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Procedures based on solutions of the direct and inverse geodetic problems are presented and
their application in orthodromic and loxodromic navigation is analysed. They can be used in
traditional navigation during a route planning and during sailing on the planned route in real
time. The optimal division of orthodromes during planning and locally predicted short loxo-
dromes during sailing – which allow orthodromic navigation also in manual steering – are
proposed.
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1. INTRODUCTION. In traditional navigation, to reduce the number of calcula-
tions, calculations are done with many simplifications, for example on a plane or a
sphere instead of an ellipsoid. These simplifications have been necessary and justified
in times of manual mechanical or electronic calculators, but are completely unneces-
sary and unjustified in times of computer calculations. Additionally, contemporary
position fixing devices allow more accurate and more sophisticated navigation than
in traditional navigation on a sphere where errors up to ± 0·5% of distances can be
expected (Earle (2006) and Lenart (2013)). Also orthodromes and loxodromes are cal-
culated on a sphere as well as intermediate points (waypoints) to navigate between
them along loxodromes.
In Lenart (2011) and Lenart (2013) a set of procedures for calculating orthodromes

(defined as the path of the shortest distance on any surface) and loxodromes by the ap-
plication of solutions of the problems known in geodesy as the direct and the inverse
geodetic problems have been presented.
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In formal notations:

S ¼ IGP φ1; λ1;φ2; λ2
� � ð1Þ

Cgs;Cge ¼ IGP φ1; λ1;φ2; λ2
� � ð2Þ

Slx ¼ LX φ1; λ1;φ2; λ2
� � ð3Þ

Cglx ¼ LX φ1; λ1;φ2; λ2
� � ð4Þ

φ2; λ2 ¼ DGP φ1; λ1; S;Cgs
� � ð5Þ

φi; λi ¼ DGPN φ1; λ1;φ2; λ2; n
� � ð6Þ

where P1(φ1, λ1) and P2(φ2, λ2) are the departure point and the destination point re-
spectively (Figure 1), S is the orthodromic distance, Cgs is the Course Over the
Ground (COG) at the departure point of the orthodrome and Cge is the COG at the
destination point of the orthodrome, Slx is the loxodromic distance, Cglx is the loxo-
dromic COG, φi, λi are coordinates of intermediate points on the orthodrome, IGP
is the procedure of the inverse geodetic problem solution, LX is the procedure of loxo-
dromic calculations, DGP is the procedure of the direct geodetic problem solution and
DGPN is the procedure of the direct geodetic problem solution for n suborthodromes.
In this paper these procedures, with results based on full accuracy Sodano’s solu-

tions (Sodano, 1958; 1965; 1967) on WGS-84 reference ellipsoid (as in Lenart (2011)
and Lenart (2013)) will be used in general formal form and in two modes – during
planning of a voyage route (Section 2) and during sailing on the planned route
(Section 3).

2. ROUTE PLANNING.
2.1. Exemplary voyage. An exemplary route from Cape Horn (−55°59′, −67°17′)

to Sydney (−33°50′, 151°17′) is assumed – where north latitudes and east longitudes
are positive and south latitudes and west longitudes are negative. This route is inten-
tionally at higher latitudes to magnify all differences. For this route

S ¼ 5077�7NM
Slx ¼ 6063�8NM

ΔSlx ¼ Slx – S ¼ 986�1NM or 19�42% of S

2.2. Intermediate points on the orthodrome. The orthodrome of the length S will
be divided for n suborthodromes (Figure 1) of any length Si such that

Xn

i¼1

Si ¼ S ð7Þ

In traditional navigation, n intermediate points are calculated during a route plan-
ning to navigate between them along loxodromes i.e:

φi; λi ¼ DGPN φ1; λ1;φ2; λ2; n
� � ð8Þ

Slxi ¼ LX φi; λi;φiþ1; λiþ1
� � ð9Þ

Slxn ¼
Xn

i¼1

Slxi ð10Þ
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These intermediate points will be calculated for n = 5, 10, 15, 20 in two options – for
n uniform suborthodromes or Si such as to obtain

