ON THE EXISTENCE OF OPTIMAL CONTROL FOR CONTROLLED STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

NORIAKI NAGASE

§ 1. Introduction

In this paper we are concerned with stochastic control problems of the following kind. Let $Y(t)$ be a d^{\prime}-dimensional Brownian motion defined on a probability space $\left(\Omega, \mathscr{F}, \mathscr{F}_{t}, P\right)$ and $u(t)$ an admissible control. We consider the Cauchy problem of stochastic partial differential equations (SPDE in short)

$$
\left\{\begin{array}{l}
d p(t, x)=L(Y(t), u(t)) p(t, x) d t+M(Y(t)) p(t, x) d Y(t) \tag{1.1}\\
\\
p(0, x)=\phi(x)
\end{array}\right.
$$

where $L(y, u)$ is the 2 nd order elliptic differential operator and $M(y)$ the 1st order differential operator.

By a solution $p(t)=p^{u}(t)$, we mean $H^{1(t)}$-valued \mathscr{F}_{t}-adapted process which satisfies

$$
\begin{aligned}
(p(t), \eta)= & (\phi, \eta)+\int_{0}^{t}\langle L(Y(s), u(s)) p(s), \eta\rangle d s \\
& +\int_{0}^{t}(M(Y(s)) p(s), \eta) d Y(s), \quad t \geq 0
\end{aligned}
$$

for any smooth η where $\langle\cdot, \cdot\rangle$ is the pairing between H^{-1} and H^{1} and (\cdot, \cdot) is $L^{2}\left(\mathbb{R}^{d}\right)$ inner product (see [4], [7]).

The SPDE (1.1) is related to the filtering, stochastic control with partial observation, population genetics etc. and investigated by Pardoux, Krylov \& Rozovskii and Rozovskii \& Shimizu, etc.

The purpose of this paper is to prove the existence of optimal controls for the following problem. Define a criterion $J(u)$ by

[^0]\[

$$
\begin{equation*}
J(u)=E\left[F\left(p^{u}\right)+G\left(p^{u}(T)\right)\right] \tag{1.2}
\end{equation*}
$$

\]

where F and G are real valued functions on $L^{2}\left(0, T ; L^{2}\left(\mathbb{R}^{d}\right)\right)$ and $L^{2}\left(\mathbb{R}^{d}\right)$ respectively. Now we want to minimize $J(u)$ by a suitable choice of an admissible process u.

In Section 2 we will recall some known results in our convenient way and formulate our problem precisely. In Section 3 we will prove that the solution p^{u} depends on u continuously which derives the existence of optimal control [Theorem 3.2]. In Section 4 we apply our results to stochastic control with partial observation, where an observation noise may depend on a state noise.

The author wishes to thank Professor M. Nisio for her valuable suggestion and encouragement and the referee for many helpful comments.

§ 2. Notation and preliminaries

We assume the following conditions (A.1)~(A.3).

$$
\begin{align*}
b: \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}} \longrightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{L} \tag{A.1}\\
\sigma: \mathbb{R}^{a} \times \mathbb{R}^{d^{\prime}} \longrightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d^{\prime}} \\
a: \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}} \longrightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d} \\
h: \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}} \longrightarrow \mathbb{R}^{d^{\prime}}
\end{align*}
$$

are bounded and continuous and a is symmetric.
(A.2) There exists $\delta>0$ such that

$$
2 a(x, y)-3 \sigma(x, y) \sigma^{*}(x, y) \geq \delta I \quad \text { for any }(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}}
$$

where σ^{*} is the transposed matrix of σ.

$$
\begin{align*}
& a(\cdot, y), \sigma(\cdot, y) \text { are } C^{\hat{m}+1} \text {-class in } x \in \mathbb{R}^{d}, \tag{A.3}\\
& h(\cdot, y), b(\cdot, y) \text { are } C^{\hat{m}} \text {-class in } x \in \mathbb{R}^{d}
\end{align*}
$$

and their derivatives are bounded and continuous in $(x, y) \in \mathbb{R} \times \mathbb{R}^{d^{\prime}}$, where $\hat{m}=\max \{2, m\}$ and m is a given nonnegative integer.

Let Γ be a convex and compact subset of \mathbb{R}^{L}.
Definition 2.1. $\mathscr{A}=(\Omega, \mathscr{F}, P, Y, u)$ is called an admissible system, if (Ω, \mathscr{F}, P) is a probability space and u is a Γ-valued measurable process and Y is a d^{\prime}-dimensional $\left(\mathscr{F}_{t}\right)$-Brownian motion on (Ω, \mathscr{F}, P), where $\mathscr{F}_{t}=\sigma\left\{Y(s), \int_{0}^{s} u(\tau) d \tau ; s \leq t\right\}$.
\mathfrak{A} denotes the totality of admissible systems.
For $\mathscr{A} \in \mathfrak{A}, \pi^{\infty}$ denotes the image measure of (Y, u) on $C\left(0, T ; \mathbb{R}^{d^{\prime}}\right) \times$ $L^{2}(0, T ; \Gamma)$.

Endowing the uniform topology on $C\left(0, T ; \mathbb{R}^{a^{\prime}}\right)$ and the weak topology on $L^{2}(0, T ; \Gamma)$, we have

Lemma 2.1. $\left\{\pi^{\mathscr{A}} ; \mathscr{A} \in \mathfrak{A}\right\}$ is compact under the Prokhorov metric. (See Fleming \& Pardoux [2] Lemma 2.3.)

