STRONGLY REGULAR EXTENSIONS OF RINGS

CARL FAITH¹⁾

As defined by Arens and Kaplansky [2] a ring A is strongly regular (s.r.) in case to each $a \in A$ there corresponds $x = x_a \in A$ depending on a such that $a^2x = a$. In the present article a ring A is defined to be a s.r. extension of a subring B in case each $a \in A$ satisfies $a^2x - a \in B$ with $x = x_a \in A$. S.r. rings are, then, s.r. extensions of each subring. A ring A which is a s.r. extension of the center has been called a ξ -ring (see Utumi [13], Drazin [3], Martindale [11], and their bibliographies).

Arens and Kaplansky showed that a s.r. ring is a subdirect sum of divison rings. Since any s.r. ring is semisimple, a later result stating that any semisimple ξ -ring is a subdirect sum of division rings (see [11]) contains this result.²⁾ In \$2 of the present article, a further generalization is obtained: (1) If a semisimple ring A is a s.r. extension of a commutative subring B, then Ais a subdirect sum of division rings. For the proof, the reduction to the case A is primitive is immediate, but at this stage an innovation is made. Instead of specializing B, as has been done in the previous work along these lines, a structure theorem (Theorem 2.1) for a primitive s.r. extension A of an arbitrary ring B is obtained first of all: (2) If A is a primitive ring, not a division ring, and if A/B is s.r., then B is dense in the finite topology on A. Of course, (1) is an immediate consequence, but more can be squeezed out of (2). For example, (2) shows that in order that a primitive ring A be a s.r. extension of a subring B, it is necessary that B be a primitive ring, or an integral domain. (A bit of duality can be introduced here, since in §1 it is shown that a directly

Received March 22, 1961.

¹⁾ This article was written during my tenure as North Atlantic Treaty Organization Postdoctoral Fellow (U.S.A.) in Mathematisches Institut, Heidelberg University. I am presently at the Institute for Advanced Study.

²⁾ A generalization in another direction has been given by Utumi [13].

irreducible s.r. extension of an integral domain is necessarily an integral domain.) A fairly easy consequence of this is that in order that a semisimple ring A be a s.r. extension of a subring B, it is necessary that B be a subdirect sum of primitive rings and integral domains (Corollary 2.2 ff.).

Another consequence of (2) is that any s.r. extension of a division ring is a subdirect sum of division rings. This fact is also implied by the theorem of Arens and Kaplansky inasmuch as a s.r. extension of a s.r. ring is a s.r. ring. However, this and the above results are all obtained in a new way independently of the previous results for ξ -rings and s.r. rings.

The structure of A is not known in the general case when A is a s.r. extension of a commutative subring B. However the centralizer of B in A is a ξ -ring, so that some information on the structure of A is available.

In §3 the results on s.r. extensions are applied in extending the results of Nakayama [12] on the commutativity of rings, continuing a program which I began in [4]. Any future improvements in the theory of s.r. extensions will net corresponding improvements in this direction also.

A simple computation shows that a ring is regular (axa = a) in the sense of von Neumann if and only if every principal one-sided ideal has an idempotent generator. Arens and Kaplansky introduced the notion of strong regularity $(a^2x = a)$, whereby not only are these idempotent generators demanded but also nilpotent elements are banished. Here, and more generally in ξ -rings, the emphasis has shifted from the manufacture of idempotents to the disposition of the nilpotent elements of index two: they must all lie in the center. In §5 the position in a primitive ring A of the subring T(A) generated by the nilpotent elements of index two is investigated. One finds in important special cases (e.g., if A is an algebraic algebra, or if A has a minimal left ideal) that the subring T(A), and also the subring E(A) generated by the idempotents of A, is dense in A, if A is not division. This clearly illustrates my allusion above to the extent to which the structure of an s.r. extension A/B is influenced by the fact that B contains the subring T(A).

1. Directly irreducible strongly regular extensions. If A is a ξ -ring with center Z, and if a, $x \in A$ satisfy $a^2x - a \in Z$ then [11, Theorem 1] states that ax = xa. The verbatim proof (accredited to Herstein) given there establishes

this implication for *CN*-rings³, a fact which is stated in the proposition below. By reproducing its proof here, I have been able to make this section, and the section following, relatively self-contained.

PROPOSITION 1.1. In any CN-ring, any two elements a and x which satisfy $a^2x - a \in Z$ are commutative, that is, then ax = xa.

