
STRONGLY REGULAR EXTENSIONS OF RINGS

CARL FAITHυ

As defined by Arens and Kaplansky [2] a ring A is strongly regular (s.r.)

in case to each CKΞA there corresponds x=xa&A depending on a such that

a2x-a. In the present article a ring A is defined to be a s.r. extension of a

subring B in case each a^A satisfies a2 x — a^B with x = xa^ A. S.r. rings

are, then, s.r. extensions of each subring. A ring A which is a s.r. extension

of the center has been called a £-ring (see Utumi [13], Drazin [3], Martindale

[11], and their bibliographies).

Arens and Kaplansky showed that a s.r. ring is a subdirect sum of divison

rings. Since any s.r. ring is semisimple, a later result stating that any semi-

simple ί-ring is a subdirect sum of division rings (see [11]) contains this

result.2) In §2 of the present article, a further generalization is obtained: (1)

If a semisimple ring A is a s.r. extension of a commutative subring B} then A

is a subdirect sum of division rings. For the proof, the reduction to the case

A is primitive is immediate, but at this stage an innovation is made. Instead

of specializing B, as has been done in the previous work along these lines, a

structure theorem (Theorem 2.1) for a primitive s.r. extension A of an arbitrary

ring B is obtained first of all: (2) If A is a primitive ring, not a division

ring, and if A/B is s.r., then B is dense in the finite topology on A. Of course,

(1) is an immediate consequence, but more can be squeezed out of (2). For

example, (2) shows that in order that a primitive ring A be a s.r. extension

of a subring B, it is necessary that B be a primitive ring, or an integral domain.

(A bit of duality can be introduced here, since in § 1 it is shown that a directly
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170 CARL FAITH

irreducible s.r. extension of an integral domain is necessarily an integral

domain.) A fairly easy consequence of this is that in order that a semisimple

ring A be a s.r. extension of a subring B, it is necessary that B be a subdirect

sum of primitive rings and integral domains (Corollary 2.2 ff.).

Another consequence of (2) is that any s.r. extension of a division ring is

a subdirect sum of division rings. This fact is also implied by the theorem of

Arens and Kaplansky inasmuch as a s.r. extension of a s.r. ring is a s.r. ring.

However, this and the above results are all obtained in a new way independently

of the previous results for £-rings and s.r. rings.

The structure of A is not known in the general case when A is a s.r. ex-

tension of a commutative subring B. However the centralizer of B in A is a

f-ring, so that some information on the structure of A is available.

In § 3 the results on s.r. extensions are applied in extending the results of

Nakayama [12] on the commutativity of rings, continuing a program which I

began in [4]. Any future improvements in the theory of s.r. extensions will

net corresponding improvements in this direction also.

A simple computation shows that a ring is regular (axa-a) in the sense

of von Neumann if and only if every principal one-sided ideal has an idempotent

generator. Arens and Kaplansky introduced the notion of strong regularity

(a2x= a), whereby not only are these idempotent generators demanded but

also nilpotent elements are banished. Here, and more generally in £-rings, the

emphasis has shifted from the manufacture of idempotents to the disposition

of the nilpotent elements of index two: they must all lie in the center. In § 5

the position in a primitive ring A of the subring T(A) generated by the

nilpotent elements of index two is investigated. One finds in important special

cases (e.g., if A is an algebraic algebra, or if A has a minimal left ideal) that

the subring T(A)9 and also the subring E(A) generated by the idempotents

of A, is dense in A, if A is not division. This clearly illustrates my allusion

above to the extent to which the structure of an s.r. extension A/B is influenced

by the fact that B contains the subring T(A).

1. Directly irreducible strongly regular extensious. If A is a ς-ring with

center Z, and if a, x^A satisfy a2x-a^Z then [11, Theorem 1] states that

ax-xa. The verbatim proof (accredited to Herstein) given there establishes
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this implication for CΛΓ-rings3), a fact which is stated in the proposition below.

