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Abstract
We investigate the feasibility of cyber risk transfer through insurance-linked securities (ILS). On the investor side,
we elicit the preferred characteristics of cyber ILS and the corresponding return expectations. We then estimate the
cost of equity of insurers and compare it to the Rate on Line expected by investors to match demand and supply
in the cyber ILS market. Our results show that cyber ILS will work for both cedents and investors if the cyber
risk is sufficiently well understood. Thus, challenges related to cyber risk modeling need to be overcome before a
meaningful cyber ILS market may emerge.

1. Introduction
In the last 15 years, the capital market has become a major bearer of insurance risk. Today, the
Assets under Management (AuM) of insurance-linked securities (ILS) funds stand at USD 106 billion
(Artemis.bm, 2022e). Alternative capital funneled through these funds covers cedents against the most
extreme types of events, in some cases as a complement to and in others as a substitute for traditional
reinsurance. So far, the capital market has predominantly absorbed property risk from natural disasters,
such as hurricanes or earthquakes. As the global risk landscape continues to evolve, however, new event
risks, such as global pandemics and extreme cyber incidents, are beginning to draw the attention of the
ILS industry.

Extreme cyber risks differ from ordinary cyber risks by their magnitude and their reach across borders
and industries. Estimates of possible losses from an extreme cyber incident by far exceed the maximum
loss realized on single natural catastrophes (Nat Cat) and even the combined losses caused by all perils
in costly disaster years such as 2019 (Dreyer et al., 2018; Munich Re, 2020). The economic impact of
cybercrime alone is estimated at almost USD 1’000 billion (Smith & Lostri, 2020), making it one of
the largest future threats for the economy. Yet, cyber risk is still significantly underinsured: the global
premium volume for cyber coverage amounts to just USD 6.9 billion (Bundt, 2021).

The rising awareness of cyber threats is stimulating interest in alternative risk transfer solutions. First
examples already exist: In 2016, Credit Suisse piloted a USD 223 million operational risk catastrophe
bond that included cyber risk (Artemis.bm, 2018b). Moreover, Hiscox backed a parametric reinsurance
deal for cloud outage risk (Artemis.bm, 2020b) and Hudson Structured, together with Aon, was involved
in a transaction that covers systemic cyber risks, such as malware or distributed denial of service attacks
(Artemis.bm, 2020a).

Drawing on their Nat Cat experience, some industry experts consider ILS to be the logical risk transfer
instrument for extreme cyber risks (Artemis.bm, 2018a). A key element that attracts investors to ILS is
their low correlation with the broader capital markets. Most Nat Cat events are globally insurable or
at least globally diversifiable (Cummins, 2006). The impact of extreme cyber events, in contrast, is not
restricted to a predefined geographical area, but may spread across boundaries and markets. Correlations
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between a cyber insurance book and the wider economy are therefore a serious concern (Artemis.bm,
2022c). In addition, cyber risks exhibit further characteristics that hinder securitization, such as extreme
tails, a high model and parameter uncertainty, and substantial information asymmetries. It therefore
remains unclear how far an ILS market for cyber risk transfer may develop on a broader scale.

We tackle this question and show under which conditions a transfer of cyber risks to the capital
market may be feasible from the perspective of both investors and sponsors. To this end, we first elicit
investor preferences for the key characteristics of cyber ILS through discrete choice experiments. The
resulting part-worth utility profiles allow us to identify key product attributes and to evaluate different
cyber ILS structures, including the one that maximizes investor utility. They also allow us to estimate
the Rate on Line (RoL) required by investors to bear the risk. Subsequently, we switch to the cedent
perspective. We derive the cost of equity for US property-casualty (P&C) insurers and compare it to our
RoL estimates for the cyber ILS. This allows us to determine the attractiveness of the risk transfer relative
to the alternative of backing a cyber insurance book with capital. Our results reveal the conditions under
which both insurers and investors and might be willing to participate in the risk transfer. We find that
feasibility strongly depends on the quality of the underlying cyber risk modeling and the layer to be
covered by the ILS tranche. Until better models become available, cyber risk securitization will likely
be restricted to high-frequency perils such as data breaches.

This paper contributes to the literature on the management of cyber risks. Recent work focused on
the importance of cyber risk management for firm operating performance and reputation (Kamiya et al.,
2021), its impact on firm value (Gatzert and Schubert, 2022), and the role of cyber threat classification
and identification (Ebrahimi et al., 2020). Moreover, we add to the literature on cyber risk modeling
and pricing. Cyber losses have been modeled with a focus on accumulation risk (Maillart and Sornette,
2010), network contagion effects (Fahrenwaldt et al., 2018), tail risk (Jung, 2021), and spillover effects
(Eisenbach et al., 2022). Further challenges for the modeling and insurability of cyber risk include the
lack of data (Cremer et al., 2022), adverse selection (Gordon et al., 2003), and the interdependent risk
structure (Hofmann and Ramaj, 2011).

On the practical side, we enrich the ongoing industry debate about cyber risk transfer via ILS. So
far, this discussion has primarily taken place at practitioner events and through qualitative industry pub-
lications (Pain and Anchen, 2017; Artemis.bm, 2020c; Johansmeyer and Mican, 2022). Despite the
economic significance of the topic, however, the academic literature in this area is still scarce. Our
results comprise important insights for the design of cyber ILS that lend themselves for an immedi-
ate practical application. We also document that adequately structured risk transfer instruments are a
prerequisite for a meaningful cyber ILS market to emerge.

The paper is organized as follows. Section 2 measures ILS investors’ preferences for cyber ILS. The
chapter begins with a derivation of ILS product attributes and levels and continues with the sample
selection. Based on the discussion of the empirical results, feasible cyber ILS products are identified.
Section 3 derives the cost of cyber ILS from the investor perspective and calculates spreads based on
cyber loss distributions. Consecutively, we match investors’ return expectations with the supply side in
Section 4. Section 5 summarizes our main findings and concludes the paper.

2. Cyber ILS from the investor perspective
2.1. Empirical methodology
We elicit investor preferences based on a discrete choice experiment (DCE), which has become a widely
used approach in various fields of the social sciences, such as marketing (see, e.g., Louviere et al.,
2008), health economics (see, e.g., de Bekker-Grob et al., 2012), and insurance economics (see, e.g.,
Braun et al., 2016). Specifically, we confront respondents with a series of concrete selection tasks. In
each task, they face a range of three hypothetical cyber ILS instruments with a fixed set of attributes
(main characteristics), but varying attribute levels. The choice data generated throughout the DCEs are
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used to determine the parameters of a multinomial logit (MNL) model by means of Hierarchical Bayes
estimation:

Pr(yi = a|ci) = exp(xaβ i)∑M
m=1 exp(xmβ i)

. (1)

The dependent variable is the probability of individual i choosing alternative a in choice task ci (M
equals the total number of choice tasks). The vectors x include the categorical variables for the attribute
levels of the cyber ILS that appear in choice task ci. The logit coefficients in vector β i = (βi1, . . . , βiQ)′

can be interpreted as individual-level part-worth utilities for the attribute levels 1 through Q. These MNL
coefficients will allow us to estimate the relative importance of each product characteristic for every
single investor. DCEs offer a number of advantages over other stated-preference methods. In contrast to
interviews and surveys, DCEs ensure that respondents do not merely repeat what they read in the media.
Moreover, compared to ratings or rankings, DCEs are a much more realistic emulation of the actual
purchase decision (Orme, 2009).