Proof. Since $a^2 x - a \in Z$, $(a^2 x - a)a = a(a^2 x - a)$, and so (1) $a^2(ax - xa) = 0$. Using (1), it follows that $[a(ax - xa)a]^2 = 0$, so that, since A is CN, (2) $a(ax - xa)a \in Z$. Commuting this with a and using (1), there results (3) $a(ax - xa)a^2 = 0$. Since $a^2x - a \in Z$, one easily verifies that

(4)
$$ax - xa = [a(ax - xa) + (ax - xa)a]x$$
.

If (4) is multiplied on the left by a, using (1), the result can be simplified to a(ax - xa) = a(ax - xa)ax, so that, by (2), one has

(5)
$$a(ax-xa) = a(ax-xa)ax = xa(ax-xa)a$$
.

Multiplying (5) on the right by *a* produces (6) $a(ax - xa)a = xa(ax - xa)a^2$, which is = 0 by (3). Reapplying this latter fact to (5) yields (7) a(ax - xa)= 0. . Thus, (4) can be simplified to (8) ax - xa = (ax - xa)ax. From (7) $[(ax - xa)a]^2 = 0$, so that $(ax - xa)a \in Z$. Commuting this with *a*, and using (7), one obtains (9) $(ax - xa)a^2 = 0$. Since $(ax - xa)a \in Z$, (8) becomes (ax - xa)= x(ax - xa)a, and so, by (9), one has (10) $(ax - xa)ax = x(ax - xa)a^2x = 0$. Then (8) reduces to ax = xa, which is the desired result.

COROLLARY 1.2. If a and x are elements of a ring A, and if the element $a^2x - a$ and all nilpotent elements of A commute with both a and x, then a and x commute.

Proof. Let Q denote the subring of A generated by a and x, and let δ denote the center of Q. Then the condition of the corollary implies that Q is a CN-ring, and that $a^2x - a \in \delta$, so that the corollary follows from the proposition.

An element a of a ring A is (von Neumann) regular if axa = a, and strongly

 $^{^{3)}}$ A CN-ring is a ring in which every nilpotent element belongs to the center. It seems that in each case where I assume that a ring is CN, I actually require only that the center contains all nilpotent elements of index two. I do not know whether this latter condition is equivalent to the CN hypothesis.

regular (Arens and Kaplansky) if $a^2 x = a$, for suitable $x \in A$. The next corollary in the case n = 1 shows that in CN-rings strong regularity of an element a implies its regularity. The corollary follows from the proposition by observing that $a^{n+1}x = a^n$ implies $(a^n)^2 x^n = a^n$.

COROLLARY 1.3. If A is a CN-ring, then the equation $a^{n+1}x = a^n$ for two elements a and x in A, and a natural number n, implies the equation $a^n x^n = x^n a^n$.

LEMMA 1.4. A directly irreducible CN-ring A has an identity element $1 \neq 0$ if and only if there exist a, $x \in A$ such that $a^2x = a \neq 0$. Then ax = xa = 1.

Proof. By the corollary $a^2 x = a$ implies ax = xa, so that e = ax is a nonzero idempotent when $a \neq 0$. Since the sets eA(1-e), (1-e)Ae are central, they commute with e, whereby they are = 0. By the direct irreducibility of A, e = 1. The converse is trivial.

In a s.r. extension of a division ring, to each element a there corresponds an element x such that $a^2x - a$ has certain regularity properties. This situation for directly irreducible rings is slightly generalized directly below, and following this a similar generalization of s.r. extensions of integral domains is considered.

THEOREM 1.5. Let A be a directly irreducible CN-ring containing a left identity $1 \neq 0$, and such that to each $a \in A$ there correspond $b \in A$ and a natural number $n = n_a$ such that either $a^{n+1}b - a^n = 0$, or else $a^{n+1}b - a^n$ has a right inverse in A. Then the totality N of nilpotent elements of A is an ideal, and A - N is a division ring.

Proof. By Lemma 1.4, 1 is a two-sided identity. If $a^{n+1}b - a^n$ has the right inverse x, then a has the right inverse $a^nbx - a^{n-1}x$. If $a^{n+1}b = a^n$, then, by Corollary 1.3, $a^nb^n = b^na^n$, so that $e = a^nb^n$ satisfies $e^2 = e$. Then, by Lemma 1.4, either e = 1, whence a has right inverse $a^{n-1}b^n$, or else $0 = e = ea^n = a^n$. Thus, every nonnilpotent element has a right inverse. It is easy to see that this means that every nonnilpotent element has a two-sided inverse. Then (e.g., [9, p. 21]), since N is a (central) ideal of A, A - N is division.

Remark. One can show in general that in a ring A with identity such that every nonnilpotent element has an inverse, that N is a two-sided ideal such

that A - N is division (cf. the proof of Lemma 1.9 below.)