Define $L(y, u) \in \mathscr{L}\left(H^{1}, H^{-1}\right), M^{k}(y) \in \mathscr{L}\left(H^{1}, L^{2}\left(\mathbb{R}^{d}\right)\right)\left(k=1, \cdots, d^{\prime}, y \in \mathbb{R}^{d^{\prime}}\right.$, $u \in \Gamma$) by

$$
\begin{gather*}
\langle L(y, u) p, q\rangle=-\sum_{i, j=1}^{d}\left(a_{i j}(\cdot, y) \frac{\partial p}{\partial x_{i}}, \frac{\partial q}{\partial x_{j}}\right)+\sum_{j=1}^{d}\left(\tilde{b}_{j}(\cdot, y, u) p, \frac{\partial q}{\partial x_{j}}\right) \tag{2.1}\\
\left(M^{k}(y) p, \eta\right)=-\sum_{i=1}^{d}\left(\sigma_{i k}(\cdot, y) \frac{\partial p}{\partial x_{i}}, \eta\right)+\left(\tilde{h}_{k}(\cdot, y) p, \eta\right) \tag{2.2}
\end{gather*}
$$

for $p, q \in H^{1}$ and $\eta \in L^{2}\left(\mathbb{R}^{d}\right)$, where $(\cdot, \cdot)=$ the inner product in $L^{2}\left(\mathbb{R}^{d}\right)$, $\langle\cdot, \cdot\rangle=$ the duality pairing between H^{-1} and H^{1} and

$$
\begin{aligned}
& \tilde{b}_{j}(x, y, u)=\sum_{l=1}^{L} b_{j l}(x, y) u_{l}-\sum_{i=1}^{d} \frac{\partial a_{i j}}{\partial x_{i}}(x, y) \\
& \tilde{h}_{k}(x, y)=h(x, y)-\sum_{i=1}^{d} \frac{\partial \sigma_{i k}}{\partial x_{i}}(x, y)
\end{aligned}
$$

By (A.1)~(A.3), there exists $\alpha>0$ and $\lambda \in \mathbb{R}$ such that

$$
\begin{array}{r}
-2\langle L(y, u) p, p\rangle+\lambda\|p\|_{0}^{2} \geq \alpha\|p\|_{1}^{2}+3 \sum_{k=1}^{d^{\prime}}\left\|M^{k}(y) p\right\|_{0}^{2} \tag{2.3}\\
\text { for any } p \in H^{1}, y \in \mathbb{R}^{d}, u \in \Gamma
\end{array}
$$

where $\|\cdot\|_{l}=$ the H^{l}-norm $(l=0, \pm 1, \cdots)$ (for the proof, see $\S 2$ of Krylov \& Rozovskii [4]).
(2.3) is called the coercivity condition.

For an admissible system $\mathscr{A}=(\Omega, \mathscr{F}, P, Y, u)$, putting $L^{\alpha}(t)=L(Y(t), u(t))$ and $M^{* k}(t)=M^{k}(Y(t))$, we consider the Cauchy problem of SPDE on (Ω, \mathscr{F}, P),

$$
\begin{cases}d p(t)=L^{*}(t) p(t) d t+M^{*}(t) p(t) d Y(t) \tag{2.4}\\ & t>0 \\ p(0)=\phi \in H^{\hat{m}} & \end{cases}
$$

where $M^{*}(t)=\left(M^{* 11}(t), \cdots, M^{* d^{\prime}}(t)\right)$.

Definition 2.2. By a solution of SPDE (2.4), we mean an H^{1}-valued \mathscr{F}_{t}-adapted process $p(t)$ defined on (Ω, \mathscr{F}, P) such that
(1) $E\left[\int_{0}^{T}\|p(t)\|_{1}^{2} d t\right]<\infty$
(2) for any $\eta \in H^{1}$ and $t \in[0, T]$

$$
\begin{equation*}
(p(t), \eta)=(\phi, \eta)+\int_{0}^{t}\left\langle L^{\alpha}(s) p(s), \eta\right\rangle d s+\int_{0}^{t}\left(M^{\alpha}(s) p(s), \eta\right) d Y(s) \tag{2.5}
\end{equation*}
$$

holds.
By the coercivity condition (2.3), we have the following proposition. (See [5], [7].)

Proposition 2.1. For each $\mathscr{A} \in \mathfrak{A}$, the equation (2.4) has a unique solution $p=p^{s}$ which satisfies

$$
\begin{equation*}
p \in L^{2}\left((0, T) \times \Omega ; H^{\hat{n}+1}\right) \cap L^{2}\left(\Omega ; C\left(0, T ; H^{\hat{n}}\right)\right) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{align*}
\|p(t)\|_{0}^{2}= & \|\phi\|_{0}^{2}+2 \int_{0}^{t}\left\langle L^{\infty}(s) p(s), p(s)\right\rangle d s \tag{2.8}\\
& +2 \int_{0}^{t}\left(M^{\infty}(s) p(s), p(s)\right) d Y(s)+\int_{0}^{t}\left\|M^{\alpha} p(s)\right\|_{0}^{2} d s
\end{align*}
$$