By reproducing its proof here, I have been able to make this section, and the

section following, relatively self-contained.

PROPOSITION 1.1. In any CN-ring, any two elements a and x ivhich satisfy

a2x~ « E Z are commutative, that is, then ax—xa.

Proof. Since a2x — a e Z, ia2x — a)a = a(a2x — a), and so (1) a2{ax — xa) = 0.

Using (1), it follows that X_a(ax- xa)aj = 0, so that, since A is CNy (2)

a(ax- xa)a<Ξ Z. Commuting this with a and using (1), there results (3)

a(ax - xa)a" = 0. Since a2x - a<^Z, one easily verifies that

(4) ax — xa = [_a{ax — xa) + {ax — xa)ά}x.

If (4) is multiplied on the left by a, using (1), the result can be simplified to

a{aχ— xa) = a(ax — xά)ax, so that, by (2), one has

(5) a(ax~ xa) = a{ax - xa)ax = xa(ax - xa)a.

Multiplying (5) on the right by a produces (6) aiax - xa)a = xaiax- xa)a2,

which is = 0 by (3). Reapplying this latter fact to (5) yields (7) a(aχ-χa)

= 0. .Thus, (4) can be simplified to (8) ax—xa= (ax—xa)ax. From (7)

Z(ax— xa)ay = 0j so that (ax— xa)a<aZ. Commuting this with a, and using

(7), one obtains (9) (ax— xa)a2 = 0. Since (ax— xa)ae Z, (8) becomes (ax-xa)

-x(ax-xa)a, and so, by (9), one has (10) (ax— xa)ax = x(ax- xa)drx- 0. Then

(8) reduces to ax-xay which is the desired result.

COROLLARY 1.2. If a and x are elements of a ring A, and if the element

dx- a and all nilpotent elements of A commute ivith both a and x, then a andx

commute.

Proof. Let Q denote the subring of A generated by a and x, and let 3

denote the center of Q. Then the condition of the corollary implies that Q is

a CiV-ring, and that dx-a^l, so that the corollary follows from the pro-

position.

An element a of a ring A is (von Neumann) regular if axa = α, and strongly

3) A CΛΓ-ring is a ring in which every nilpotent element belongs to the center. It
seems that in each case where I assume that a ring is CN, I actually require only that
the center contains all nilpotent elements of index two. I do not know whether this
latter condition is equivalent to the CN hypothesis.
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regular (Arens and Kaplansky) if a2x = a, for suitable # e A The next corol-

lary in the case n = 1 shows that in CiV-rings strong regularity of an element

a implies its regularity. The corollary follows from the proposition by observ-

ing that an+1x^an implies (an)2xn = an.

COROLLARY 1.3. If A is a CN-ring, then the equation an+1x = an for two

elements a and x in A, and a natural number n, implies the equation anxn

LEMMA 1.4. A directly irreducible CN-ring A has an identity element

if and only if there exist a, x&A such that a2x-a^0. Then ax-xa^l.

Proof. By the corollary a2x = a implies ax = xa, so that e = ax is a nonzero

idempotent when a=*Q. Since the sets eA(l-e), (l~e)Ae are central, they

commute with e, whereby they are » 0. By the direct irreducibility of A, e = 1.

The converse is trivial.

In a s.r. extension of a division ring, to each element a there corresponds

an element x such that a2x~ a has certain regularity properties. This situation

for directly irreducible rings is slightly generalized directly below, and follow-

ing this a similar generalization of s.r. extensions of integral domains is con-

sidered.

THEOREM 1.5. Let A be a directly irreducible CN-ring containing a left

identity l # 0 , and such that to each a&A there correspond b^A and a natural

number n = na such that either an+1b- an = 0, or else an+ίb-au has a right

inverse in A. Then the totality N of nilpotent elements of A is an ideal, and

A- N is a division ring.