2.2. Attributes and attribute levels for the DCE
According to Koch (2017), ILS investors evaluate their assets based on the following decision criteria:
(i) potential returns, (ii) liquidity, (iii) transparency, (iv) modelability, and (v) diversification. Hence,
we select the cyber ILS attributes and attribute levels for our DCE design in line with these criteria.
One of the most critical preconditions for investor interest in ILS is trust in the underlying catastrophe
risk model. Such models are needed to quantify extreme event risk due to the general lack of historical
data on low-frequency-high-severity events. We therefore include model risk as a product attribute in
our analysis. In contrast to Nat Cat modeling for developed countries, cyber risk modeling is still in
its infancy. Existing modeling capabilities depend on the actual cyber peril. Perils such as power and
telecommunications outage belong to the class of unmodeled risks. Therefore, they will be assigned
to the attribute level “high model risk.” “Low model risk,” in contrast, will be cyber perils for which
specific modeling approaches are available, such as data breaches (see, e.g., Jung, 2021).

Another important attribute is the format of the risk transfer instrument. Catastrophe (cat) bonds and
collateralized reinsurance contracts as fully funded transactions require investors to deploy the whole
risk capital upfront. Popular alternatives in the Nat Cat space are catastrophe swaps or industry loss war-
ranties (ILWs), which may be unfunded or partially collateralized. Accordingly, we include the attribute
format in our empirical study and distinguish funded from unfunded instruments.

We also take into account the maturity of the risk transfer transaction. With the exception of cat
bonds, there are no active secondary markets for ILS. Thus, investors regularly hold their ILS assets to
maturity and the term of the contract determines how long the capital will be locked in and exposed to
the underlying risk. We consider three attribute levels for the maturity: one, three and ten years.

Another important attribute for ILS is the trigger type, which determines when the cedent receives a
payout. Various alternatives have proven suitable for Nat Cat ILS. Despite initial concerns about moral
hazard, the indemnity trigger is the most frequently used option in the cat bond market (Artemis.bm,
2022b). Just like traditional reinsurance, indemnity triggers are based on the actual losses of the cedent.
The main alternative for cat bonds is the industry loss index trigger, which determines the payout based
on an index of industry-wide losses, published by a third party data provider. For cyber risk, industry
experts have pointed to the parametric trigger as a natural choice to reduce complexity and increase trans-
parency (Artemis.bm, 2022c). Thus, we allow for three levels of the attribute trigger type: indemnity,
industry loss, and parametric.

Finally, we include the attribute multiple of spread to expected loss (EL). This is a key measure for
risk premiums in ILS markets (Cummins and Weiss, 2009). Due to the correlated nature of extreme
cyber attacks across borders and markets, investors will likely demand higher risk premiums for cyber
ILS than for Nat Cat ILS. One indication for the range of potential multiples is given by Cummins and
Weiss (2009), who find that average historical ILS multiples lie between two and four in soft markets
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Table 1. Investors’ decision criteria and ILS attributes.

No. Attribute Level Comment Decision criterion
1 Model risk Low, high Participants were told to consider

low model risk for established
cyber risk models and high model
risk for unestablished cyber risk
models

Modelability

2 Instrument Funded, unfunded Funded: bond, collateralized
reinsurance Unfunded: ILW, swap

Liquidity

3 Maturity 1, 3, 10 years – Liquidity
4 Trigger Parametric,

industry-loss,
indemnity

Ranging from low (parametric) to
high (indemnity) basis risk for an
investor. Participants were told that
losses are measured on a per
occurrence basis

Transparency

5 Multiple 2, 4, 6 Participants received a short
definition of the multiple as
spread/ E(L)

Potential returns

and are significantly higher in hard markets. We complement these figures by comparing spread and EL
of traded cat bonds from Artemis.bm (2022a). To estimate an upper bound, we focus on transactions
between 2014 and 2019 that comprise unmodeled risks such as meteorite impact or volcano eruption.
Table 9 in Appendix A (see supplement) contains the numbers. The multiples range from 1.24 for an
EL of 14.06% among the riskier tranches up to 7.78 for an EL of 0.45% among the less risky tranches.
Based on these boundaries, we decide to vary the attribute multiple in three steps: two, four and six.

Table 1 summarizes the five attributes with their respective attribute levels for our DCE design. In
addition to the three hypothetical ILS instruments that participants face in each round of the DCE, we
allow them to opt out from the purchase altogether if they do not consider any of the available ILS
attractive enough. This allows us to estimate the participation condition of each respondent, that is, the
minimum utility that a cyber ILS must generate for the investor to enter the market at all.

2.3. Sample selection
Our DCE targets specialized ILS fund managers, since they are the main investor group of this asset class.
The universe of dedicated ILS funds is still relatively small. Eurekahedge, an alternative investments
data provider, for example, tracks a total of 26 constituent ILS funds through its ILS Advisers Index
(Eurekahedge, 2021). The dominant ILS industry website Artemis.bm, in contrast, lists 50 companies
who launched ILS funds in the past (Artemis.bm, 2022e). The total number of existing ILS funds marks
an upper bound for our respondent base. We established contact with the funds via a personal invitation
e-mail and also posted the link to our DCE on Artemis.bm. Overall, ten ILS fund managers with 1–25
years industry experience responded to our invitation. Considering the total number of 30–50 live funds,
this represents at least 25% of the market. The aggregate AuM of our respondent funds amount to USD
29 billion or about 30% of the whole ILS universe (AON, 2022).