COROLLARY 1.6. If A is directly irreducible with a left identity $1 \neq 0$ such that to each $a \in A$ there corresponds $b \in A$ such that either $a^2b - a = 0$, or else $a^2b - a$ has a right inverse, then A is division.

Proof. It is trivial to show that N = 0, so that A is CN, and the theorem applies.

The corollary shows that a nonzero directly irreducible s.r. ring is division if only if there exists a left identity. In such a ring a two-sided identity exists, according to Lemma 1.4.

COROLLARY 1.7. A nonzero directly irreducible ring is s.r. if and only if it is division.

THEOREM 1.8. If A is a directly irreducible CN-ring, and if to each $a \in A$ there correspond $b \in A$ and a natural number $n = n_a$ such that $a^{n+1}b - a^n$ is not a proper right divisor of zero in A, then the set N of nilpotent elements of A is a nil ideal, and A - N is an integral domain.

Proof. In a way completely analogous to the proof of the last theorem, one sees that N coincides with the set D of all right divisors of 0 in A. Thus, the theorem is a consequence of the following lemma. The lemma no doubt is known, but I have not been able to find a published proof. For this reason, I include one here.

LEMMA 1.9. If N = D in a ring A, then N is an ideal of A, and A - N is an integral domain.

Proof. If N = 0, there is nothing to prove. Now let $0 \neq x \in N$ have index of nilpotency = m. Then, since $(ax)x^{m-1} = 0$, $ax \in D = N$, for all $a \in A$, that is, $Ax \subseteq N$, for all $x \in N$. Since $(ax)^n = 0$ implies that $(xa)^{n+1} = 0$, this shows that $Ax \subseteq N$ implies that $xA \subseteq N$, so that $AxA \subseteq N$, for all $x \in N$. In order to show that N is an ideal, it renains to show that N is closed under addition. If $x, y \in N$, then, since $(x+y)^3 \in AxA + AyA$, it follows that $(x+y) \in N$. It remains to show that A - N is integral. It suffices to show that $a \notin N, b \notin N$, $ab = q \in N$ leads to a contradiction. Clearly, $q \neq 0$, so q is nilpotent of index $m \ge 2$. Since $(ab)^m = [(ab)^{m-1}a]b = 0, b \notin D$ implies that $(ab)^{m-1}a = 0$. But $a \notin D$ implies that $(ab)^{m-1} = 0$, which is the desired contradiction.

A consequence of Corollary 1.6 is that a directly irreducible s.r. extension of a division ring is a division ring. In analogy with this fact one has

COROLLARY 1.10. A directly irreducible s.r. extension of an integral domain is an integral domain.

Proof. If A is the extension, and B the integral domain, then A contains no nilpotent elements $\neq 0$. Thus, if $a, y \in A$, then ay = 0 if and only if ya = 0. Since A is a CN-ring, by the theorem it suffices to show that $a - a^2b \in B$ is not a proper right divisor of zero in A. Hence assume that $0 \neq y \in A$ is such that $y(a - a^2b) = 0$, and $a - a^2b \neq 0$. Then $(a - a^2b)y = 0$, so that $(a - a^2b)(y - y^2c) = 0$, where c can be chosen such that $y - y^2c \in B$. Since B is integral, $y = y^2c$, so that, by Lemma 1.4, yc = cy is the ring identity, which contradicts the choice of y as a proper left divisor of 0.

Since a s.r. ring is a s.r. extension of every subring, it would seem that the hypothesis "A is a s.r. extension of B" would have more force if one assumes at the outset that A is not an s.r. ring. (Then B is not s.r.!) For these rings the structure theory can be reduced in some cases to that of directly irreducible s.r. extensions.

PROPOSITION 1.11. Let B be a simple ring with identity e, and let A be a s.r. extension of B, A not a s.r. ring. Then $A = Q \oplus P$, where Q is a directly irreducible s.r. extension of B having the identity e, and P is a s.r. ring. Conversely, $Q \oplus R$ is a s.r. extension of B, if Q is any s.r. extension of B, and P is any s.r. ring.

Proof. The sufficiency is clear. The necessity requires the following lemma which is also of interest in more general situations.

LEMMA. If B is a ring with a central idempotent e, and if A/B is a s.r. extension, then e is a central element of A.

Proof of the Lemma. B contains all nilpotent elements of index two, so that B contains the sets eA(1-e), (1-e)Ae. Since e is central in B, these sets = 0, so $A = eAe \oplus (1-e)A(1-e)$, and e is central.