The solution $p=p^{\infty}$ of the $\operatorname{SPDE}(2.4)$ is called the response for \mathscr{A}.
Remark 2.1. We can apply the results of Pardoux [7] also to the triplet $\left(V, H, V^{*}\right)$, where $V=H^{l+1}, H=H^{l}$ and $V^{*}=H^{l-1}(l=0,1, \cdots, \hat{m})$. Define $\tilde{L}(y, u) \in \mathscr{L}\left(H^{l+1}, H^{l-1}\right), \tilde{M}(y) \in \mathscr{L}\left(H^{l+1}, H^{\iota}\right)$ similarly to $L(y, u), M(y)$, where we replace $\langle\cdot, \cdot\rangle$ and (\cdot, \cdot) by " $\langle\cdot, \cdot\rangle_{l}=$ the duality pairing between H^{l-1} and H^{l+1} " and " $(\cdot, \cdot)_{l}=$ the inner product in $H^{l \text { " }}$ repsectively in (2.1), (2.2). Then the coercivity condition holds. (In (2.3), $\|\cdot\|_{0}$ and $\|\cdot\|_{1}$ are replaced by $\|\cdot\|_{l}$ and $\|\cdot\|_{l+1}$ respectively.) Appealing to Krylov \& Rozovskii [4], the solution p of (2.4) turns out a unique solution of SPDE (2.9)

$$
\begin{cases}d p(t)=\tilde{L}(Y(t), u(t)) p(t) d t+\tilde{M}(Y(t)) p(t) d Y(t) \tag{2.9}\\ & t>0 \\ p(0)=\phi . & \end{cases}
$$

Moreover $p(t)$ satisfies similar equality to (2.8). (i.e. " 0 " is replaced by " l ".)

Let $F: L^{2}\left(0, T ; H^{m+1}\right) \rightarrow \mathbb{R}$ and $G: H^{m} \rightarrow \mathbb{R}$ be weakly continuous functions.

For $\mathscr{A} \in \mathfrak{A}$, we define the pay-off function $J(\mathscr{A})$ by

$$
\begin{equation*}
J(\mathscr{A})=E\left[F\left(p^{凶}\right)+G\left(p^{凶}(T)\right)\right] \tag{2.10}
\end{equation*}
$$

We want to minimize its value by a suitable choice of $\mathscr{A} \in \mathfrak{A}$.

§ 3. Existence of optimal control

First of all we will prove that the solution p^{\star} of (2.4) depends on \mathscr{A} continuously.

Theorem 3.1. If $\pi^{\bowtie(n)} \rightarrow \pi^{\infty}$ in law, then
(3.1) $p^{\alpha(n)} \longrightarrow p^{\alpha}$ in law as $L^{2}\left(0, T ; H^{m+1}\right)$-random variable
and
(3.2) $p^{\varangle(n)}(T) \longrightarrow p^{\star}(T)$ in law as H^{m}-random variable, where we endow the weak topologies on $L^{2}\left(0, T ; H^{m+1}\right)$ and H^{m}.

For the proof we need the following two lemmas.
Lemma 3.1. There exists a constant $K>0$ such that

$$
\begin{align*}
& E\left\{\int_{0}^{T}\left\|p^{\alpha}(t)\right\|_{l+1}^{2} d t\right\} \leq K\|\phi\|_{l}^{2} \tag{3.3}\\
& E\left\{\sup _{0 \leq t \leq T}\left\|p^{*}(t)\right\|_{l}^{2}\right\} \leq K\|\phi\|_{l}^{2} \tag{3.4}\\
& E\left\{\int_{0}^{T}\left\|p^{\infty}(t)\right\|_{l}^{4} d t\right\} \leq K\|\phi\|_{l}^{4} \tag{3.5}\\
& \quad \quad \quad \text { or any } \mathscr{A} \in \mathfrak{A} . \quad(l=0,1, \cdots, \hat{m}) .
\end{align*}
$$

According to [6] we introduce the spaces $\mathscr{H}_{r}(D)$ and $\mathscr{H}_{r}(T, D)$ as follows. Set $\hat{\psi}(\cdot, x)=$ the Fourier transformation in t of $\psi(\cdot, x),\|\cdot\|_{2, D}=$ the $H^{2}(D)$-norm and $\|\cdot\|_{*}=$ the norm of the dual space $\left(H^{2}(D)\right)^{*}$, where ${ }^{*}$ we identify $H^{1}(D)$ with its dual space.

$$
\mathscr{H}_{r}(D)=\left\{\psi \in L^{2}\left(-\infty, \infty ; H^{2}(D)\right) ; \int_{-\infty}^{\infty}|\tau|^{2 r}\|\hat{\psi}(\tau)\|_{*}^{2} d \tau<\infty\right\}
$$

where

$$
\begin{gathered}
\|\psi\|_{\mathscr{e}_{r}(D)}=\left\{\int_{-\infty}^{\infty}\|\psi(t)\|_{2, D}^{2} d t+\int_{-\infty}^{\infty}|\tau|^{2 r}\|\hat{\psi}(\tau)\|_{*}^{2} d \tau\right\}^{1 / 2} \\
\mathscr{H}_{r}(T, D)=\left\{\left.\psi\right|_{[0, T]} ; \psi \in \mathscr{H}_{r}(D)\right\}
\end{gathered}
$$

where

$$
\|\psi\|_{e_{r}(T, D)}=\inf \left\{\|\varphi\|_{\mathscr{P}_{r}(D)} ; \varphi(t)=\psi(t) \text { a.e. on }[0, T]\right\}
$$

Remark 3.1. If D is a bounded and open subset of \mathbb{R}^{d} with a smooth boundary, then, by the compactness lemma ([6] p.60) the imbedding: $\mathscr{H}_{7}(T, D) \rightarrow L^{2}\left(0, T ; H^{1}(D)\right)$ is compact.