2.4. A note on measurement error and selection bias
We undertake several methodological steps to minimize the measurement error of our part-worth utility
estimates. First, complex DCE designs generally need larger samples or more tasks than small designs
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(see, e.g., Johnson and Orme, 1996). Our choice of attributes and attribute levels in Table 1 addresses this
issue through a manageable degree of complexity. Second, the Hierarchical Bayes model can compen-
sate smaller sample sizes with a larger number of choice tasks (Johnson and Orme, 1996). Put differently,
having respondents complete more tasks is approximately as good as having more respondents (Orme,
1998). However, asking too many tasks will lead to a loss of quality due to fatigue and boredom. We
decide to run 20 choice tasks with each respondent, because at this number, the information gains still
preponderate (Johnson and Orme, 1996). Third, we exploit a key property of the hierarchical Bayes
model to further expand our respondent base and improve our part-worth estimates for the fund man-
agers. Specifically, we include an additional 17 ILS experts in the experiment. Their responses are used
to inform the aggregate-level of the model, which is the prior for the individual level (investor level).

We also address a potential selection bias. The concern is that only those ILS investors participated
in our DCE who uniformly believe in a particular development of the cyber ILS market. We put this
issue into perspective by offering respondents an option to tell us their opinion about the benefits of a
cyber ILS. Out of ten fund managers, four consider cyber risk not to be suitable for the transfer via ILS
yet, in particular due to pricing challenges. Three fund managers see the low correlation with other ILS
assets as a benefit of cyber ILS and another one names high risk-adjusted returns as the core advantage.
To sum up, our sample is not biased towards one particular attitude about a potential cyber ILS market.

2.5. Part-worth utilities and attribute importance
By fitting the MNL to the choice data from the DCEs, we obtain individual-level part-worth utility pro-
files (the MNL coefficients) for all cyber ILS attributes.1 The mean root likelihood (RLH) for our model
equals 0.658, which is approximately two times better than chance.2 The part-worth utility profiles for all
five attributes are shown in Figure 1.3 Their shape is consistent with intuition and empirically confirms
anecdotal evidence from industry sources (Artemis.bm, 2022c; Johansmeyer and Mican, 2022). Two
aspects are particularly worth highlighting: the market’s aversion to long maturities and high model risk
(unmodeled risk). Cyber risk evolves very fast. Short maturities are thus important to adjust contracts
and pricing on a regular basis in line with new information. They reduce uncertainty for investors and
limit their exposure to long-tail cyber risk.

We build on the part-worth utility profiles to derive the importance of the five attributes for each
individual investor. The relative importance RIik of attribute k ∈ {1, 2, 3, 4, 5} (see Table 1) with levels l
to individual i is defined as:

RIik =
max

l
(βikl) − min

l
(βikl)∑5

k=1

(
max

l
(βikl) − min

l
(βikl)

) , (2)

where the βikl are the MNL coefficients. RIik measures the contribution of an attribute to the total utility
of a cyber ILS instrument in percentage terms. Figure 2 summarizes the results. Maturity exhibits the
highest attribute importance (median of 47%), followed by the multiple (median of 22%) and model
risk (median of 17%).4 The three most important attributes exhibit a considerable difference between
the lower and upper quartiles, suggesting heterogeneous preferences among individual respondents.

1The data for the part-worth utility profiles are available from the authors upon request.
2The RLH measures how well a choice model fits a data set. Its maximum is one, which represents a perfect fit. The minimum

value of RLH is 1/M (equal probabilities for each alternative), where M denotes the number of alternatives per choice task (in
our case M = 3).

3We have applied monotonocity constraints to the attribute multiple on the individual level by means of the tying after estimation
procedure to prevent order violations and facilitate the further interpretation (Johnson, 2000).

4RIik is known to be sensitive to the range of attribute levels. We thus cannot entirely rule out that the importance of maturity
is somewhat inflated by the highest attribute level of 10 years.
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Figure 1. Investors’ utility profiles for each product attribute. This figure presents the individual-level
part-worth utility profiles for ILS investors (dashed black lines) and other ILS experts (dashed gray
lines) as well as aggregate-level median utility profiles across ILS investors (solid red lines) for all five
product attributes. Due to the small sample size, we refrain from calculating highest density intervals.

Figure 2. Investors’ relative attribute importance. This figure presents individual-level importances
across all ILS investors. The numbers denote the first (lower value) and third (upper value) quartile as
well as the median. Outliers are omitted.
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2.6. Feasible cyber ILS designs
Based on the individual-level part-worth utility profiles, we identify feasible cyber ILS designs. The
MNL approach implies an additive utility model. We may thus compute the overall utility of a particular
respondent by summing up his part-worth utility values for the attribute levels present in any given
instrument. If the respondent’s total utility for a cyber ILS exceeds his participation constraint (the
utility of the opt out option), the transaction is considered feasible for him. Four respondents cannot be
convinced by any design. There is no combination of cyber ILS attributes that exceeds their individual
non-participation threshold.

For each of the remaining respondents, we determine the set of feasible cyber ILS designs and iden-
tify the alternatives with the lowest and the highest utility therein. The utility-maximizing instrument
exhibits low model risk, a funded format, a maturity of one year and a multiple of six. Regarding the
trigger choice, preferences are heterogeneous and comprise all three levels (indemnity, industry loss,
and parametric). The subset of instruments with the lowest, but still feasible, utility is also dominated
by the attribute levels low model risk and funded format. There are only two respondents for whom high
model risk or an unfunded format is acceptable. In contrast, a maturity of three years and a multiple of
four works for most respondents. The views on the optimal trigger remain heterogeneous.

Finally, we identify the cyber ILS designs that would be accepted by the largest number of respon-
dents. Based on our previous results, we restrict this analysis to instruments in a funded format with
maturities between one and three years. Figure 3 displays acceptance rates across all respondents for the
remaining attribute-level permutations, separated by low model risk (upper part) and high model risk
(lower part). We see acceptance rates between 10 and 60% for low model risk, and between 0 and 40%
for high model risk. Low model risk is relatively well accepted across triggers and maturities as long as
the multiple is at least four. High model risk, in contrast, only reaches acceptance rates of 30 or 40% if
it is transferred through short-term instruments (one-year maturity) and with multiples of at least four.

Overall, these results suggest that investor preferences currently limit the potential for a cyber ILS
market to very specific designs and perils. However, it may not even be possible to realize this limited
potential if cedents find the required multiples too high. Instead of transferring the risk to investors, they
could decide to back their cyber books with risk-bearing capital. They might also find it uneconomical
to underwrite larger cyber risk portfolios altogether. To determine the ultimate market potential, we
therefore need to analyze the cedent perspective as well. This implies a comparison of the cost of the
risk transfer to the cost of equity and calls for a translation of our estimates for the expected cyber ILS
multiples into an RoL (spread). Given our results in Figure 3, the remainder of the paper focuses on cyber
ILS with low model risk and a funded format. The remaining attributes will be allowed to vary across
the accepted levels, that is maturities of one and three years, multiples of four and six, and indemnity or
parametric triggers.