Proof. By Lemma 1.4, 1 is a two-sided identity. If an+1b - an has the right

inverse xf then a has the right inverse anbχ- an~ιx. If an+1b = an, then, by

Corollary 1.3, anbn = bnan, so that e = anbn satisfies e2 = e. Then, by Lemma

1.4, either e = 1, whence a has right inverse an~ιbn, or else 0 = e = ean = an.

Thus, every nonnilpotent element has a right inverse. It is easy to see that

this means that every nonnilpotent element has a two-sided inverse. Then

(e.g., [9, p. 21J), since N is a (central) ideal of A, A-N is division.

Remark. One can show in general that in a ring A with identity such that

every nonnilpotent element has an inverse, that N is a two-sided ideal such
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that A — N is division (cf. the proof of Lemma 1.9 below.)

COROLLARY 1.6. If A is directly irreducible with a left identity 1=^0 such

that to each a&A there corresponds b&A such that either a2b — a~0, or else

db — a has a right inverse^ then A is division.

Proof. It is trivial to show that iV = Ό, so that A is CN, and the theorem

applies.

The corollary shows that a nonzero directly irreducible s.r. ring is division

if only if there exists a left identity. In such a ring a two-sided identity exists,

according to Lemma 1.4.

COROLLARY 1.7. A nonzero directly irreducible ring is s.r. if and only if

it is division.

THEOREM 1.8. If A is a directly irreducible CN-ring, and if to each a&A

there correspond b^ A and a natural number n = na such that an+1b — an is not

a proper right divisor of zero in A, then the set N of nilpotent elements of A

is a nil ideal\ and A — N is an integral domain.

Proof. In a way completely analogous to the proof of the last theorem,

one sees that N coincides with the set D of all right divisors of 0 in A. Thus,

the theorem is a consequence of the following lemma. The lemma no doubt

is known, but I have not been able to find a published proof. For this reason,

I include one here.

LEMMA 1.9. If N - D in a ring A, then N is an ideal of Ay and A - N is

an integral domain.

Proof. If iV=0, there is nothing to prove. Now let 0 # # e i V have index

of nilpotency = m. Then, since {ax)xm~1 = 0, ax e D = N, for all a&A, that is,

Ax g N, for all x e N. Since {ax)n = 0 implies that (xa)n^ - 0, this shows that

Ax^N implies that xA ϋ N, so that AxA ϋ iV, for all x e N. In order to show

that N is an ideal, it renains to show that N is closed under addition. If

xt y<=N, then, since (x Λ-yY^AxAΛ- AyAy it follows that U-bv)ejV. It

remains to show that A - N is integral. It suffices to show that a& N, b$ N,

ab — q^:N leads to a contradiction. Clearly, q^0, so q is nilpotent of index

w>2. Since (ab)m^KabV^alb = 0, b$D implies that {ab)"1'1 a = 0. But

a^D implies that (ab)m~ι - 0, which is the desired contradiction.
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A consequence of Corollary 1.6 is that a directly irreducible s.r. extension

of a division ring is a division ring. In analogy with this fact one has

COROLLARY 1.10. A directly irreducible s.r. extension of an integral domain

is an integral domain.

Proof. If A is the extension, and B the integral domain, then A contains

no nilpotent elements =*F0. Thus, if a, y&A, then ay = 0 if and only if ya-0.

Since A is a CiV-ring, by the theorem it suffices to show that a — a2b^B is

not a proper right divisor of zero in A. Hence assume that O ^ e A

is such that y(a-a2b) =0, and a~a2b*0. Then (a-a2b)y = 0, so that

(a~ a2b)(y-y2c) = 0, where c can be chosen such that jy-jy2ce22. Since B is

integral, y=:y2ci so that, by Lemma 1.4, yc = cy is the ring identity, which

contradicts the choice of y as a proper left divisor of 0.

Since a s.r. ring is a s.r. extension of every subring, it would seem that

the hypothesis "A is a s.r. extension of B" would have more force if one as-

sumes at the outset that A is not an s.r. ring. (Then B is not s.r.!) For

these rings the structure theory can be reduced in some cases to that of directly

irreducible s.r. extensions.

