a ring, let $T(A)$ denote the subring generated by all nilpotent elements of index two, and let $E(A)$ be the subring generated by all idempotents. If A is primitive, and A / B is s.r., then by Corollary 2.2, B is dense in the finite topology on A, if A is not division. In view of the fact that B contains $T(A)$ when A / B is s.r., it would be interesting to know if any subring of A which contains $0 \neq T(A)$ is dense in A. Positive results abound in special cases, making a counterexample hard to find.

Theorem 5.1. If A is a primitive ring with a minimal left ideal, and if A is not a division ring, then $T(A)$ and $E(A)$ are dense in the finite topology on $A .{ }^{\prime}(T h e n T(A)$ and $E(A)$ are primitive rings).

Let S denote the socle of A. It suffices to show that $T(S)=E(S)=S$, since then density follows from the inclusions $T(A) \supseteqq S, E(A) \supseteq S$. Thus, the theorem is a consequence of the lemma below. (In case A does not satisfy the minimum condition, then the theorem follows immediately from Rosenberg's generalization [Proc. Amer. Math. Soc. vol. 7 (1956) p. 897, Corollary 5] of a theorem of Kasch [10]).

Lemma 5.2. (a) If A is a simple ring containing a nontrivial idempotent, then $T(A)=A$. If, in addition, (b) A is an algebra over a field $\Phi \neq G F(2)$, or (c) if A contains a minimal left ideal, then $E(A)=A$.

Proof. (a) Let \mathscr{T} denote the additive subgroup generated by all nilpotent elements of index two, and let, for any subset S of $A,[S, S]$ denote the additive subgroup generated by all $[a, b]=a b-b a, a, b \in S$. If $u, v \in \mathscr{T}$ are nilpotent of index two, then so is

$$
w=(1+u) v(1-u)
$$

Then,

$$
[u, v]=w+u v u-v \in \mathscr{T} .
$$

It easily follows from this that \mathscr{T} is a Lie ring with respect to $[a, b]$. Then Amitsur's [1, Lemma 2] shows that $\mathscr{T} \supseteqq[A, A]$, so that $T(A) \supseteqq[A, A]$. If e is any nontrivial idempotent in A, then $e A f, f A e \cong \mathscr{T} \cong T(A)$, where (formally) $f=1-e$. But $T(A)$ also contains the product

$$
e A e=e(A f A) e=(e A f)(f A e)
$$

similarly, $f A f \subseteq T(A)$. Then $T(A)=A=e A e+e A f+f A e+f A f$, as needed.
(b) In this case Amitsur's [1, Theorem 1] states that A contains no noninvariant noncentral subalgebras $\neq A$, unless A is 4 -dimensional over a field F of characteristic two. Since $E(A), T(A)$ are invariant noncentral subalgebras, equality $E(A)=T(A)=A$ follows when $\operatorname{dim} A / F \neq 4$. In this exceptional case, A is a simple matrix algebra. A general property of arbitrary matrix algebras $A=R_{n}, n>1$, implied by [7, Prop. 1] is that $E(A)=T(A)=A$. This latter result also suffices for the case (c), since A is then locally a complete matrix ring $R_{n}, n>1$, by Litoff's theorem [8, p. 90].

Theorem 5.3. Let A be an algebraic algebra over the field D. (a) If A is primitive, but not division, then $E(A)$ and $T(A)$ are dense in the finite topology on A. (Then $E(A)$ and $T(A)$ are primitive algebras.) (b) If A is semisimple, so is $E(A)$.