Going back to the proof of the proposition, since $(1-e)A(1-e) \cap B = 0$, P = (1-e)A(1-e) is s.r. as required. It remains to show that Q = eAe is directly irreducible. To this end assume that $Q = M \oplus N$, where M and N are

ideals. $M \cap B = 0$ implies that M is s.r. If both M and N were s.r., then so would Q, whence A, be s.r., contrary to assumption. On the other hand, if $M \cap B \neq 0$, then $M \supseteq B$, so that M = Q, N = 0, and Q is directly irreducible.

The existence of directly irreducible s.r. proper extensions, not division rings, of simple rings is guaranteed by the example in §4 of [4].

§2. Semisimple strongly regular extensions. The next theorem shows that in order that a ring B possess a primitive s.r. extension, it is necessary that B be a primitive ring, or an integral domain.

2.1. STRUCTURE THEOREM. Let A be a primitive ring, not a division ring, which is represented as a dense ring of l.t.'s in a vector space V over a division ring D. Then: if B is any subring of A such that A/B is s.r., then B is isomorphic to a dense ring of l.t.'s in V.

Proof. Let V_n be a vector subspace of V of finite dimension n, let $U = \{a \in A \mid V_n a \subseteq V_n\}$, and let $K = \{a \in A \mid V_n a = 0\}$. Then, as is well known [9], the difference ring $\overline{U} = U - K$ is isomorphic to D_n , the complete ring of $n \times n$ matrices over D. First assume that n > 1, and let $u \in U$ be such that $u^2 \in K$. Then, if $c \in A$ is such that $u - u^2 c \in B$, then, since $u^2 c \in K$, it follows that $u - u^2 c \in Q = B \cap U$. Thus, the subring \overline{Q} determined by Q under the canonical homomorphism $U \to \overline{U}$ contains every $\overline{u} \in \overline{U}$ satisfying $\overline{u}^2 = 0$. By [7, p. 602, Proposition 1], $\overline{Q} = \overline{U}$, that is, U = Q + K, and, consequently, every l.t. of V_n is induced by an element of B, in case n > 1. Now V_1 is contained in a subspace V_2 , and if \overline{a}_1 is any l.t. in V_1 , there exists a l.t. \overline{a}_2 in V_2 such that a_2 induces \overline{a}_1 . Then, if $b \in B$ induces \overline{a}_2 , then b also induces \overline{a}_1 . Thus, in all cases, the l.t.'s in V_n can be induced by elements of B. This establishes that B is isomorphic to a dense ring of l.t.'s in V.

(1) of the next corollary is immediate.

COROLLARY 2.2. Let A be a s.r. extension of a ring B. (1) If A is a primitive ring, not a divison ring, then B is a primitive ring, and so is any intermediate ring of A/B. (2) If A is semisimple, then B is a subdirect sum of primitive rings, and integral domains.

Proof. (2) Let $\{P\}$ denote the collection of primitive ideals in A. Since

 $\cap P = 0$, necessarily $\cap (P \cap B) = 0$, so that B is a subdirect sum of the rings $\{B - (P \cap B)\}$. Now A - P is a s.r. extension of (P + B) - P, so that by the theorem: if A - P is not a division ring, then (P + B) - P is primitive; (P + B) - P is an integral domain, otherwise. (2) is completed by observing that (P + B) - P is isomorphic to $B - (P \cap B)$, for each $P \in \{P\}$.

COROLLARY 2.3. Let A be a semisimple ring which is a s.r. extension of a commutative subring B. Then A is a subdirect sum of division rings, and B is a subdirect sum of (commutative) integral domains. (If in addition A is subdirectly irreducible, then A is a division ring).

Proof. Let A' be any primitive homomorph of A, and let B' denote the corresponding map of B. Since A'/B' is s.r., and B' is commutative, density of B' in A' would imply commutativity of A', which in turn would imply that A' is a field. Thus, by the theorem, A' is a division ring, so that A is a subdirect sum of division rings. By the corollary, B must be a subdirect sum of (commutative) primitive rings and integral domains. Since a commutative primitive ring is a field, B has the desired struture. (The parenthetical remark is obvious).

3. Commutativity theorems. If S is a nonempty subset of a ring A, then [S] denotes the subring generated by S. If R is a subring, then R[S] denotes the subring generated by R and S. If A is a division ring, and if R is a division subring, R(S) is the division subring generated by R and S.

Let \emptyset be a commutative ring with identity. A ring A is a \emptyset -ring (in the sense of Jacobson [8, p. 55]) if A is a unitary left \emptyset -module satisfying c(xy) = (cx)y = x(cy) for all $c \in \emptyset$, and all $x, y \in A$.