PROPOSITION 1.11. Let B be a simple ring with identity et and let A be a

s.r. extension of B, A not a s.r. ring. Then A = § φ P , where Q is a directly

irreducible s.r. extension of B having the identity e, and P is a s.r. ring.

Conversely, Q(BR is a s.r. extension of B, if Q is any s.r. extension of B% and

P is any s.r. ring.

Proof. The sufficiency is clear. The necessity requires the following lemma

which is also of interest in more general situations.

LEMMA. If B is a ring with a central idempotent e, and if A/B is a s.r.

extension, then e is a central element of A.

Proof of the Lemma. B contains all nilpotent elements of index two, so

that B contains the sets eA(l-e), (l-e)Ae. Since e is central in B, these

sets = 0, so A = eAe®(l- e) A(l-e), and e is central.

Going back to the proof of the proposition, since (1 ~e)A(l — e) n £ = 0,

P = ( 1 - e)A(l - e) is s.r. as required. It remains to show that Q^eAe is

directly irreducible. To this end assume that Q = M0iV, where M and N are
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ideals. M Π ΰ = 0 implies that M is s.r. If both M and N were s.r., then so

would Q, whence A, be s.r., contrary to assumption. On the other hand, if

M Π J B # 0 , then M^B, so that M=Q, JV=O, and Q is directly irreducible.

The existence of directly irreducible s.r. proper extensions, not division

rings, of simple rings is guaranteed by the example in § 4 of [4].

§2. Semisimple strongly regular extensions. The next theorem shows

that in order that a ring B possess a primitive s.r. extension, it is necessary

that B be a primitive ring, or an integral domain.

2.1. STRUCTURE THEOREM. Let A be a primitive ring, not a division ring,

which is represented as a dense ring of l.t.'s in a vector space V over a division

ring D. Then: if B is any subring of A such that A/B is s.r., then B is

isomorphic to a dense ring of l.t.'s in V.

Proof. Let Vn be a vector subspace of V of finite dimension n, let

U= {a e AI Vna E Vn), and let K = {a e A | Vna = 0}. Then, as is well known

[9], the difference ring U-U-Kis isomorphic to Dn, the complete ring of

nxn matrices over D. First assume that n>lt and let ue U be such that

w2eiΓ. Then, if c e A is such that u — u2c^B, then, since u2c^K, it follows

that u-u2c^Q = BΓίU. Thus, the subring Q determined by Q under the

canonical homomorphism U-+U contains every we £7 satisfying ΰ2 = 0. By [7,

p. 602, Proposition 1], Q = ΰ, that is, U=Q+K, and, consequently, every l.t.

of Vn is induced by an element of B, in case n>l. Now Vi is contained in

a subspace V2, and if d\ is any l.t. in Vlt there exists a l.t. ck in V2 such that

02 induces β1# Then, if b e J3 induces α2, then 6 also induces άx. Thus, in all

cases, the I t ' s in Vn can be induced by elements of B. This establishes that

B is isomorphic to a dense ring of l.t.'s in V.

(1) of the next corollary is immediate.

COROLLARY 2.2. Let A be a s.r. extension of a ring B. (1) If A is a

primitive ring, not a divison ring, then B is a primitive ring, and so is any

intermediate ring of A/B. (2) // A is semisimple, then B is a subdirect sum

of primitive rings, and integral domains.

Proof. (2) Let {P} denote the collection of primitive ideals in A. Since
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ΠP = O, necessarily ΓUPΠJE?)=O, so that B is a subdirect sum of the rings

{B-(PΠB)}. Now A - J P is a s.r. extension of (P+B)-Py so that by the

theorem: if A — P is not a division ring, then (P-\-B)—P is primitive;

(P + B) — P is an integral domain, otherwise. (2) is completed by observing

that (PΛ B) - P is isomorphic to B - (PΠB), for each P e {P}.