Lemma 3.2. Let $0<\gamma<1 / 4$, then for each $\mathscr{A} \in \mathfrak{A}$,

$$
p^{*} \in \mathscr{H}_{r}(T, D) \text { a.s. }
$$

and there exists $K>0$ such that

$$
\begin{equation*}
E\left[\left\|p^{\alpha}\right\|_{\mathscr{A}_{r}(T, D)}^{2}\right] \leq K\|\phi\|_{2}^{2} \quad \forall \mathscr{A} \in \mathscr{A} . \tag{3.6}
\end{equation*}
$$

Proof of Lemma 3.1. (3.3) and (3.4) are easy variants of Corollary 2.2 of Krylov \& Rozovskii [4]. Now we will show (3.5). Since the response p is the solution of (2.9), using Itô's formula, we get

$$
\begin{align*}
\|p(t)\|_{l}^{4}= & \|\phi\|_{l}^{4}+4 \int_{0}^{t}\|p(s)\|_{l}^{2}\langle\tilde{L}(s) p(s), p(s)\rangle_{l} d s \\
& +2 \int_{0}^{t}\|p(s)\|_{l}^{2}\|\tilde{M}(s) p(s)\|_{l}^{2} d s+4 \sum_{k=1}^{d^{\prime}} \int_{0}^{t}\left(\tilde{M}^{k}(s) p(s), p(s)\right)_{l}^{2} d s \tag{3.7}\\
& +4 \int_{0}^{t}\|p(t)\|_{l}^{2}(\tilde{M}(s) p(s), p(s))_{l} d Y(s)
\end{align*}
$$

where $\tilde{L}(t)=\tilde{L}(Y(t), u(t))$ and $\tilde{M}(t)=\tilde{M}(Y(t))$.
Hence, using the coercivity condition, we have

$$
\begin{align*}
E\left[\|p(t)\|_{l}^{4}\right]-\|\phi\|_{l}^{4}= & 2 E\left[\int_{0}^{t}\|p(s)\|_{l}^{2}\left\{2\langle\tilde{L}(s) p, p\rangle_{l}+\|\tilde{M}(s) p\|_{i}^{2}\right\} d s\right] \\
& +4 E\left[\int_{0}^{t} \sum_{k=0}^{d^{\prime}}(\tilde{M}(s) p, p)_{l}^{2} d s\right] \tag{3.8}\\
\leq & 2 E\left[\int_{0}^{t}\|p(s)\|_{l}^{2}\left\{\lambda^{\prime}\|p(s)\|_{l}^{2}-\alpha^{\prime}\|p(s)\|_{l+1}^{2}\right\} d s\right] \\
\leq & 2 \lambda^{\prime} E\left[\int_{0}^{t}\|p(s)\|_{l}^{4} d s\right] .
\end{align*}
$$

So the Gronwall's inequality derives (3.5).
Proof of Lemma 3.2. For the convenience, we extend $p(t)$ on $(-\infty, \infty)$ in the following way

$$
\begin{aligned}
p(t) & =p(t), t \in[0, T] \\
& =0, \quad t \in(-\infty, \infty) \backslash[0, T]
\end{aligned}
$$

Since $p(t)$ is a solution of (2.9), applying Itô's formula, we obtain

$$
\begin{align*}
2 \pi i \tau(\hat{p}(\tau), \eta)_{2}= & (\phi, \eta)_{2}-(p(T), \eta)_{2} \exp \{-2 \pi i \tau T\} \\
& +\left\langle\widehat{\tilde{L} p(\tau), \eta\rangle_{2}}+\int_{0}^{T} \exp \{-2 \pi i \tau t\}(\tilde{M}(t) p, \eta)_{2} d Y(t)\right. \tag{3.9}
\end{align*}
$$

for any $\eta \in H^{3}$.
Let $\left\{\eta_{k}\right\}_{k \geq 1}$ be an orthonormal basis in H^{3}. Using (3.3), (3.4) and (3.9), we have

$$
\begin{equation*}
4 \pi^{2} \tau^{2} E\left[\|\hat{p}(\tau)\|_{1}^{2}\right]=4 \pi^{2} \tau^{2} \sum_{k=1}^{\infty} E\left\{\left|\left(\hat{p}(\tau), \eta_{k}\right)_{2}\right|^{2}\right\} \leq K_{1}\|\phi\|_{2}^{2}+K_{2} E\left[\|\widehat{\hat{L p}}(\tau)\|_{1}^{2}\right] \tag{3.10}
\end{equation*}
$$

Let $0<\gamma<1 / 4$ and $0<\kappa<3 / 2$, then

$$
\begin{align*}
\int_{-\infty}^{\infty} & E\left\{|\tau|^{2 \tau}\|\hat{p}(\tau)\|_{*}^{2}\right\} d \tau \leq \int_{|\tau| \leq 1} E\left[\|\hat{p}(\tau)\|_{1}^{2}\right] d \tau+\int_{|\tau| \geq 1} E\left[\frac{2|\tau|^{2}}{1+|\tau|^{\mid k}}\|\hat{p}(\tau)\|_{1}^{2}\right] d \tau \\
& \leq K_{3}\left\{E\left[\int_{-\infty}^{\infty}\|p(t)\|_{1}^{2} d t\right]+\int_{-\infty}^{\infty} \frac{d \tau}{1+|\tau|^{k}}\|\phi\|_{1}^{2}+E\left[\int_{-\infty}^{\infty}\|\tilde{L}(t) p\|_{1}^{2} d t\right]\right\} \tag{3.11}\\
& \leq K_{4}\|\phi\|_{2}^{2} .
\end{align*}
$$