DEFINITION. Let \emptyset be a commutative ring with identity which contains a (possibly 0) subring K with the property that (1) a nonzero homomorph K' of K is an integral domain if and only if K' is an algebraically closed field, and (2) there exist finitely many $c_1, \ldots, c_r \in \emptyset$ such that $\emptyset = K[c_1, \ldots, c_r]$. Let A be a \emptyset -ring, and B a \emptyset -subring of A such that to each $a \in A$ there corresponds a polynomial $P_a(x)$ in the polynomial ring $\emptyset[x]$ such that

$$a^n-a^{n+1}p_a(a)\in B$$

for some natural number n depending on a. Then A/B is an N-extension. If

A/B is an *N*-extension, then it is an N_1 -extension if n = 1 for all $a \in A$, and it is an N_2 -extension if B contains all idempotents of A.

N-extensions have been studied extensively by Nakayama [12] (and others, see [12, References]) where the main result states that any ring A which is an N_1 -extension of its center Z is commutative (or, more generally, any *CN*-ring which is an *N*-extension of its center is commutative.) This result had been obtained earlier by Nakayama in the case K = 0. In this case it is also true that a division ring A is commutative if it is an *N*-extension of a division φ -subring $\neq A$ (Faith [4, Theorem 1]), a result which is extended to the $K \neq 0$ case below.

THEOREM 3.1. Let A be a division \emptyset -ring, \emptyset as in the definition, and let B be a \emptyset -subring such that A/B is an N-extension. Then: if B is commutative, or if B is a division subring $\neq A$, then A is a field.

Proof. If B is commutative, so is the division subring (B) generated by B. If (B) = A, then A is a field as required. Hence, it suffices to consider only the case where $A \ (\neq Z)$ is an N-extension of the division ring $B \neq A$. Let 1 be the identity of A, and set $\varphi = \emptyset 1$. Since $\varphi \neq 0$, A and B are algebras over the field $\overline{\varphi}$ of quotients of φ . In this case the results of [6] are applicable. The hypotheses imply that to each $a \in A$ there corresponds $p_a(x)$ with coefficients in $\varphi(\subseteq \overline{\varphi})$ such that $a^n - a^{n+1}p_a(a) \in B$, Under these conditions [6, Theorem 1.5] asserts that to each $b \in A$ there corresponds a polynomial $F_b(x)$ over $\overline{\varphi}$ such that (i) $F_b(b) \in Z$, and (ii) $F_b(x)$ is the composition of finitely many of the polynomials in the set

$$\{x^n - x^{n+1}p_a(x) \mid a \in A, n = 1, 2, ... \}.$$

Clearly, then, the polynomial $F_b(x)$ has the form

$$F_b(x) = x^m - x^{m+1}g_b(x),$$

with m = m(b) > 1, and $g_b(x) \in \varphi[x]$. (It is important to note that the $F_b(x)$ are polynomials over φ .) The effect of all of this is to show that A/Z is an *N*-extension, as defined above, so that A = Z by the result of Nakayama.

THEOREM 3.2. Let A be a \emptyset -ring, \emptyset as in the definition, and let B be a commutative \emptyset -subring such that A/B is an N_1 -extension. If either A is semi-

simple, or $B \cap J(A) = 0$, where J(A) denotes the Jacobson radical of A, then A is commutative.

Proof. Since A is semisimple (if $B \cap J(A) = 0$, then J is s.r., so J = 0), A is a subdirect sum of division rings A' by Corollary 2.3. Each A' can be regarded as a \mathcal{O} -ring, and it follows that each A' is an N_1 -extension of a commutative subring, so that each A' is commutative by Theorem 3.1. Then A is commutative.

Below, if a ring is an N_1 -extension of 0, then it is an N_1 -ring. By Nakayama's result, every N_1 -ring is commutative. If A is an N_1 -extension of a simple subring B, and if B has an identity e, it follows from the lemma to Proposition 1. 11 that $A = eAe \oplus (1-e)A(1-e)$. Since (1-e)A(1-e) is an N_1 -ring, it is commutative. Now suppose that $eAe = M \oplus N$, where M and N are ideals. If both M and N are disjoint from B, then both M and N are N_1 rings, whence they are commutative. Thus, if eAe is noncommutative, it can be assumed that, say, $B \cap M \neq 0$. Then, by the simplicity of B, $B \subseteq M$, and, since M now contains the identity e of eAe, M = eAe, N = 0, so that eAe is directly irreducible. This establishes the lemma.