COROLLARY 2.3. Let A be a semisimple ring which is a s.r. extension of a

commutative subring B. Then A is a subdirect sum of division rings, and B

is a subdirect sum of {commutative) integral domains. {If in addition A is

subdirectly irreducible, then A is a division ring).

Proof Let A1 be any primitive homomorph of A, and let B1 denote the

corresponding map of B. Since A1 IB1 is s.r., and B1 is commutative, density

of Br m A1 would imply commutativity of A', which in turn would imply that

A1 is a field. Thus, by the theorem, A1 is a division ring, so that A is a sub-

direct sum of division rings. By the corollary, B must be a subdirect sum of

(commutative) primitive rings and integral domains. Since a commutative

primitive ring is a field, B has the desired struture. (The parenthetical remark

is obvious).

3. Commutativity theorems. If S is a nonempty subset of a ring A, then

[S] denotes the subring generated by S. If R is a subring, then RίSl denotes

the subring generated by R and S. If A is a division ring, and if R is a divi-

sion subring, R(S) is the division subring generated by R and S.

Let Φ be a commutative ring with identity. A ring A is a Φ-ring (in the

sense of Jacobson [8, p. 55]) if A is a unitary left Φ-module satisfying

c(xy) = (cx)y = x{cy) for all CGΦ, and all x, y e A.

DEFINITION. Let Φ be a commutative ring with identity which contains a

(possibly 0) subring K with the property that (1) a nonzero homomorph K!

of K is an integral domain if and only if Jΰ is an algebraically closed field,

and (2) there exist finitely many clf . . . , cr<sφ such that Φ = Kίch . . . , crl.

Let A be a Φ-ring, and B a Φ-subring of A such that to each a& A there

corresponds a polynomial Pa(x) in the polynomial ring Φίxl such that

for some natural number n depending on a. Then A/B is an N-extension. If
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A/B is an N-extension, then it is an NΓextension if n = 1 for all c e A , and it

is an N2-extension if B contains all idempotents of A.

TV-extensions have been studied extensively by Nakayama [12] (and others,

see [12, References]) where the main result states that any ring A which is

an iVi-extension of its center Z is commutative (or, more generally, any CN-

ring which is an iV-extension of its center is commutative.) This result had

been obtained earlier by Nakayama in the case K = 0. In this case it is also

true that a division ring A is commutative if it is an iV-extension of a division

Φ-subring ^ A (Faith [4, Theorem 1]), a result which is extended to the if #0

case below.

THEOREM 3.1. Let A be a division Φ-ring, Φ as in the definition, and let

B be a Φ-subring such that A/B is an N-extension. Then: if B is commutative,

or if B is a division subring =*= A, then A is a field.

Proof. If B is commutative, so is the division subring (B) generated by

B. If (B) = A, then A is a field as required. Hence, it suffices to consider

only the case where A ( # Z ) is an ' N-extension of the division ring B* A.

Let 1 be the identity of A, and set ψ = Φl. Since ψ^=0, A and B are algebras

over the field ψ of quotients of ψ. In this case the results of [6] are applicable.

The hypotheses imply that to each a^A there corresponds pa(x) with coef-

ficients in ψ{^ψ) such that an - an+1pa(a) e B, Under these conditions [6,

Theorem 1.5] asserts that to each b^A there corresponds a polynomial Fb(x)

over ψ such that (i) Fb(b)^Z, and (ii) Fb(x) is the composition of finitely

many of the polynomials in the set

{xH-xn+1pa(x)\aeA, » = 1, 2, . . . }.

Clearly, then, the polynomial Fb(x) has the form

with m- m(b)>l, and gb{x) ^ ψLx~]. (It is important to note that the Fb(x)

are polynomials over ψ.) The effect of all of this is to show that A/Z is an

iV-extension, as defined above, so that A = Z by the result of Nakayama.

THEOREM 3.2. Let A be α Φ-ring, Φ as in the definition, and let B be a

commutative Φ-subring such that A/B is an Nι-extension. If either A is semi-
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simple, or BΠJ{A) = 0, where J(A) denotes the Jacobson radical of A, then A

is commutative.

