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SIMILARITY OF NESTS IN Lp, 1 < p ^ 2 < oo 

ALVARO ARIAS AND PAUL MÛLLER 

ABSTRACT. In this note we prove that one aspect of the similarity theory, for the 
Volterra nest in Lp(0,1 ) for 1 < p ^ 2 < oo, is like that for p = 1 ; we thus answer a 
question from [ALWW]. 

1. Introduction. A nest 5\£ in a Banach spaceZis a totally ordered family of closed 
subspaces closed under intersection and closed unions and containing 0 andX The nest 
algebra induced by fA£ is the set of all T G B(X) that leave invariant every element of 1A£; 
i.e., TNcN for every N e 9^. 

The main example for our purpose is the Volterra nest in Lp(0,1), 1 < p < oo; where 
C\[ = {Nt : 0 < t < 1} and Nt is the set of those functions/ G Lp(0,1) that have support 
contained in [0,/]. For p = 2 the similarity theory tells us that this is the canonical 
example of a continuous nest (see [L]). 

Another consequence of the similarity theory (see [D] and [L]) says the following: 
If </>: [0,1] —> [0,1] is strictly increasing and onto, then there exists T G B(JL2(0, 1)) 
invertible such that for every t G [0,1], 77V/ = N^y 

The last question was considered by Allen, Larson, Ward and Woodward ([ALWW]) 
for p = 1 where they proved that such a T exists if and only if both <f> and <f>~x are 
absolutely continuous. The question for 1 < p ^ 2 < oo was considered in [ALWW] 
and [AAW]. They proved that if there is a restriction on the operator (T is order bounded) 
or on the condition number (\\T\\ \\T~l\\ < 1 + e for a small e > 0) then </> and </>-1 are 
absolutely continuous. 

In this paper we remove those conditions and obtain a necessary and sufficient condi­
tions for such an operator T to exist. Our main contribution to this theory is perhaps the 
observation that the Haar functions can be used to answer similarity questions. 

2. The main result. In this section we are going to show that the similarity the­
ory for the Volterra nest acting on Lp(0,1), l < / ? ^ 2 < o o i s like that of Li(0,1) 
(see [ALWW]). 

THEOREM 1. Let 1 < p ^ 2 < oo and </>: [0,1] —» [0,1] strictly increasing and onto. 
There exists T: Lp(0,1) —» Lp(0,1) invertible satisfying TNt = N^for every 0 < / < 1 
if and only ifcj) and </>_1 are absolutely continuous. 
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As building tools we are going to use the Haar basis {/*«,/}?= j , £L0
 a n c* t n e Rademacher 

functions { r w }^ 0 where 

hni — Xf-i 2,-1 n — Xr2'-i , -, and 

2" 

rn = X ^ -

The main property we use is the unconditionality of the Haar functions in Lp(0,1) for 
1 < p < oo. This allows us to use the "square function" instead of the "absolute value" 
as in [ALWW]. This technique was developed in [JMST] for a similar reason. We also 
use the fact that spân{r„} C Lp(0,1) is isomorphic to £2 for 0 < p < 00. 

The cr-algebra generated by the diadic intervals Anj = [ ^ r , ^ r ] , l < / < 2W, is denoted 
by %„. Clearly supp/z^, C A„ti. 

PROOF OF THE THEOREM. It is enough to prove that </>_1 is absolutely continuous. 
That (f> is absolutely continuous will follow by considering T~l. 

It is enough to prove Theorem 1 for 1 < p < 2. The other side follows from duality. 
One has to show only the "only i f part of the theorem. For if <j> and </>_1 are absolutely 

continuous then Tf(x) =f(<f>~](x)) U(/)~ly(x))p has the desired property. 
Assume that T:Lp(0,1) —* Lp(0,1) is invertible and satisfies TNt — N^ for every 

0 < f < 1. 
The first step is to replace 7 by a "better" operator with the same properties. 

Notice that T: ( E ? , ®Lp(A„ti)) —• fell elP(^(A„,/))) is "upper triangular" with 

respect to this decomposition. Take Tn to be the "diagonal"; i.e., 

2" 

i=\ 

where for A C [0,1], PA is the projection in Lp(0,1) that sends/to \Af-
This operator was used in [ALWW]. It was shown there that for p = 1 it satisfies 

TnNt = Nw) for every t, \\Tn\\ < HrH and ||7^"!|l < II?7-11|; but the results extend easily 
for 0 < p < 00. Moreover, if a function/ is supported on Anj then T,f is supported on 
<p(A„j). Equivalently, for every /, n, 1 < i <2n, 

(1) P(t>(àn4)Tn — TnP&ni. 

Let 1 < p < 2. For every n define 

,2" 

«-(EI^U2)'. 
-A 

CLAIM. {v^}n is equi-integrable. 

The claim was proved in [JMST] p. 265. For completeness we will give a proof of it 
later. 
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We are going to use a set of functions smaller than the {v„}„'s that copy the behaviour 
of <(>. Define 

'2° M 
v„ = (£|7yvl2) ' 

v / = l 

If we set C = [0,1] \ <j>(AnJ\ then 

Thnj = Pft^jThnj + PcThnj 

= Tnhn4 + PcThn4. 