LEMMA 3.3. If A is an N_1 -extension of a simple Φ -subring B, and if B contains an identity element e, then

 $A = Q \oplus P,$

where Q = eAe, and P = (1 - e)A(1 - e) is a (commutative) N_1 -ring. Furthermore, either A is commutative, or else eAe = Q is directly irreducible.

Now suppose that B in the lemma is a division \emptyset -subring. Then, if A is noncommutative, Q is a directly irreducible N_1 -extension of B. Since Corollary 1.7 shows that Q is a division ring, it follows from Theorem 3.1 that either B = Q, or else Q is a field. This completes the proof of the next theorem.

THEOREM 3.4. Let A be a \emptyset -ring, and B a division \emptyset -subring such that A/B is an N_1 -extension. Then, either A is commutative, or else $A = B \oplus P$, where P is a (commutative) N_1 -ring. Furthermore, if A is directly irreducible, and $B \neq A$, then A is a field.

The theorem and the discussion preceding have the corollary.

COROLLARY 3.5. If A is a φ -ring which is an N_1 -extension of a φ -subfield B, then A is commutative.

§4. ξ_2 -extensions. The extension A/B is a ξ -extension in case to each $a \in A$ there exist $x = x_2 \in A$ and a natural number $n = n_2$ such that $a^n - a^{n+1}x \in B$. If x can be chosen such that x^n commutes with a^n , for every $a \in A$, then a ξ -extension is a ξ' -extension. A ξ -extension is ξ_2 , if B contains all idempotents of A, and ξ'_2 if it is both ξ_2 and ξ' .

If A is a \emptyset -ring, where \emptyset is a commutative ring with identity, and if B is a \emptyset -subring such that to each $a \in A$ there correspond $p_a(x) \in \emptyset[x]$ and a natural number $n = n_a$ such that $a^n - a^{n+1}p_a(a) \in B$, then A/B is a ξ' -extension; it is ξ'_2 if $p_e(e) = 0$ for each idempotent $e \in A$. Thus, the results of this section are applicable to these extensions; in particular, they are applicable to Nextensions.

A ring A is a ξ'_2 -ring if it is a ξ'_2 -extension of **0**. It is trivial to verify that any ξ'_2 -ring is a nil ring, and conversely. If A/B is ξ'_2 , and if L is any left ideal disjoint from B, then L is nil. To see this, if $a \in L$, and if $a^n - a^{n+1}x$ $\in B$, then $0 = a^n - a^{n+1}x \in B \cap L = 0$. Since $a^n x^n = x^n a^n$, this implies that $e = a^n x^n$ is idempotent. Since $e \in L \cap B = 0$, then $a^n = ea^n = e = 0$, so that L is nil. This fact is used several times below.

THEOREM 4.1. If A is a ξ'_2 -extension of a simple ring B, and if $J(A) \neq A$, then J(A) is nil, and A - J(A) is primitive.

Proof. Suppose for the moment that $J(A) \supseteq B$. Then A - J(A) would be a ξ'_2 -ring, whence it is a nil ring. This would imply that A = J(A), which is excluded by hypothesis. Hence $J(A) \equiv B$, so that $J(A) \cap B = 0$, whence J(A)is nil. Now B cannot be contained in every primitive ideal of A, since the intersection of these is J(A). Hence there exists a primitive ideal P which is disjoint from B. Then P is nil, whence P = J(A), and A - J(A) is primitive.

Now suppose that A is a ring with no nil ideals $\neq 0$ which is a ξ'_2 -extension of a division subring B. By the theorem, A is primitive, but, as a matter of fact, A is division. The proof of this is similar to the proof of the theorem, except that one considers the modular maximal left ideals (m.m.l.-ideals) of A instead of the primitive ideals. Since A contains no nil left ideals, one concludes that 0 is a m.m.l.-ideal, that is, that A is a division ring. This fact is stated

in the next theorem.

THEOREM 4.2. If A is a ring with no nil ideals $\neq 0$, and if A is a ξ_2' -extension of a division subring, then A is a division ring.

The corollary below is a consequence of the theorem, and of Theorem 3.1.

COROLLARY 4.3. If A is a ring with no nil ideals $\neq 0$, and if A is a N_2 extension of a division subring $B \neq A$, then A is a field.

The last two results can be restated as follows: If A is a ring containing no nonzero idempotents $\neq 1$, and containing no nonzero nil ideals, and if A is a ξ' -extension (resp. N-extension) of a division subring $B \neq A$, then A is a division ring (resp. field.)

The corollary generalizes results on radical extensions of [4] and [5].

If A is a radical extension of an integral domain, then to each $a \in A$ there corresponds a natural number n such that a^n has certain regularity properties. The situation is generalized below.