Proof. Since A is semisimple (if BΠJ(Λ) = 0, then / is s.r., so / = 0 ) , A

is a subdirect sum of division rings A1 by Corollary 2.3. Each A1 can be

regarded as a 0-ring, and it follows that each A1 is an iVi-extension of a com-

mutative subring, so that each A1 is commutative by Theorem 3.1. Then A

is commutative.

Below, if a ring is an iVi-extension of 0, then it is an Nyring. By

Nakayama's result, every iWring is commutative. If A is an iVrextension of

a simple subring B, and if B has an identity e, it follows from the lemma to

Proposition 1.11 that A = eAe®(X~e)A(X -e). Since (l-e)A(l-e) is an

iVi-ring, it is commutative. Now suppose that eAe = MθN, where M and N

are ideals. If both M and N are disjoint from B, then both M and N are Ai-

rings, whence they are commutative. Thus, if eAe is noncommutative, it can

be assumed that, say, BΠM^O. Then, by the simplicity of B, BEM, and,

since M now contains the identity e of eAe, M = eAe, N = 0, so that eAe is

directly irreducible. This establishes the lemma.

LEMMA 3.3. If A is an Ni-extension of a simple Φ-subring B, and if B

contains an identity element e, then

where Q = eAe, and P= ( l - e ) A ( l — e) is a {commutative) Nvring. Further-

more, either A is commutative, or else eAe = Q is directly irreducible.

Now suppose that B in the lemma is a division 0-subring. Then, if A is

noncommutative, Q is a directly irreducible iVVextension of B. Since Corollary

1. 7 shows that Q is a division ring, it follows from Theorem 3.1 that either

B = Q, or else Q is a field. This completes the proof of the next theorem.

THEOREM 3.4. Let A be a Φ-ring, and B a division Φ-subring such that

A/B is an NΓextension. Then, either A is commutative, or else A = Bκ&P,

where P is a (commutative) Nrήng. Furthermore, if A is directly irreducible,

and B±?A, then A is a field.

The theorem and the discussion preceding have the corollary.
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COROLLARY 3.5. If A is a Φ-ring which is an Nvextension of a Φ-subfield

B, then A is commutative.

§4. ^-extensions. The extension A/B is a ^-extension in case to each

a G A there exist x = xΛ e A and a natural number n - n* such that an - α M M #e B.

If x can be chosen such that xn commutes with an, for every β e A , then a

^-extension is a f'-extension. A ^-extension is c2, if B contains all idempotents

of A, and £2 if it is both ξ2 and ξ'.

If A is a Φ ήng, where Φ is a commutative ring with identity, and if B is

a 0-subring such that to each a^A there correspond pa(x) e Φίxl and a

natural number n^na such that α* - an+1pa(a) e £, then A/5 is a ^'-extension

it is ξ[ if />«($) = 0 for each idempotent e^A. Thus, the results of this section

are applicable to these extensions in particular, they are applicable to N-

extensions.

A ring A is a £2'-ring if it is a ^-extension of 0. It is trivial to verify

that any faring is a nil ring, and conversely. If A/B is ξ'2t and if L is any

left ideal disjoint from B, then L is nil. To see this, if α e £ , and if a1- annx

e β , then 0 = an - an+1x^B ΠL = 0. Since anxn = xnan

1 this implies that e = tf*#n

is idempotent. Since e e L Π J5 = 0, then an ^ean ^e^ 0, so that L is nil. This

fact is used several times below.

THEOREM 4.1. 7/* A 25 Λ ς2-extension of a simple ring By and if J(A) % A,

then J(A) is nil, and A-J(A) is primitive.

Proof Suppose for the moment that/(A)i?JB. Then A~J(A) would be

a Erring, whence it is a nil ring. This would imply that A=J{A)y which is

excluded by hypothesis. Hence J(A)3?-B, so that J(A) Π5 = 0, whence /(A)

is nil. Now B cannot be contained in every primitive ideal of A, since the

intersection of these is J(A). Hence there exists a primitive ideal P which is

disjoint from B. Then P is nil, whence P = βA), and A-J(A) is primitive.