This concludes the lemma.
Remark 3.2. (3.5) implies the uniform integrability of

$$
\int_{0}^{T}\left\|p^{\mathscr{\alpha}}(t)\right\|_{l}^{2} d t, \quad \mathscr{A} \in \mathfrak{A} .
$$

Remark 3.3. We define the metric d on $H=L^{2}\left(0, T ; H^{m+1}\left(\mathbb{R}^{d}\right)\right)$ by

$$
d(p, q)=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \min \left(\left|\left(e_{k}, p-q\right)\right|, 1\right\} \quad p, q \in H
$$

where (\cdot, \cdot) is the inner product on H and $\left\{e_{k}\right\}_{k=1}^{\infty}$ is the orthonormal basis on H. Then Lemma 3.1 and Prokhorov's theorem imply that the totality of image measure $p^{\alpha}(\mathscr{A} \in \mathfrak{V})$ is relatively compact as a set of measures on the metric space (H, d).

On the other hand, on each bounded set of H the weak topology is metrizable by the metric d. Therefore, for any weakly closed set F of $H, F \cap\{q \in H ;\|q\| \leq r\}(r>0)$ is closed with respect to the metric d.

Under this observation, $\left\{p^{\alpha} ; \mathscr{A} \in \mathfrak{A}\right\}$ is relatively compact as a set of measures on H associated with the weak topology.

Proof of Theorem 3.1. Let $D_{k}(k=1,2, \cdots)$ be bounded and open subsets of \mathbb{R}^{d} with smooth boundary, $\overline{D_{k}} \subset D_{k+1}$ and $\bigcup_{k=1}^{\infty} D_{k}=\mathbb{R}^{d}$. For an admissible system $\mathscr{A}=(\Omega, \mathscr{F}, P, Y, u)$,

$$
\begin{aligned}
& \mu^{*}=\text { the image measure of }\left(Y, u, p^{*}\right) \text { on } S, \\
& \mu_{k}^{\alpha}=\text { the image measure of }\left(Y, u, p^{*}\right) \text { on } S_{k}
\end{aligned}
$$

where

$$
S=C\left(0, T ; \mathbb{R}^{d^{\prime}}\right) \times L^{2}(0, T ; \Gamma) \times L^{2}\left(0, T ; H^{m+1}\left(\mathbb{R}^{d}\right)\right)
$$

and

$$
S_{k}=C\left(0, T ; \mathbb{R}^{a^{\prime}}\right) \times L^{2}(0, T ; \Gamma) \times L^{2}\left(0, T ; H^{1}\left(D_{k}\right)\right)
$$

endowing the weak topology on $L^{2}\left(0, T ; H^{m+1}\left(\mathbb{R}^{d}\right)\right)$ and the strong topology on $L^{2}\left(0, T ; H^{1}\left(D_{k}\right)\right)$. By the compactness of $\left\{\pi^{\mathscr{\infty}} ; \mathscr{A} \in \mathfrak{A}\right\}$ and Remark 3.3, $\mathfrak{P}=\left\{\mu^{\mathscr{A}} ; \mathscr{A} \in \mathfrak{A}\right\}$ is relatively compact. Moreover, by Lemma 3.2 and Remark 3.1, $\mathfrak{P}_{k}=\left\{\mu_{k}^{\alpha} ; \mathscr{A} \in \mathfrak{X}\right\}$ is relatively compact.

Hence there exist a subsequence $\left\{\mathscr{A}\left(n^{\prime}\right)\right\}_{n^{\prime}}$, a probability μ on S and a probability μ_{k} on $S_{k}(k=1,2, \cdots)$ such that

$$
\begin{equation*}
\mu^{\otimes\left(n^{\prime}\right)} \longrightarrow \mu \text { in law as } n^{\prime} \longrightarrow \infty \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{k}^{\otimes\left(n^{\prime}\right)} \longrightarrow \mu_{k} \text { in law as } n^{\prime} \longrightarrow \infty . \tag{3.13}
\end{equation*}
$$

By Skorohod's theorem, we can construct the S_{k}-valued random variables $\left(Y_{n^{\prime}}, u_{n^{\prime}}, p_{n^{\prime}}\right),(Y, u, p), n^{\prime}=1,2, \cdots$, on a probability space (Ω, \mathscr{F}, P) such that
(3.14) the law of $\left(Y_{n^{\prime}}, u_{n^{\prime}}, p_{n^{\prime}}\right)=\mu_{k}^{\alpha\left(n^{\prime}\right)}, n^{\prime}=1,2, \cdots$,
(3.15) the law of $(Y, u, p)=\mu_{k}$
and
(3.16) $\quad\left(Y_{n^{\prime}}, u_{n^{\prime}}, p_{n^{\prime}}\right) \longrightarrow(Y, u, p)$ almost surely $\left(n^{\prime} \longrightarrow \infty\right)$
as S_{k}-valued random variables.
Now we will prove the following lemma.
Lemma 3.3. Let $\psi:[0, T] \rightarrow \mathbb{R}$ be an absolutely continuous function with $\psi^{\prime} \in L^{2}(0, T)$ and $\psi(T)=0$ and $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ with $\operatorname{supp}(\eta) \subset D_{k}$, then (Y, u, p) of (3.16) satisfies

$$
\begin{align*}
(\phi, \eta) \psi(0) & +\int_{0}^{T} \psi^{\prime}(t)(p(t), \eta) d t+\int_{0}^{T} \psi(t)\langle L(Y(t), u(t)) p, \eta\rangle d t \tag{3.17}\\
& +\int_{0}^{T} \psi(t)(M(Y(t)) p, \eta) d Y(t)=0 .
\end{align*}
$$