THEOREM 4.4. Let A be a ring with the property that to each $a \in A$ there corresponds a natural number $n = n_a$ such that a^n is not a proper right divisor of zero in A. Then the set N of nilpotent elements is an ideal, and A - N is an integral domain.

Proof. Let D denote the set of all right divisors of zero in A. The condition of the theorem implies that N = D, so that the theorem follows from Lemma 1.9.

Remark. If A is a ring with a nil ideal N such that A - N is integral, then, of course, D = N in A, and A has the property of the theorem.

Now let A be a radical extension of an integral domain B, that is, such that to each $a \in A$ there corresponds a natural number $n = n_a$ such that $a^n \in B$. Assume that A contains no nil left ideals $\neq 0$, let $x \in A$ be nonnilpotent, and let $y \in L_x = \{a \in A \mid ax = 0\}$. Then, since $y^m x^n = 0$, $m = m_y$. $n = n_x$, since B is integral, and since $x^n \neq 0$, then $y^m = 0$. L_x is therefore nil, so $L_x = 0$. This shows that each $a \in A$ has the property stated in the theorem, and completes the proof of the corollary.

COROLLARY 4.5. If A is a ring with no nil left ideals $\neq 0$, and if A is a radical extension of an integral domain, then A is an integral domain.

A commutative integral domain A can be radical over a subring B only under very special circumstances. For then, if A^* and B^* denote the respective quotient fields of A and B, then A^* is radical over B^* . It follows from the work of Kaplansky [Canad. J. Math. vol. 3 (1951) 290-292] that either $A^* = B^*$, or else, A^* has characteristic p > 0, and either A^*/B^* is purely inseparable, or else A^* is algebraic over GF(p). It would be interesting to know the corresponding situation for noncommutative integral domains (cf. [5] for some results with added hypotheses on A and B).

5. Generation of primitive rings. If A is a ring, let T(A) denote the subring generated by all nilpotent elements of index two, and let E(A) be the subring generated by all idempotents. If A is primitive, and A/B is s.r., then by Corollary 2.2, B is dense in the finite topology on A, if A is not division. In view of the fact that B contains T(A) when A/B is s.r., it would be interesting to know if any subring of A which contains $\mathbf{0} \neq T(A)$ is dense in A. Positive results abound in special cases, making a counterexample hard to find.

THEOREM 5.1. If A is a primitive ring with a minimal left ideal, and if A is not a division ring, then T(A) and E(A) are dense in the finite topology on A. (Then T(A) and E(A) are primitive rings).

Let S denote the socle of A. It suffices to show that T(S) = E(S) = S, since then density follows from the inclusions $T(A) \supseteq S$, $E(A) \supseteq S$. Thus, the theorem is a consequence of the lemma below. (In case A does *not* satisfy the minimum condition, then the theorem follows immediately from Rosenberg's generalization [Proc. Amer. Math. Soc. vol. 7 (1956) p. 897, Corollary 5] of a theorem of Kasch [10]).

LEMMA 5.2. (a) If A is a simple ring containing a nontrivial idempotent, then T(A) = A. If, in addition, (b) A is an algebra over a field $\emptyset \Rightarrow GF(2)$, or (c) if A contains a minimal left ideal, then E(A) = A.

Proof. (a) Let \mathscr{T} denote the additive subgroup generated by all nilpotent elements of index two, and let, for any subset S of A, [S, S] denote the additive subgroup generated by all [a, b] = ab - ba, $a, b \in S$. If $u, v \in \mathscr{T}$ are nilpotent of index two, then so is

$$w=(1+u)\,v(1-u),$$

Then,

$$[u, v] = w + uvu - v \in \mathscr{T}.$$

It easily follows from this that \mathscr{T} is a Lie ring with respect to [a, b]. Then Amitsur's [1, Lemma 2] shows that $\mathscr{T} \supseteq [A, A]$, so that $T(A) \supseteq [A, A]$. If eis any nontrivial idempotent in A, then eAf, $fAe \subseteq \mathscr{T} \subseteq T(A)$, where (formally) f = 1 - e. But T(A) also contains the product

$$eAe = e(AfA)e = (eAf)(fAe),$$

similarly, $fAf \subseteq T(A)$. Then T(A) = A = eAe + eAf + fAe + fAf, as needed.