Now suppose that A is a ring with no nil ideals =* 0 which is a £2'-extension

of a division subring B. By the theorem, A is primitive, but, as a matter of

fact, A is division. The proof of this is similar to the proof of the theorem,

except that one considers the modular maximal left ideals (m.m.l.-ideals) of A

instead of the primitive ideals. Since A contains no nil left ideals, one concludes

that 0 is a m.mj.-ideal, that is, that A is a division ring. This fact is stated
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in the next theorem.

THEOREM 4.2. If A is a ring ivith no nil ideals * 0, and if A is a ξ'2-

extension of a division subring, then A is a division ring.

The corollary below is a consequence of the theorem, and of Theorem 3.1.

COROLLARY 4.3. // A is a ring with no nil ideals #0, and if A is a Nv

exlension of a division subring B*? A, then A is a field.

The last two results can be restated as follows * If A is a ring containing

no nonzero idempotents =̂  1, and containing no nonzero nil ideals, and if A

is a ^'-extension (resp. TV-extension) of a division subring B^A, then A is a

division ring (resp. field.)

The corollary generalizes results on radical extensions of [4] and [5].

If A is a radical extension of an integral domain, then to each C G A there

corresponds a natural number n such that an has certain regularity properties.

The situation is generalized below.

THEOREM 4.4. Let A be a ring wiih the property that to each « e A there

corresponds a natural number n = na such that an is not a proper right divisor

of zero in A. Then the set N of nilpotent elements is an ideal, and A - N is

an integral domain.

Proof. Let D denote the set of all right divisors of zero in A. The condi-

tion of the theorem implies that iV= D, so that the theorem follows from

Lemma 1.9.

Remark. If A is a ring with a nil ideal N such that A — N is integral,

then, of course, D = N in A, and A has the property of the theorem.

Now let A be a radical extension of an integral domain B, that is, such

that to each a e A there corresponds a natural number n-na such that an e B.

Assume that A contains no nil left ideals = 0̂, let # e A be nonnilpotent, and

let y^Lx = ( o e A\ax = 0). Then, since ymxn = 0, m = my. n = nx, since B is

integral, and since xn * 0, then ym = 0. Lx is therefore nil, so Lx = 0. This

shows that each β e A has the property stated in the theorem, and completes

the proof of the corollary.

COROLLARY 4.5. 7/ A is a ring .with no nil left ideals =¥0, and if A is a

radical extension of an integral domain, then A is an integral domain.
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A commutative integral domain A can be radical over a subring B only

under very special circumstances. For then, if A* and J3* denote the respective

quotient fields of A and B} then A* is radical over B*. It follows from the

work of Kaplan sky [Canad. J. Math. vol. 3 (1951) 290-292] that either A* = B*,

or else, A* has characteristic p>0, and either A*/B* is purely inseparable, or

else A* is algebraic over GF(p). It would be interesting to know the cor-

responding situation for noncommutative integral domains (cf. [51 for some

results with added hypotheses on A and B).

5. Generation of primitive rings. If A is a ring, let T(A) denote the

subring generated by all nilpotent elements of index two, and let E(A) be the

subring generated by all idempotents. If A is primitive, and A/B is s.r., then

by Corollary 2.2, B is dense in the finite topology on A, if A is not division.

In view of the fact that B contains T(A) when A/B is s.r., it would be in-

teresting to know if any subring of A which contains Q^T(A) is dense in A.

Positive results abound in special cases, making a counterexample hard to find.

THEOREM 5,1. If A is a primitive ring with a minimal left ideal, and if

A is not a division ring, then T(A) and E(A) are dense in the finite topology

on A. ' {Then T(A) and E(A) are primitive rings).