Proof. Since $p_{n^{\prime}}$ is the solution of the SPDE (2.4) for ($Y_{n^{\prime}}, u_{n^{\prime}}$), using Itô's formula to (2.5), we get

$$
\begin{align*}
(\phi, \eta) \psi(0) & +\int_{0}^{T} \psi^{\prime}(t)\left(p_{n^{\prime}}(t), \eta\right) d t+\int_{0}^{T} \psi(t)\left\langle L\left(Y_{n^{\prime}}(t), u_{n^{\prime}}(t)\right) p_{n^{\prime}}, \eta\right\rangle d t \\
& +\int_{0}^{T} \psi(t)\left(M\left(Y_{n^{\prime}}(t)\right) p_{n^{\prime}}, \eta\right) d Y_{n^{\prime}}(t)=0 \tag{3.17}
\end{align*}
$$

By Remark 3.2 and (3.16), we get

$$
\begin{equation*}
E\left[\int_{0}^{T}\left\|p_{n^{\prime}}(t)-p(t)\right\|_{1, D_{k}}^{2} d t\right] \longrightarrow 0 \quad\left(n^{\prime} \rightarrow \infty\right) \tag{3.18}
\end{equation*}
$$

Recalling " $\operatorname{supp}(\eta) \subset D_{k}$ ", we obtain

$$
\begin{align*}
& \int_{0}^{T} \psi(t)\left\langle L\left(Y_{n^{\prime}}(t), u_{n^{\prime}}(t)\right) p_{n^{\prime}}, \eta\right\rangle d t \\
& \quad \longrightarrow \int_{0}^{T} \psi(t)\langle L(Y(t), u(t)) p, \eta\rangle d t \quad \text { in } L^{2}(\Omega) \tag{3.19}
\end{align*}
$$

$$
\begin{equation*}
\psi(t)\left(p_{n^{\prime}}(t), \eta\right) \longrightarrow \psi(t)(p(t), \eta) \quad \text { in } L^{2}([0, T] \times \Omega) \tag{3.20}
\end{equation*}
$$

and
(3.21) $\psi(t)\left(M\left(Y_{n^{\prime}}(t)\right) p_{n^{\prime}}, \eta\right) \longrightarrow \psi(t)(M(Y(t)) p, \eta) \quad$ in $L^{2}([0, T] \times \Omega)$.

For the proof of (3.19), putting

$$
\begin{aligned}
& q_{n^{\prime}}(t)=\psi(t)\left(b_{i l}\left(\cdot, Y_{n^{\prime}}(t)\right) p_{n^{\prime}}(t), \eta\right) \\
& q(t)=\psi(t)\left(b_{i l}(\cdot, Y(t)) p(t), \eta\right)
\end{aligned}
$$

and $u(t)=\left(u^{1}(t), \cdots, u^{L}(t)\right)$, we have

$$
\begin{gather*}
\int_{0}^{T} \psi(t)\left(b_{i l}\left(\cdot, Y_{n^{\prime}}(t)\right) p_{n^{\prime}}(t), \eta\right) u_{n^{\prime}}^{l}(t) d t-\int_{0}^{T} \psi(t)\left(b_{i l}(\cdot, Y(t)) p(t), \eta\right) u^{l}(t) d t \tag{3.22}\\
=\int_{0}^{T} u_{n^{\prime}}^{l}(t)\left(q_{n^{\prime}}(t)-q(t)\right) d t+\int_{0}^{T}\left(u_{n^{\prime}}^{l}(t)-u^{l}(t)\right) q(t) d t
\end{gather*}
$$

By (3.18), the 1st term of the right hand side of (3.22) converges to 0 in $L^{2}(\Omega)$. By Remark 3.2 and (3.16), we get

$$
\begin{equation*}
E\left[\left\{\int_{0}^{T}\left(u_{n^{\prime}}^{l}(t)-u^{l}(t)\right) q(t) d t\right\}^{2}\right] \longrightarrow 0 \tag{3.23}
\end{equation*}
$$

This implies (3.19). (3.20) and (3.21) can be proved similarly. Moreover, combining (3.21) with (3.16), we get

$$
\begin{align*}
\int_{0}^{T} \psi(t) & \left(M\left(Y_{n^{\prime}}(t)\right) p_{n^{\prime}}, \eta\right) d Y_{n^{\prime}}(t) \\
& \longrightarrow \int_{0}^{T} \psi(t)(M(Y(t)) p, \eta) d Y(t) \quad \text { in } L^{2}(\Omega) \tag{3.24}
\end{align*}
$$

Hence, by taking limit of (3.17) $n_{n^{\prime}}$, we obtain (3.17).
Let $i_{k}: S \rightarrow S_{k}$ be the canonical injection. Then by the definition

$$
\begin{equation*}
i_{k}\left(\mu^{\otimes\left(n^{\prime}\right)}\right)=\mu_{k}^{\&\left(n^{\prime}\right)} \quad \text { and } \quad i_{k}(\mu)=\mu_{k} . \tag{3.25}
\end{equation*}
$$

Let ($\tilde{Y}, \tilde{u}, \tilde{p}$) be S-valued random variable whose law $=\mu . \quad$ Then (3.25) implies that the law of $\left(\tilde{Y}, \tilde{u},\left.\tilde{p}\right|_{D_{k}}\right)=\mu_{k}$.