3. Cost of the cyber risk transfer
3.1. Identifying low model risk cyber perils
To translate multiples into RoLs, we must know the concrete EL of the cyber ILS tranche under consid-
eration. EL, in turn, needs to be computed based on the attachment and exhaustion point of the tranche
as well as the statistical distribution that reflects the underlying risk.5 If we want to estimate this dis-
tribution from real-world data, we first need to identify the cyber peril that is closest to our idealized
attribute level low model risk. Table 2 summarizes various cyber perils along the characteristics fre-
quency & severity, loss correlation, data availability, and model risk. Evidently, the reliability of cyber
risk models today strongly depends on the peril.

5For an indemnity trigger, this is the distribution of losses in the cedent’s cyber book. In the case of a parametric trigger, in
contrast, it is the distribution of a physical measure (such as downtime) that reflects the cyber risk.
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Figure 3. Investors’ acceptance rate for low and high model risk. This figure presents acceptance rates
among ILS investors for different combinations of ILS product attributes. A product is considered fea-
sible if the product utility exceeds the non-participation utility of the investor. All products incorporate
a funded instrument. “Ind” denotes an indemnity trigger, “IL” denotes an industry loss trigger, and
“Par” denotes a parametric trigger. “1y” denotes a maturity of one year and “3y” denotes a maturity
of three years.

For extreme cyber events such as power outages and telco outages, historical data is scarce and
reliable modeling techniques are generally unavailable. Here, scenario analysis helps to develop some
understanding of the risks.6 Nevertheless, these perils undoubtedly belong to the high model risk cate-
gory. In contrast, DoS attacks, malware and data breaches, can be quantified by means of risk models.
For these perils, differences persist in terms of data availability and modeling techniques. The latter
include Bayesian models (Bakdash et al., 2018), Markov chains (Fahrenwaldt et al., 2018), copulas
(Mukhopadhyay et al., 2013) and applications of the recursion by Panjer (1981) to combine severity
and frequency distributions (Denuit and Robert, 2020).

Overall, data breach risk may be considered best understood to date. Over the past decades, regulatory
frameworks, including breach notification requirements, have facilitated the development of rich and
trustworthy time series for data breaches. Due to the availability of these time series, data breach risk has
received an extensive amount of research attention (see, e.g., Edwards et al., 2016). In contrast, existing

6There are early attempts to measure unmodeled risks based on real-time data, for example, for cloud outages (Artemis.bm,
2020b). However, these are still in their infancy.
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Table 2. Properties of different cyber perils.

Peril Frequency & severity Loss correlation Data availability Model risk
DoS attacks, malware,

data breaches,
hacking, ransomware

High frequency of
low-severity risks, but
also low frequency of
high-severity risks

Possibly present for
extreme events

Time series data available for
data breaches, partial data
available for DoS attacks,
malware, hacking,
ransomware

Relatively low for data
breaches, rather low for
DoS attacks, malware,
hacking, ransomware

Power outages, cloud
outages, telco outages

Very low frequency, but
high severity

Potentially high across
industries and
countries

None, partially due to low
frequency

Relatively high, unmodeled
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Table 3. Estimated model parameters of severity distribution Z and goodness-of-fit measures.
Goodness-of-fit measures include the negative log-likelihood (-Loglik), the Akaike information criterion
(AIC) and the p-value of the Wilcoxon test (Wilcoxon).

Product attributes Model parameters Goodness-of-fit measures

Data Trigger μLN σLN -Loglik. AIC Wilcoxon
Data breach records

transformed into
USD

Indemnity 13.99 1.53 101’592 203’187 0.41

Data breach records Parametric 7.86 2.48 65’415 130’834 0.28

Malware and DoS attack data sets are still relatively patchy (see, e.g., Cremer et al., 2022). Hence, data
breach risk best matches our low model risk property and will be at the heart of all subsequent analyses.

3.2. Estimating the cyber risk distribution
To estimate the cyber risk distribution, we draw on breach data for the years 2006 to 2018 from the
Privacy Rights Clearinghouse (PRC). The PRC has the largest and most extensive public dataset, includ-
ing information on total breached records, location and date of the incident, the entity level, and an
incident description. We extract the number of breached records per month and remove zero values, as
they can affect the reliability of the results (see, e.g., Edwards et al., 2016).

We employ the variable breached records to model the loss distribution for a cyber ILS with paramet-
ric trigger. The idea is that a parametric trigger may measure losses on a per incident basis, represented
by the breach size. Moreover, to fit the underlying distribution for a cyber ILS with indemnity trigger,
we transform the breach size into an estimated USD loss amount. This assumes that breach size is suffi-
ciently correlated with the losses in the representative cedent’s cyber book. According to Jacobs (2014),
this correlation is significant at the one percent level. He therefore suggests that the log-transformed loss
amount can be approximated by the linear relationship:

ln(loss) = 7.68 + 0.76 · ln(breach size). (3)

We work with an updated version of this linear model as estimated by Farkas et al. (2021), which is
adjusted for the recent extreme data breach events in 2018:

ln(loss) = 9.59 + 0.57 · ln(breach size). (4)

The extant literature has suggested the log-normal distribution for the evaluation of data breach risk
(Edwards et al., 2016). We therefore assume that the severity for both breach size and insured losses
follows a log-normal distribution: Z ∼LN (μLN , σLN). We estimate the model parameters based on our
monthly data for the time period from 01/2006 to 12/2018 and report the results together with goodness-
of-fit measures in Table 3. The insignificant Wilcoxon test indicates a good fit of the parametric to the
empirical distributions.

Furthermore, we model the event frequency N by means of a Poisson distribution with intensity λ:
N ∼ Pois(λ). We adopt the value for λ for both the indemnity and the parametric trigger from Eling and
Schnell (2020), who estimate the yearly intensity per cyber contract at 2.60%. Based on information pro-
vided in the NAIC supplements for 2021 (NAIC, 2021a), the average insurance firm has around 10’000
cyber policies in force. Thus, we calibrate the intensity parameter as follows: λ = 10’000 · 2.6% = 260
for ILS with a maturity of one year and λ = 10’000 · 2.6% · 3 = 780 for ILS with a maturity of three
years.7

7This assumes that the frequency p.a. is constant and that triggered policies do not expire.
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Given frequency N and severity Z, the aggregate risk exposure X is X = ∑N
i=1 Zi, with Zi

i.i.d.∼ Z.
Moreover, assuming independence of the Zi and N, the cumulative distribution function (cdf) FX(x)
of the risk exposure X can be expressed as:

FX(x) =
∞∑

n=0

PnF
n∗
Z (x), (5)

where the frequency distribution is denoted by Pn and the n-th convolution of the severity distribution
is denoted by Fn∗

Z . We use a Monte Carlo simulation with 200’000 runs to evaluate the cdf.8 We then
transform the values into log USD amounts and log breached records.