(b) In this case Amitsur's [1, Theorem 1] states that A contains no noninvariant noncentral subalgebras $\neq A$, unless A is 4-dimensional over a field F of characteristic two. Since E(A), T(A) are invariant noncentral subalgebras, equality E(A) = T(A) = A follows when dim $A/F \neq 4$. In this exceptional case, A is a simple matrix algebra. A general property of arbitrary matrix algebras $A = R_n$, n > 1, implied by [7, Prop. 1] is that E(A) = T(A) = A. This latter result also suffices for the case (c), since A is then locally a complete matrix ring R_n , n > 1, by Litoff's theorem [8, p. 90].

THEOREM 5.3. Let A be an algebraic algebra over the field \emptyset . (a) If A is primitive, but not division, then E(A) and T(A) are dense in the finite topology on A. (Then E(A) and T(A) are primitive algebras.) (b) If A is semisimple, so is E(A).

Proof. (a) The proof is analogous to that of Theorem 2.1. Adopting the terminology there, with B = E(A) (resp. B = T(A)), if \overline{e} is any element in a complete set of matrix units for \overline{U} , by [9, p. 239 ff.], there exists an element f in a complete set of matrix units in U such that $\overline{f} = \overline{e}$. If $\overline{e}^2 = \overline{e}$ (resp. $\overline{e}^2 = 0$), then, since $f \in E(A)$ (resp. $f \in T(A)$), it follows that $\overline{e} \in \overline{Q}$. Since any automorphism of \overline{U} maps a complete set of matrix units onto another complete set, this latter assertion shows that \overline{Q} contains all conjugates of \overline{e} . Since $\overline{U} = D_n$, n > 1, by [7, Prop. 1], \overline{U} is generated by the conjugates of \overline{e} , so that $\overline{U} = \overline{Q}$. The rest of the proof is unchanged.

(b) It is not hard to show that a subring (subalgebra) B of a semisimple ring (algebra) A is itself semisimple, if each homomorphism of A which maps A onto a primitive ring (algebra) also maps B onto a primitive ring (algebra).

(The proof of this is related to that of Corollary 2.2). Thus, if A is a semisimple algebraic algebra, and if P is any primitive ideal of A, then [9, p. 239 ff.] shows that the canonical map $A \rightarrow A - P$ maps B = E(A) onto E(A - P). If A - P is not division, then E(A - P) is primitive by (a), while if A - P is division, since it is an algebraic division algebra, every nonzero subalgebra is a division algebra. Thus E(A - P) is primitive in this case too, and the semisimplicity of B follows from the remark above.

Relating to Lemma 5.2 is the question whether T(A) = A in a simple ring (algebra) A implies the equality E(A) = A.

REFERENCES

- [1] Shimshon A. Amitsur, Invariant submodules of simple rings, Proc. Amer. Math. Soc. vol. 7 (1956), 987-989.
- [2] Richard Arens and Irving Kaplansky, Topological representation of algebras, Trans, Amer. Math. Soc. vol. 63 (1948), 457-481.
- [3] Michael P. Drazin, Rings with nil commutator ideals, Rend. Circ. Math. Palermo, vol. 6 (1957) 51-64.
- [4] Carl Faith, Algebraic division ring extensions, Proc. Amer. Math. Soc. vol. 11 (1960), 43-53.
- [5] Carl Faith, Radical extensions of rings, Proc. Amer. Math. Soc. vol. 12 (1961), 274-283.
- [6] Carl Faith, A structure theory for semialgebraic extensions of division algebras,J. für die reine und angewandte Math. (Crelle's Journal) vol. 209 (1962), 144-162.
- [7] Carl Faith, Submodules of rings, Proc. Amer. Math. Soc. vol. 10 (1959), 596-606.
- [8] Nathan Jacobson, Theory of Rings, Amer. Math. Soc. Surveys, vol. 2, Ann Arbor, 1948.
- [9] Nathan Jacobson, Structure of Rings, Amer. Math. Soc. Colloquium Publications, vol. 37, Providence, 1956.
- [10] Friedrich Kasch, Invariante Untermoduln des Endomomorphismenrings eines Vektorraums, Arch. der Math., vol. 4 (153), 182-190.
- [11] Wallace S. Martindale, III, The structure of a special class of rings, Proc. Amer. Math. Soc. vol. 9 (1958), 714-721.
- [12] Tadasi Nakayama, A remark on the commutativity of algebraic rings, Nagoya Math. J., vol. 12 (1959), 39-44.
- [13] Yuzo Utumi, On $\hat{\varsigma}$ -rings, Proc. Japan Acad. vol. 33 (1957) 63-66.
- [14] John von Neumann, On regular rings, Proc. Nat. Acad. Sci. (U.S.A.) vol. 22 (1936), 707-713.

Mathematisches Institut, Heidelberg, Germany and

Institute for Advanced Study, Princeton, N. J.