Since the latter two are disjoint we have that |Tnhnj\ < \ Th„j\. This implies that {\%}n 

is equi-integrable. Notice also that for / ^j, Tnhn>i and Tnhnj are disjoint functions; hence 

v /= l J 1=1 I \=1 7 I 

Let g G L i (0,1 ) be a weak limit of {| Tnr„ \p}. If A G j ^ , the cr-algebra generated by 

{An,i}}=\> m e n u s m g (1) we have 

f \Tnrn\Pdm = [ \PmT„rnfdm = [ \Tn(PArn)\*> dm. 
J<t>\A) JO JO 
, \T„r„\pdm= f 

Since $ \PA^\P dm = m(A\ then 

^rpm{A) < j \Tnr„\Pdm < \\Tn\\Pm(A). 
||r-'r v '-U(A) 

Therefore, if A E l J ^ ^ w e have that 

(2) ^^)<j^gdm<mn*A), 

which clearly implies that </>-1 is absolutely continuous. 

REMARK. (1) It follows from (2) that 

1 (<trX)\x) < g(x) < \\T\n<t>-l)f(x) m-a.e. 
\T-*\\P 

Just take A = (<^_1(JC), 4>~l(x + /z)), divide (2) by h and take the limit. This tells us that 
the operator Tg:L\(0,1) —* Zj(0,1) induced by g looks like the "natural" one. Moreover, 
it is not hard to see it is also invertible. 

(2) The only property used was the existence of a family of functions {sn}n, \s„\ = 1 
for which {|Zr

wts
,„|/7}„ is equi-integrable. For p = 1 this is very easy to obtain, since for 

every s G L\9 \T„s\ is dominated by \T\ \s\9 where \T\ is the absolute value of T. In partic­
ular, if one takes s = X(o,i), then {|rws|}„ is equi-integrable. This recovers Theorem 4.4 
of[ALWW]. 

(3) We also obtain new information for/? = 2. If {|v„|2}M is equi-integrable, then T 
acts absolutely continuous. This last condition might be very hard to check, but it has the 
advantage that it does not make any reference to thç particular nests. 
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PROOF OF THE CLAIM ([JMST] R 265). The main tool we use is that if {/?} C Lp(0,1 ) 
is an unconditional basic sequence, then there exists a constant Cp > 0 such that for any 

l B " Jl ' l ( E k l 2 W I 2 ) J 

cD 
T,°ifi < <cp Y,aifi 

Since {hn,i}f=\, %LQ is an unconditional basis in Lp(0,1) for 1 < p < 2, and T is 
an isomorphism, then {Thnj} is an unconditional basis. Assume that {v£} is not equi-
integrable. Then we can find e > 0 and disjoint sets {Ak} which satisfy 

{Lsdmï > c . 

Thus for every (a^k £ ii, 

tew)' E«*r«* > 
k 

E«*EM >imi_1 E«*E^^ 

>imrv(/0'(p*i2<)f^)' 
>imrv(ç/j«*r<^)' 

>imrVe(Ekr)'-
V A: 7 

Since we assumed that 1 < p < 2 this is contradiction. • 

REMARKS. (1) The last step was the only place where we used that/? ^ 2 . 
(2) The previous proof works also in more general situations. If v and /i are two 

measures with no atoms and support [0, l],Nt C Lp(y) is the set of functions supported 
on [0,t] and Mt C Lp(ii) is the set of functions supported on [0,/]. Then we can find 
T: Lp{v) —• Lp(ii) invertible, satisfying TNt = Mt for every 0 < t < 1 if and only if v 
and \i are mutually absolutely continuous with respect to each other. To see this, just take 
the Haar system of Lp{y) and repeat the proof. 

(3) G. Schechtman pointed out to us that the proof of the claim holds also for 0 < p < 
1, thus extending Theorem 1 to those values. The reason for this is that for any sequence 
of signs e„kj one has that { E ^ 0 *«*,/}* — i^?=\ enkjhnkJ}k, where the equivalence is in 
distributions; hence, 

oo mk 

Ea*E*»*, 
k=0 i=l 

E^E^A*,-
k=0 i=l 

> \\T\\-
mk 

J2akT,€nk,i
Thnk,i 

k=Q i=\ 
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And after taking the average with respect to {enkA>we aPPty Khintchine's inequality to 
get 

i 

E f l t E U >\\T\\-% / 0 ( £ k l 2 ^ ) dm) , 

and the proof goes the same way. 
(4) In [ALWW] the authors considered more general type of nests—called Modeled 

on Subsets (MOS-nests). These include the previous examples and also nests with vari­
ous multiplicities. Their main proposition says that forp — \,T„ converges in the strong 
operator topology of B{L\ ). From there they easily get that the similarity transformations 
act absolutely continuous and that the change of multiplicity that takes place for/? = 2 
does not occur. However, if 1 < p < oo, Tn does not converge in the strong operator 
topology of B(LP), and although we were able to handle the absolutely continuous part 
we do not know how to apply our method to the multiplicity case. 

(5) Finally, we just point out that when studying the similarity theory for continuous 
nests in general Banach spaces one has to restrict the type of the nests (like MOS-nests 
as above). Because it is possible to have a continuous nest such that any two elements of 
the nest are non-isomorphic (see [AF]). 
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