Finally, we run several tests to ensure the robustness of our results. Differences in the reporting of
events between the early years from 2006 to 2010 and the rest of the sample could lead to structural
breaks in the data. We rule out this possibility by means of an insignificant Chow test. In addition, we
run a robustness check using information on data breaches provided by the Advisen cyber loss database.
This compensates for the fact that the PRC data only covers incidents in the US. We use the Advisen data
to cross-check the regression coefficients from Jacobs (2014) and Farkas et al. (2021). Specifically, we
regress the log loss amount on the breach size for 621 data breach events between 2000 and 2020. The
results are presented in Table 10 in Appendix B (see supplement) and confirm the updated coefficients
from Farkas et al. (2021). In the next section, we will also use the Advisen data to assess the robustness
of our estimates for the EL on the cyber ILS.

3.3. Determining the cyber ILS tranche
Given the random variable X, representing the underlying cyber risk (i.e., either breach size or insured
loss), the percentage loss L on an ILS tranche with a proportional payout function is defined as follows:

L =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, X ≤ A

X − A

E − A
, A < X ≤ E

1, X > E.

(6)

A and E denote the attachment point and the exhaustion point of the ILS tranche, respectively.9 Together
with the cdf FX(x), A and E determine the probability of first loss PFL,

PFL = Pr(X > A) = 1 − FX(A) =
∫ ∞

A

fX(x)dx, (7)

and the probability of exhaustion POE,

POE = Pr(X > E) = 1 − FX(E) =
∫ ∞

E

fX(x)dx, (8)

for the tranche. Figure 4 illustrates how the exceedance probability curve 1 − FX(x) links A and E with
PFL and POE.10 Evidently, shifting an ILS tranche of constant size � = E − A to the left (right) increases
(decreases) the risk exposure. In line with the funded format for our cyber ILS, we extract A and E from

8For continuous distributions, a closed-form of the convolution does not exist (Dickson, 1995). This precludes a use of the
Panjer (1981) recursion. An alternative procedure is to discretize the continuous distribution as suggested in Dickson (1995) and
then run a recursion on the resulting discrete convolution. We followed this procedure as a robustness test and added the results
to Table 5.

9For loss based contracts, A and E define the cedent’s retention and the maximum coverage, respectively.
10A and E are the quantiles QFX (PFL) and QFX (POE) of the distribution FX(x).
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Table 4. Observed market data of cat bonds and extracted layers. The data considers cat bonds traded
between 1997 and 2017 and is retrieved from Lane Financial LLC. PFL denotes the probability of
first loss and POE denotes the probability of exhaustion.

Trigger Maturity N PFL POE A E
Indemnity 1 26 0.0281 0.0129 21.0702 21.1557
Indemnity 3 107 0.0236 0.0122 21.9590 22.0091
Parametric 1 15 0.0325 0.0192 17.4408 17.6664
Parametric 3 38 0.0301 0.0172 17.9814 18.1404

Figure 4. Shift of the ILS tranches. This figure illustrates how PFL and POE change for a shift of the
ILS tranches along the exceedance probability curve 1 − FX . The distance � between the attachment
point A and the exhaustion point E is kept constant.

empirical values for PFL and POE, observed on cat bonds between 1997 and 2017. The cat bond data
have been downloaded from the Lane Financial LLC website.11

Table 4 shows the results.12 We average PFL and POE across all cat bonds with a common maturity
and trigger type. Subsequently, we calculate the quantiles A and E by inserting the averages for PFL and
POE into the inverse cdf F−1

X (x). Finally, we compute the EL of the ILS tranche E(L) as:

E(L) = PFL × CEL, (9)

where CEL =E(L|X > A) represents the conditional expected loss.13

11By using empirical observations for the probabilities instead of the attachment and exhaustion points, our tranche estimates
become robust to size differences in insurance losses and parameter values.

12For a maturity of three years, we assume independently and identically distributed losses across years and transform the
yearly probabilities from Table 4 to cover the same time horizon as the underlying loss distribution by means of the formula
p3y = 1 − (1 − p1y)3.

13Based on A, E, PFL, and POE, the conditional expected loss of the tranche can be computed as follows:

CEL = PFL − POE

PFL
·E

(
X − A

E − A

∣∣∣ A < X ≤ E

)
+ POE

PFL
· 1.

The EL for the three-year PFL are divided by three to obtain p.a. values.

https://doi.org/10.1017/asb.2023.22 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.22


696 Alexander Braun et al.

Table 5. Costs of the risk transfer and comparison to traded cat bonds. All cyber ILS exhibit a low
model risk and a funded format. The span of the RoLs is calculated for a multiple of four and six, based
on the PRC data. As a robustness test, we also show the EL values based on a discretized log-normal
severity and the recursion method (rec) as well as Advisen data with the simulation method (sim). The
last column contains average ELs and RoLs of the traded cat bonds that were used to derive our cyber
ILS tranches.

Product attributes Key indicators

Calculated products Traded products

Trigger Maturity Multiple E(L) Spread E(L) Spread

PRC PRC Advisen
(sim) (rec) (sim)

Indemnity 1 4–6 1.96% 1.95% 1.94% 7.84–11.76% 1.80% 6.09%
Indemnity 3 4–6 1.70% 1.69% 1.69% 6.80–10.20% 1.67% 6.51%
Parametric 1 4–6 2.52% 2.52% 2.53% 10.08–15.12% 2.74% 9.94%
Parametric 3 4–6 2.24% 2.24% 2.26% 8.96–13.44% 1.58% 5.60%

3.4. Cost of the risk transfer
Based on the EL estimates for our ILS tranches and the DCE results, we determine the RoLs (spreads)
of the feasible products identified in the previous section. The results are summarized in Table 5. For the
distributions estimated on PRC data, we obtain ELs in the range of 1.70–2.52%. The EL for cyber ILS
with a parametric trigger exceeds that of cyber ILS with an indemnity trigger. Given that investors ask
for multiples in the range of four to six, this results in RoLs (spreads) between 6.80% and 15.12%. In
comparison to the cat bond figures provided in the last two columns, the cyber ILS thus exhibit similar
ELs, but consistently higher RoLs (spreads). As a robustness test, we repeat the procedure (i) with a
discretized log-normal severity and the recursion method and (ii) with global data breach information
provided by Advisen and the base model simulation method. The results are also included in Table 5
and are very similar, confirming the robustness of the respective RoL ranges.