Hence, by Lemma 3.3, ($\left.\tilde{Y}, \tilde{u},\left.\tilde{p}\right|_{D_{k}}\right)$ satisfies the equation (3.17). Noting that $\operatorname{supp}(\eta) \subset D_{k}$, we obtain

$$
\begin{align*}
(\phi, \eta) \psi(0) & +\int_{0}^{T} \psi^{\prime}(t)(\tilde{p}(t), \eta) d t+\int_{0}^{T} \psi(t)\langle L(\tilde{Y}(t), \tilde{u}(t)) \tilde{p}, \eta\rangle d t \\
& +\int_{0}^{T} \psi(t)(M(\tilde{Y}(t)) \tilde{p}, \eta) d \tilde{Y}(t)=0 . \tag{3.26}
\end{align*}
$$

Since k is arbitrary, (3.26) holds for any $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$.
By the same argument as Theorem 1.3 in [7], \tilde{p} becomes a solution of $\operatorname{SPDE}(2.4)$ for (\tilde{Y}, \tilde{u}). Since the law of $(\tilde{Y}, \tilde{u})=\pi^{s}$, we get

$$
\begin{equation*}
\mu=\text { the law of }(\tilde{Y}, \tilde{u}, \tilde{p})=\mu^{\infty} \tag{3.27}
\end{equation*}
$$

This means that any convergent subsequence of $\left\{\mu^{\alpha\left(n^{\prime}\right)}\right\}$ converges to μ^{∞}. Hence the original sequence $\left\{\mu^{\infty(n)}\right\}$ converges to μ^{∞}. So we get (3.1). Next we consider the law of ($\left.Y, u, p^{\infty}, p^{\infty}(T)\right)$ then by the similar argument we can prove (3.2).

Theorem 3.2. If F and G are bounded from below, then there exists an optimal admissible system $\tilde{A} \in \mathfrak{A}$ that is

$$
\begin{equation*}
\inf \{J(\mathscr{A}) ; \mathscr{A} \in \mathfrak{A}\}=J(\tilde{\mathscr{A}}) . \tag{3.28}
\end{equation*}
$$

Proof. By theorem 3.1,

$$
J_{n}(\mathscr{A})=E\left[\min \left\{F\left(p^{\infty}\right), n\right\}+\min \left\{G\left(p^{*}(T)\right), n\right\}\right]
$$

is continuous on \mathfrak{N}. Since $J(\mathscr{A})$ is the limit function of non-decreasing sequence $\left\{J_{n}(\mathscr{A})\right\}_{n=1}^{\infty}$, it is lower-semicontinuous on \mathfrak{A}. This concludes the theorem.

§4. Optimal control for partially observed diffusions

In this section we will apply Theorem 3.2 to the stochastic control problems for partially observed diffusions where an observation noise may depend on a state noise.

We assume the following conditions (A.4)~(A.6).
(A.4) $\hat{\sigma}: \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}} \longrightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d}$ is bounded and continuous
(A.5) There exists $\delta>0$ such that

$$
\hat{\sigma}(x, y) \hat{\sigma}^{*}(x, y)-2 \sigma(x, y) \sigma^{*}(x, y) \geq \delta \mathrm{I} \quad \text { for } \forall(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}
$$

(A.6) $\hat{\sigma}(\cdot, y)$ is C^{3}-class in $x \in \mathbb{R}^{d}$ and all derivatives are bounded and continuous in $(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$.

Put $a(x, y)=\left(\hat{\sigma}(x, y) \hat{\sigma}^{*}(x, y)+\sigma(x, y) \sigma^{*}(x, y)\right) / 2$, then $a(x, y)$ and $\sigma(x, y)$ satisfy (A.2).

Now we will consider the optimal control problems of the following kind. Let $X(t)$ denote the state process being controlled, $Y(t)$ the observation process and $u(t)$ the control process. The state and observation processes are governed by the stochastic differential equations

$$
\left\{\begin{align*}
d X(t) & =b(X(t), Y(t)) u(t) d t+\hat{\sigma}(X(t), Y(t)) d \hat{W}(t)+\sigma(X(t), Y(t)) d W(t) \tag{4.1}\\
X(0) & =\xi
\end{align*}\right.
$$

and

$$
\left\{\begin{align*}
d Y(t) & =h(X(t)) d t+d W(t) \tag{4.2}\\
Y(0) & =0
\end{align*}\right.
$$

where \hat{W} and W are independent Brownian motions with values in \mathbb{R}^{d} and $\mathbb{R}^{d^{\prime}}$ respectively on a probability space $(\Omega, \mathscr{F}, \hat{P})$.

The problem is to minimize a criterion of the form

$$
\begin{equation*}
J(u)=\hat{E}\left[\int_{0}^{T} f(X(t)) d t+g(X(T))\right] \tag{4.3}
\end{equation*}
$$

In the customary version of stochastic control under partial observation, $u(t)$ is a function of the observation process $Y(s), s \leq t$. Instead of discussing the problem of this type, we treat some wider class of admissible controls inspired by Fleming \& Pardoux [2].