Proof. (a) The proof is analogous to that of Theorem 2.1. Adopting the terminology there, with $B=E(A)$ (resp. $B=T(A)$), if \bar{e} is any element in a complete set of matrix units for \bar{U}, by [9, p. 239 ff .], there exists an element f in a complete set of matrix units in U such that $\bar{f}=\bar{e}$. If $\bar{e}^{2}=\bar{e}$ (resp. $\bar{e}^{2}=0$), then, since $f \in E(A)$ (resp. $f \in T(A)$), it follows that $\bar{e} \in \bar{Q}$. Since any automorphism of \bar{U} maps a complete set of matrix units onto another complete set, this latter assertion shows that \bar{Q} contains all conjugates of \bar{e}. Since $\bar{U}=D_{n}, n>1$, by [7, Prop. 1], \bar{U} is generated by the conjugates of \bar{e}, so that $\bar{U}=\bar{Q}$. The rest of the proof is unchanged.
(b) It is not hard to show that a subring (subalgebra) B of a semisimple ring (algebra) A is itself semisimple, if each homomorphism of A which maps A onto a primitive ring (algebra) also maps B onto a primitive ring (algebra).
(The proof of this is related to that of Corollary 2.2). Thus, if A is a semisimple algebraic algebra, and if P is any primitive ideal of A, then $[9$, p. 239 ff.] shows that the canonical map $A \rightarrow A-P$ maps $B=E(A)$ onto $E(A-P)$. If $A-P$ is not division, then $E(A-P)$ is primitive by (a), while if $A-P$ is division, since it is an algebraic division algebra, every nonzero subalgebra is a division algebra. Thus $E(A-P)$ is primitive in this case too, and the semisimplicity of B follows from the remark above.

Relating to Lemma 5.2 is the question whether $T(A)=A$ in a simple ring (algebra) A implies the equality $E(A)=A$.

References

[1] Shimshon A. Amitsur, Invariant submodules of simple rings, Proc. Amer. Math. Soc. vol. 7 (1956), 987-989.
[2] Richard Arens and Irving Kaplansky, Topological representation of algebras, Trans, Amer. Math. Soc. vol. 63 (1948), 457-481.
[3] Michael P. Drazin, Rings with nil commutator ideals, Rend. Circ. Math. Palermo, vol. 6 (1957) 51-64.
[4] Carl Faith, Algebraic division ring extensions, Proc. Amer. Math. Soc. vol. 11 (1960), 43-53.
[5] Carl Faith, Radical extensions of rings, Proc. Amer. Math. Soc. vol. 12 (1961), 274-283.
[6] Carl Faith, A structure theory for semialgebraic extensions of division algebras, J. für die reine und angewandte Math. (Crelle's Journal) vol. 209 (1962), 144-162.
[7] Carl Faith, Submodules of rings, Proc. Amer. Math. Soc. vol. 10 (1959), 596-606.
[8] Nathan Jacobson, Theory of Rings, Amer. Math. Soc. Surveys, vol. 2, Ann Arbor, 1948.
[9] Nathan Jacobson, Structure of Rings, Amer. Math. Soc. Colloquium Publications, vol. 37, Providence, 1956.
[10] Friedrich Kasch, Invariante Untermoduln des Endomomorphismenrings eines Vektorraums, Arch. der Math., vol. 4 (153), 182-190.
[11] Wallace S. Martindale, III, The structure of a special class of rings, Proc. Amer. Math. Soc. vol. 9 (1958), 714-721.
[12] Tadasi Nakayama, A remark on the commutativity of algebraic rings, Nagoya Math. J., vol. 12 (1959), 39-44.
[13] Yuzo Utumi, On ξ-rings, Proc. Japan Acad. vol. 33 (1957) 63-66.
[14] John von Neumann, On regular rings, Proc. Nat. Acad. Sci. (U.S.A.) vol. 22 (1936), 707-713.

Mathematisches Institut, Heidelberg, Germany
and
Institute for Advanced Study, Princeton, N. J.

[^0]: ${ }^{3)}$ A $C N$-ring is a ring in which every nilpotent element belongs to the center. It seems that in each case where I assume that a ring is $C N$, I actually require only that the center contains all nilpotent elements of index two. I do not know whether this latter condition is equivalent to the $C N$ hypothesis.