4. Cyber ILS from the cedent perspective
4.1. The cost of equity for P&C insurance companies
Since capital is the most generic risk management measure available to (insurance) companies, the
attractiveness of cyber risk transfer via ILS ultimately depends on the cedent’s cost of equity (CoE).
We thus compare the return requirements of cyber ILS investors (supply of coverage) given by our RoL
(spread) estimates to the CoE of insurers (demand for coverage). We adopt the perspective of an insurer
who contemplates adding a small share of cyber policies to his P&C portfolio. To manage the tail risk,
the insurer considers two options: he may back the risk with capital to be raised at the CoE. Alternatively,
he can transfer the risk to investors via cyber ILS at the respective RoL. Both options are comparable,
because the CoE of a diversified P&C book will be invariant to the inclusion of a small fraction of cyber
risk.14 Moreover, we may estimate the CoE based on historical return time series for P&C insurers. The
reason is that, empirically, cyber risk still has a negligible impact on the CoE of insurance companies.
According to Baker (2021), direct written cyber insurance premiums in the US amounted to a total of
USD 2.7 billion in 2020. This figure is dwarfed by the USD 658 billion in total net premiums written

14We emphasize that this is likely to change as soon as cyber risk becomes a relevant part of a P&C insurer’s portfolio.
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by the US P&C insurance industry during the same year (NAIC, 2021b). In other words, cyber risk
currently accounts for less than one percent of the overall risk underwritten by P&C insurers.

The CoE consists of the risk-free rate and the equity risk premium (ERP). We estimate the latter by
means of the Fama-French five-factor (FF5) model (Fama and French, 2015). This model is an updated
version of the Fama-French three-factor (FF3) model, which has been employed to estimate the CoE of
insurers by Cummins and Phillips (2005). The FF5 model is formally defined as follows:

Re
i,t = αi + βi,MKTMKTt + βi,SMBSMBt + βi,HMLHMLt

+ βi,RMWRMWt + βi,CMACMAt + εi,t.

Here Re
i,t denotes the excess return of stock i over the risk-free rate in month t. The five factors are:

(i) the market return in excess of the risk-free rate (MKT), (ii) the return difference between stocks
with small and large market capitalizations (SMB), (iii) the return difference between value stocks (high
book-to-market ratio) and growth stocks (low book-to-market ratio) (HML), (iv) the return difference
between robust stocks (high profitability) and weak stocks (low profitability) (RMW), (v) and the return
difference between stocks of firms with conservative and aggressive investment activity (CMA). Finally,
αi and εi,t represent the intercept and the error term of the model. We collect the monthly time series of
the FF5 factors from Kenneth French’s website (French, 2022). Similarly, we download the time series
of monthly returns for P&C insurance stocks between January 1994 and December 2020 from Thomson
Reuters Eikon and subtract the one-month T-Bill rates to obtain excess returns.

Our estimation procedure follows Cummins and Phillips (2005). We focus on the 20 largest listed
P&C insurers in the US and use a rolling regression window of five years. For each insurer, we report
the average equity risk premium across our rolling regression windows. We only include companies for
which at least 36 months of consecutive data is available. The list of insurers together with premiums and
excess CoE estimates is shown in Table 6. Since the factor model approach can be sensitive to the sample
period used, we additionally report the implied equity risk premium in line with Gode and Mohanram
(2003).15

The mean equity risk premium across insurers equals 8.66% based on the FF5 model, which compares
to 8.97% based on Gode and Mohanram (2003). As further robustness tests, we also estimate the equity
risk premium with the classical FF3 model as well as the capital asset pricing model (CAPM). The FF3
model exhibits a similar mean equity risk premium equal to 7.94%. In contrast, the CAPM predicts a
mean equity risk premium of 6.20%. This finding is in line with Cummins and Phillips (2005) who also
report lower estimates for the CAPM compared to the FF3 model.

4.2. Comparing supply and demand
We now compare the RoL, that is, the cost of the risk transfer, to the CoE. To obtain the CoE, we add
the mean equity risk premium from Table 6 to the one-year treasury constant maturity rate of 0.37% for
2020, which we retrieve from the website of the Federal Reserve Bank of St. Louis. This leads to a CoE
of 0.0866 + 0.0037 = 0.0903.

Again, we focus on the set of cyber ILS that are acceptable for the investor side. Recall that those
exhibit indemnity and parametric triggers, maturities of one and three years and multiples of four and six
(see Table 5). For each combination of these attribute levels, we start with the empirically determined
tranches from Table 4. We then vary the EL and, in turn, the spread by shifting the tranches of constant
width � along the underlying log loss or log breach size distribution.

We plot the results in Figure 5. The lower (upper) black triangles indicate the spreads of the tranches
from Table 4 with a multiple of four (six). The lower (upper) black curve shows how the spreads of cyber
ILS with a multiple of four (six) react to a shift of the tranches by the amount shown on the horizontal
axis. For a negative (positive) shift, that is a transfer of riskier (less risky) cyber ILS tranches, the spread

15This valuation method is based on the model in Ohlson and Juettner-Nauroth (2005) which suggests to infer ERP of a firm
from its current price, future earnings per share, future dividends per share, and a long-term economic growth rate.
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Table 6. Premiums written and equity risk premium for insurance companies. Premiums written are
shown in USD million. The third column reports the average equity risk premium (ERP) estimated by
means of the Fama-French five-factor model. The implied excess cost of equity based on the model of
Gode and Mohanram (2003) is shown in the fourth column. The estimation period ranges from 1999 to
2020.

Company Premiums written ERP FF5 ERP Gode & Mohanram (2003)
Berkshire Hathaway Insurance 53,754 5.4025 4.9392
Progressive Insurance Group 37,578 10.8142 8.0033
Allstate Insurance Group 34,036 11.2170 9.1956
Travelers Group 27,214 10.9217 8.5095
Chubb Insurance Group 18,249 9.1558 8.9476
American International Group 14,031 6.8814 12.2557
Hartford Insurance Group 11,871 13.6100 11.6571
Fairfax Financial Group 7632 12.8314 11.4112
Erie Insurance Group 7478 6.3119 7.3418
CNA Financial Corporation 6953 9.1475 8.8883
W.R. Berkley Insurance Group 6131 9.2984 9.2713
Everest Re US Group 5797 8.3960 9.0246
Cincinnati Insurance Companies 5379 9.3134 6.1614
Alleghany Corporation Group 5344 4.0341 4.0316
Kemper P&C Companies 4042 10.6635 9.8533
Markel Corporation Group 3809 7.0686 8.0211
Mercury General Group 3690 10.9054 8.2690
Arch Insurance Group 2908 7.6600 8.0462
Selective Insurance Group 2679 12.0557 9.4935
Old Republic Insurance Group 2670 8.9149 12.7234

Mean – 8.6554 8.9709

increases (decreases) exponentially. The horizontal black line marks the mean CoE. For spreads below
this line, the market for cyber ILS should clear: there will be cedents that find the risk transfer attractive
and investors willing to supply the coverage.