Let S denote the socle of A. It suffices to show that T(S) =E(S) = S,

since then density follows from the inclusions T{A)^S, E(A)BS. Thus, the

theorem is a consequence of the lemma below. (In case A does not satisfy the

minimum condition, then the theorem follows immediately from Rosenberg's

generalization [Proc. Amer. Math. Soc. vol. 7 (1956) p. 897, Corollary 5] of a

theorem of Kasch [10]).

LEMMA 5.2. (a) If A is a simple ring containing a nontrivial idempotent,

then T(A) = A. //, in addition, (b) A is an algebra over a field Φ^GF(2), or

(c) if A contains a minimal left ideal, then E{A) —A.

Proof, (a) Let ,_!? denote the additive subgroup generated by all nilpotent

elements of index two, and let, for any subset S of A, [S, S] denote the additive

subgroup generated by all Za, b]-^ab- ba, a, b^S. If u, v e ^ are nilpotent

of index two, then so is

w = (1-4-
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Then,

ίu, vl-w + uvu - v e

It easily follows from this that ^ is a Lie ring with respect to la, &]. Then

Amitsur's [1, Lemma 2] shows that ^BίA, A\ so that T(A) EίA, Al If e

is any nontrivial idempotent in A, then eAft fAeEJ?Έ:T(A)} where (formally)

f~l~e. But T(A) also contains the product

eAe = e(AfA)e = (eAf) (fAe),

similarly, fA/Έ T(A). Then T(A) = A = eAe + eAfΛ jAe +fAf, as needed.

(b) In this case Amitsur's [1, Theorem 1] states that A contains no non-

invariant noncentral subalgebras *FA, unless A is 4-dimensional over a field F

of characteristic two. Since E(A), T(A) are invariant noncentral subalgebras,

equality E(A) = T(Λ) == A follows when dim A/F#4. In this exceptional case,

A is a simple matrix algebra. A general property of arbitrary matrix algebras

A=^Rn, n>h implied by [7, Prop. 1] is that £(,4) - T(A) = A This latter

result also suffices for the case (c), since A is then locally a complete matrix

ring Rn, n>l, by Litoffs theorem [8, p. 90].

THEOREM 5.3. Let A be an algebraic algebra over the field Φ. (a) If A

is primitive, but not division, then E(A) and T(A) are dense in the finite topology

on A. (Then E(A) and T(A) are primitive algebras.) (b) If A is semisimple,

so is E(A).

Proof, (a) The proof is analogous to that of Theorem 2.1. Adopting the

terminology there, with B = E(A) (resp. £ = T(A)), if e is any element in a

complete set of matrix units for U, by [9, p. 239 ffj, there exists an element

. / in a complete set of matrix units in U such that/ = ~e. If e2 = H (resp. e2 = 0),

then, since f^E(A) (resp. f^T(A))t it follows that e^Q. Since any auto-

morphism of U maps a complete set of matrix units onto another complete

set, this latter assertion shows that Q contains all conjugates of ~e. Since

U=Dn, n>\, by [7, Prop. 1], U is generated by the conjugates of I, so that

U = Q. The rest of the proof is unchanged.

(b) It is not hard to show that a subring (subalgebra) B of a semisimple

ring (algebra) A is itself semisimple, if each homomorphism of A which maps

A onto a primitive ring (algebra) also maps B onto a primitive ring (algebra).
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(The proof of this is related to that of Corollary 2.2). Thus, if A is a semi-

simple algebraic algebra, and if P is any primitive ideal of A, then [9, p. 239

ff.] shows that the canonical map A~>A~P maps B=^E(A) onto E(A- P).

If A - P is not division, then E(A-P) is primitive by (a), while if A — P is

division, since it is an algebraic division algebra, every nonzero subalgebra

is a division algebra. Thus E(A — P) is primitive in this case too, and the

semisimplicity of B follows from the remark above.

Relating to Lemma 5.2 is the question whether T(A) = A in a simple ring

(algebra) A implies the equality E(A) = A.
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