Let

$$
\begin{equation*}
\rho(t)=\exp \left\{\int_{0}^{t} h(X(s)) d Y(s)-\frac{1}{2} \int_{0}^{t}|h(X(s))|^{2} d s\right\} . \tag{4.4}
\end{equation*}
$$

Then \hat{W} and Y become independent Brownian motions under a new probability P defined by

$$
\begin{equation*}
d P=\rho(T)^{-1} d \hat{P} \tag{4.5}
\end{equation*}
$$

and $X(t)$ becomes a solution of the following SDE

$$
\left\{\begin{align*}
d X(t)= & \{b(X(t), Y(t)) u(t)-\sigma(X(t), Y(t)) h(X(t))\} d t \tag{4.6}\\
& +\hat{\sigma}(X(t), Y(t)) d \hat{W}(t)+\sigma(X(t), Y(t)) d Y(t) \\
X(0)= & \xi
\end{align*}\right.
$$

Suppose ξ has a probability density $\phi \in H^{2}\left(\mathbb{R}^{a}\right)$.
Definition 4.1. $\mathscr{A}=(\Omega, \mathscr{F}, P, \hat{W}, Y, u, \xi)$ is called an admissible system, if
(1) (Ω, \mathscr{F}, P) is a probability space
(2) u is Γ-valued measurable process
(3) Y is a d^{\prime}-dimensional $\left(\mathscr{F}_{t}\right)$-Brownian motion where

$$
\mathscr{F}_{t}=\sigma\left\{Y(s), \int_{0}^{s} u(\tau) d \tau ; s \leq t\right\}
$$

(4) \hat{W} is a d-dimensional Brownian motion
(5) ξ is a d-dimensional random variable and its distribution has the density ϕ
(6) ξ, \hat{W} and (Y, u) are independent with respect to P.

For an admissible system \mathscr{A}, the solution $X(t)=X^{\otimes}(t)$ of the SDE (4.6) is called the response for \mathscr{A}. Putting $d \hat{P}=\rho(T) d P$, we define the pay-off function by

$$
\begin{equation*}
J(\mathscr{A})=\hat{E}\left[\int_{0}^{T} f\left(X^{\mathscr{N}}(t)\right) d t+g\left(X^{\mathscr{\infty}}(T)\right)\right] \tag{4.7}
\end{equation*}
$$

where $f, g \in L^{2}\left(\mathbb{R}^{d}\right)$ and non-negative.
By the similar argument as Rozovskii [8], we obtain the following.
Proposition 4.1. Let p^{*} be a solution of the SPDE (2.4) for an admissible system \mathscr{A}, then $p^{*}(t)$ is the unnormalized conditional density of $X^{\star}(t)$ with respect to \mathscr{F}_{t}. Namely, for every $\varphi \in L^{\infty}\left(\mathbb{R}^{d}\right), t \in[0, T]$

$$
\begin{equation*}
E\left[\varphi\left(X^{\star}(t)\right) \rho(t) \mid \mathscr{F}_{t}\right]=\left(\varphi, p^{\infty}(t)\right) P-a . \mathrm{s} . \tag{4.8}
\end{equation*}
$$

holds, where (\cdot, \cdot) is the inner product in $L^{2}\left(\mathbb{R}^{d}\right)$.
Using (4.8), we get

$$
\begin{equation*}
J(\mathscr{A})=E\left[\int_{0}^{T}\left(f, p^{\infty}(t)\right) d t+\left(g, x^{\infty}(T)\right)\right] \tag{4.9}
\end{equation*}
$$

Since ($f, p^{\infty}(t)$) and ($g, p^{\infty}(T)$) are non-negative, Theorem 3.2 assures the existence of an optimal admissible system. Namely,

Theorem 4.1. There exists an optimal admissible system \tilde{A}, that is

$$
\begin{equation*}
\inf _{\mathscr{A}: \text { ad.sys. }} J(\mathscr{A})=J(\tilde{\mathscr{A}}) \tag{4.10}
\end{equation*}
$$

References

[1] A. Bensoussan, Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions, Stochastics, 9 (1983), 169-222.
[2] W. H. Fleming and E. Pardoux, Optimal control for partially observed diffusions, SIAM J. Control Optim., 20 (1982), 261-285.
[3] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Kodansha/North-Holland, Tokyo/Amsterdam, 1981.
[4] N. V. Krylov and B. L. Rozovskii, On the Cauchy problem for stochastic partial differential equations, Math. USSR-Izv., 11 (1977), 1267-1284.
[5] -, On the conditional distributions of diffusion processes, Math. USSR-Izv., 12 (1978), 336-356.
[6] J. L. Lions, Equations Différentielles Opérationnelles et Problèmes aux Limites, Springer-Verlag, Berlin, 1961.
[7] E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastics, 3 (1979), 127-167.
[8] B. L. Rozovskii, Nonnegative L^{1}-solutions of second order stochastic parabolic equations with random coefficients, Transl. Math. Eng., (1985), 410-427.
[9] B. L. Rozovskii and A. Shimizu, Smoothness of solutions of stochastic evolution equations and the existence of a filtering transition density, Nagoya Math. J., 84 (1981), 195-208.

Department of Mathematics and System Fundamentals
Division of System Science
Kobe University
Rokko, Kobe, 657
Japan

[^0]: Received November 21, 1987.
 ${ }^{(\dagger)} H^{l}=H^{l}\left(\mathbb{R}^{d}\right)$ denotes the Sobolev space $W_{2}^{l}\left(\mathbb{R}^{d}\right), l=0, \pm 1, \cdots$.