For cyber ILS on data breach risk with an indemnity trigger (upper graphs of Figure 5) and a multiple
of four, it should be possible to transfer tranches with an EL similar to those in the cat bond market (lower
black triangles).16 Since, in these cases, the costs of the risk transfer are lower than the CoE, EL could
even be slightly increased by shifting the tranche to the left. For a multiple of six (upper black triangle),
in contrast, the cyber ILS tranche would need to be shifted away from the risk so that EL decreases
and the spread drops below the CoE. Moreover, the base case cyber ILS with a parametric trigger (lower
graphs in Figure 5) are generally too expensive. For both a multiple of four and six (and the two different
maturities), their spreads exceed the CoE. The only way to establish a market for these instruments is
by moving the tranches to the right and thus lowering the EL below that of typical transactions in the
cat bond market.

4.3. The effect of cyber risk on insurers’ cost of equity
So far we have considered an insurer with little to no cyber exposure, implying that adding cyber risk
to the existing P&C book has no impact on the firm’s CoE. We now want to relax this assumption and
investigate the impact of a substantial expansion of the cyber risk portfolio. There are two opposing

16Recall that empirically observed cat bond tranches were used to determine our cyber ILS tranches for the base case.
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Figure 5. Sensitivity analysis for a shift of the ILS tranches. The attachment and exhaustion point are
shifted by the amount shown on the x-axis while the distance � between the points is kept constant. A
shift of zero denotes the original ILS tranche derived from traded cat bonds. The lower (upper) black
curve denotes the spread calculated with a multiple of four (six). The black line denotes the mean cost
of equity across the considered P&C insurance companies. Cost of equity is derived from stock returns
by means of the FF5 model.

effects at play. On the one hand, cyber risk creates diversification benefits when combined with a tra-
ditional P&C book, thus reducing the CoE.17 On the other hand, critical loss accumulation from cyber
incidents becomes more relevant when the number of cyber policies increases, implying a higher CoE.

We model the mechanics of the insurance balance sheet as follows. Assume that the firm runs for
one period and let the random variables Ã1 and L̃1 denote the market values of an insurer’s assets and
liabilities at time t = 1:

Ã1 = A0 exp(ra) = A0 exp

[ (
μa − σ 2

a

2

)
+ σaza︸ ︷︷ ︸

ra

]
, (10)

L̃1 = L0 exp(rl) = L0 exp

[ (
μl − σ 2

l

2

)
+ σlzl︸ ︷︷ ︸

rl

]
. (11)

17Note that for a number of insurers, this effect may currently be foiled by silent cyber exposure, that is, cyber risks that are not
properly excluded from traditional P&C policies.
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Table 7. Descriptive statistics for the asset portfolio. The values are estimated based on time series
of monthly returns between January 2006 and December 2018. The data has been collected from
Bloomberg and Thomson Reuters.

i Asset class Index ωa,i μa,i σa,i

1 Government bonds Barclays US Treasury Index 40% 0.0355 0.0399
2 Corporate bonds Barclays US Corporate Bond Index 30% 0.0486 0.0552
3 Stocks S&P 500 Composite Index 20% 0.0640 0.1419
4 Real estate S&P Case-Shiller National Home Price Index 10% 0.0101 0.0201

Portfolio –- 100% 0.0426 0.0402

A0 and L0 are the deterministic market values of assets and liabilities at time t = 0. Let the log (con-
tinuously compounded) returns ra and rl be normally distributed with means μa and μb and variances
σ 2

a and σ 2
b (za and zb are standard normally distributed random variables). Then, Ã1 and L̃1 adhere to a

log-normal distribution.
The log-normal distribution is consistent with our results for the heavy-tailed cyber risk distribution

in Table 3 and allows for a tractable closed-form model. Assuming limited liability, the equity represents
a call option on the assets with payoff Ẽ1 = max

(
Ã1 − L̃1, 0

)
(Merton, 1974). Using the Margrabe-Fisher

formula, we obtain the following expression for the CoE:18

CoE = E
(
Ẽ1

)
E0

− 1 = A0

E0

exp(μa) 	(d+) − L0

E0

exp(μl) 	(d−) − 1. (12)

	(d±) is the standard normal cumulative distribution function (cdf). Its argument d± contains the asset-
liability correlation ρa,l:

d± = ln(A0/L0) + (
μa − μl ± σ 2/2

)
σ

, (13)

with

σ =
√

σ 2
a + σ 2

l − 2σaσlρa,l. (14)

We model ρa,l as the weighted average of the asset-liability correlations of traditional P&C risks (ρs
a,l)

and cyber risks (ρc
a,l):

ρa,l(ωl) = (1 − ωl) · ρs
a,l + ωl · ρc

a,l, (15)

where the weights (1 − ωl) and ωl reflect the fraction of traditional P&C risks and cyber risks in the
insurer’s portfolio, respectively.

We calibrate the model in (12) as follows. The asset characteristics μa and σ 2
a of the representa-

tive insurer are estimated based on historical return data. We collect monthly return time series for
indices, reflecting the major asset classes held by insurance companies, from Bloomberg and Thomson
Reuters. Table 7 contains our estimates of the asset side parameters. The time period 2006–2018 is
chosen consistent with the data available for the liability side (see below).

To estimate the log return on the liabilities (rl), we first decompose it into the log return on the
traditional P&C book (rs) and the log return on the cyber risk book (rc):

rl = (1 − ωl)rs + ωlrc. (16)

18See Margrabe (1978) and Fischer (1978) for the theoretical foundations and Klein and Schmeiser (2019) for an application in
an insurance context. The derivation of (12) is shown in Appendix C (see supplement).
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Table 8. Descriptive statistics for the liability portfolio. The values
are estimated based on a time series of yearly observations between
2006 and 2018. The estimates for the P&C portfolio are based on
losses incurred by the US P&C industry retrieved from the Insurance
Information Institute. The estimates for the cyber portfolio are based
on mean yearly USD-transformed data breaches published by PRC.

i Liability μs/c σs/c

1 P&C 0.0408 0.0823
2 Cyber 0.1513 0.4697

Figure 6. Aggregate loss distribution for the P&C and the cyber risk book. The solid line denotes
traditional P&C risks, and the dashed line denotes cyber risks.

This leads to the mean and variance

μl = (1 − ωl)μs + ωlμc, (17)

σ 2
l = (1 − ωl)

2σ 2
s + ω2

l σ
2
c + 2(1 − ωl)ωlσsσcρs,c. (18)

μs and μc are the mean returns on the P&C and cyber book, respectively, with corresponding variances
σ 2

s and σ 2
c and correlation ρs,c. We determine the parameters for the P&C portfolio from loss data for the

US P&C industry provided by the Insurance Information Institute (III). Our estimates for the cyber risk
portfolio are based on median yearly USD-transformed data breaches published by the PRC. Table 8
summarizes our input values for the liability side. In addition, Figure 6 highlights the differences in
shape between the aggregate loss distribution for the P&C and the cyber risk book.

Having determined the means and standard deviations for the asset and liability side, we are left
with the following unknown parameters: A0, L0, ρs

a,l, ρc
a,l, and ρs,c. We set A0 and L0 to a typical capital

structure for the P&C industry: A0 = 1, L0 = 0.9. This leads to E0 = 0.1, A0/L0 = 1.11, A0/E0 = 10 and
L0/E0 = 9.

Finally, we turn to the correlations. We set the asset-liability correlation ρs
a,l for traditional P&C risk

(without cyber risk) so that Equation (12) matches the empirically estimated CoE of 0.0903. In doing so,
we assume ωl = 0, implying that Equations (15) and (18) collapse to ρa,l = ρs

a,l and σ 2
l = σ 2

s , respectively.
A standard root search yields ρs

a,l ≈ 0.3. Lacking any reliable data for the estimation of the remaining
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Figure 7. Composite portfolio. This figure shows the reference portfolio composed of traditional P&C
and cyber risks. The black dot represents the pure P&C portfolio. To the right of this point, the share of
cyber risk in the composite portfolio increases. The portfolio costs are shown for different cyber liability
correlations ρc

a,l ∈ {0.1, 0.3, 0.5}. Increasing ρc
a,l raises the cost of equity. The black triangles mark the

CoE-minimizing portfolios. The dashed lines denote the range of spreads demanded by investors for the
cyber risk transfer via ILS based on the results in Table 5.

two correlations, we fix ρs,c at 0.3 and consider different values for ρc
a,l ∈ {0.1, 0.3, 0.5}. We also vary the

share of cyber risk in the P&C book as follows: ωl ∈ [0, 1].
The results are shown in Figure 7. The black curves represent the CoE for the three values of ρc

a,l

and varying fractions of cyber risk ωl in the overall portfolio. At first, the curves are downward sloping,
because the addition of cyber risk to a traditional P&C portfolio improves diversification. The CoE-
minimizing share of cyber risk in the insurance book is reached around 15% in all considered cases
(see black triangles).19 Once this fraction is surpassed, adding further cyber exposure raises the CoE,
because the accumulation risk overrides the diversification benefits. The dashed lines reflect the cheapest
and most expensive cost of a risk transfer through cyber ILS taken from Table 5. Comparing these lines
to the CoE curves, it becomes clear that cyber ILS are particularly useful for insurers with little or a lot
of cyber risk exposure. Between a weight of 5% and 25%, in contrast, the diversification benefits of the
cyber book lead to a CoE that appears cheap relative to the RoLs demanded by cyber ILS investors.

5. Conclusion
We investigate the feasibility of cyber risk transfer through ILS. On the investor side, we elicit the
preferred characteristics of cyber ILS and the corresponding return expectations. We then estimate the
CoE of insurers and compare it to the RoL expected by investors to match demand for and supply of
coverage in the cyber ILS market. Our results contain several important insights.

In the first part of the study, we identify maturity, multiple, and model risk as the key characteristics
of cyber ILS from the investor perspective. Investors appear to prefer short maturities, high multiples,
low model risk, and a funded format. They are particularly averse to model risk. Although we identified
a small number of cases, in which cyber perils with a high model risk could be transferred, the extreme
multiples necessary in these cases severely limit a potential cyber ILS market. This is a reminder that

19The corresponding sensitivity analysis for ρs,c in Appendix D (see supplement) shows that silent cyber exposure is a sig-
nificant concern with regard to the CoE. Silent cyber exposure drives up the correlation between the traditional P&C book and
the cyber policies, reducing the diversification benefits of adding cyber risk. This leads to a lower fraction of cyber risk in the
CoE-minimizing portfolio and makes risk transfer through cyber ILS even more attractive than in our base case analysis.
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improperly quantified risks are hard to insure both in the classical insurance market as well as through
alternative risk transfer. The recent launch of an exposure database by CyberCube is a promising devel-
opment towards a better understanding of various cyber perils (Artemis.bm 2022d.,). Such initiatives
may help to reduce model risk and thus expand the cyber ILS market in the future.

In the second part of our study, we find that the spread of cyber ILS will have to be significantly higher
than that of cat bonds with a comparable EL. This raises the question whether cedents are willing to pay
such markups for the transfer of extreme cyber ILS. In the third part, we therefore document that a cyber
ILS market may indeed evolve for well understood cyber perils, such as data breach risk. Cyber ILS with
risk metrics (PFL and EL) comparable to cat bonds and a low model risk will need to carry spreads in
the range between 6.80 and 15.12%, depending on the trigger choice and maturity. The comparison
to the mean excess CoE across US P&C insurers of approximately 9% indicates the potential for both
parties to agree on a risk transfer. Finally, we analyze how the CoE hurdle on the cedent side changes
with different fractions of cyber risk in the overall P&C book. We model the diversification benefits of
cyber risk and find the CoE-minimizing portfolio weight at around 15%. This indicates that risk transfer
via cyber ILS will be particularly attractive for insurers with much lower or much higher fractions of
cyber risk in their books.

Despite careful model specification and calibration, the results of this paper merit a critical discus-
sion. Our study undertakes a first step in understanding the economics of cyber ILS in absence of real
market data for such instruments. As a consequence, our inputs need to rely on various proxies such as
investor preferences from DCEs, risk metrics from traded cat bonds, cyber risk databases and implied
parameter estimates. Our results can therefore by no means be exact and should not be considered advice
for an optimal practical implementation. A real P&C insurer will, for example, be very unlikely to include
15% cyber risk in his portfolio as long as the risk itself is not better understood. Nevertheless, our anal-
yses help to establish an early understanding of potential success factors for a cyber ILS market. They
may thus serve as an orientation for future research and pilot transactions by industry practitioners.

To sum up, a larger cyber ILS market will not develop unless cyber risk modeling overcomes its
infancy, a fact that is often recognized by ILS industry sources (Artemis.bm, 2022c). This indicates a
main direction for further research: A better understanding of the dependence structure of cyber risk and
more data are required to develop sophisticated models. Similarly, the dynamic nature of cyber incidents
as man-made events require different modeling techniques than natural catastrophe risk. More research
is also required with regard to investor preferences. The results of our DCEs are limited by the small
sample size. Since we assess a potential cyber ILS market under model and pricing insecurity, our results
provide a first indication of the underlying dynamics rather than a precise real-world estimation. Once
actual market data for cyber ILS exists, our work could be complemented with more accurate estimates
of the RoLs demanded by investors.
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