ΔSlxn¼ Slxn–S ¼ min: ð11Þ
The solution in the second option is theoretically very complicated (optimisation

with n variables) but with a suitable programming tool (for example Microsoft
Excel add-in Solver) is very fast and easy. Results of ΔSlxn for different n are given
in Table 1 and illustrated in Figure 2 and all intermediate points in two options for
n = 10 in Tables 2 and 3. As can be seen in Table 1 this optimisation gives almost
40% lower ΔSlxn for the same n for this exemplary voyage. This difference can be
bigger for orthodromes with bigger ΔSlx and smaller for orthodromes with smaller
ΔSlx (e.g. 15% for a quite average orthodrome withΔSlx = 5·7% and maximum latitude
50°) but always exists (unless ΔSlx = 0). Table 3 shows that in optimal distribution
shorter segments are at higher latitudes (the shortest at maximum latitude) and
longer at lower latitudes but such are results, not assumptions.

3. SAILING ON THE PLANNED ROUTE
3.1. Course and course over the ground. The most important thing when sailing

on the planned route in manual steering is to follow the calculated Cglxi whereas the
course set and stabilised by an autopilot is the course through the water. Fortunately
COG can be obtained from a Global Positioning System (GPS) receiver, therefore

Figure 1. Orthodrome and loxodrome parameters.
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COG must be carefully observed and the course set on an autopilot must be accord-
ingly corrected to obtain COG equal to the required Cglxi for each subloxodrome.

3.2. Return to the required route. If due to set and drift our current position is off
the route (even if Section 3.1 is applied), then a new corrected Cglxi should be calculated
to the nearest intermediate point. This additional loss of distance can be calculated

Table 1. ΔSlxn for uniform and optimal division of the orthodrome.

n 5 10 15 20

Uniform 1·143 0·294 0·131 0·074 %
Optimal 0·724 0·179 0·079 0·045 %

Optimal/uniform 63·342 60·884 60·305 60·811 %

Figure 2. ΔSlxn for uniform and optimal division of the orthodrome (%).

Table 2. Intermediate points for n = 10 and the uniform division.

i φi λi Si Cgsi Slxi Cglxi

° ′ ″ ° ′ ″ NM ° NM °

−55 59 0 −67 17 0 211·3 215·3
1 −62 52 49 −76 54 4 507·8 219·6 508·2 226·1
2 −68 44 19 −91 49 43 507·8 233·3 509·0 243·7
3 −72 29 25 −114 47 29 507·8 255·0 510·8 268·5
4 −72 42 33 −143 12 35 507·8 282·1 512·5 293·8
5 −69 17 0 −167 5 22 507·8 304·8 511·1 312·3
6 −63 35 35 177 12 30 507·8 319·2 509·1 323·8
7 −56 46 41 167 8 19 507·8 327·9 508·3 330·8
8 −49 23 52 160 16 16 507·8 333·4 508·0 335·3
9 −41 42 27 155 13 57 507·8 337·1 507·9 338·3
10 −33 50 0 151 17 0 507·8 Cge 339·5 507·8

S 5 077·7 Slxn 5 092·6
ΔSlxn 14·9

0·294 %
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from Equation (12) (Figure 3)

Δs ¼ s1 þ s2
l1 þ l2

� 1 ¼ k
cos α

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� kÞ2 þ ðk tan αÞ2

q
� 1 ð12Þ

where

k ¼ l1
l1 þ l2

ð13Þ

For example for α= 5° and k = 0·5 Δs = 0·38%, for k = 0·75 Δs = 1·13%, for k = 1
Δs = 9·13% (although in the last case it would be better to steer to the next intermediate
point and not to the nearest). It can be seen that this loss of distance can be many times
bigger than the loss between loxodromes and orthodromes.

3.3. Orthodromic navigation. Let us assume that we can also use the set of pro-
cedures as in Section 2 during the voyage. Section 3.1 is still valid and very important.
During the voyage if we enter as P1 the current position and P2 is constantly the des-
tination point then Equation (2) gives the Cgs for the orthodrome to the destination
point, even if we, for example, due to set and drift are off the route, and not to an inter-
mediate point. We can calculate a new course for the orthodrome after each position
fix and always navigate along the current orthodrome without these calculated inter-
mediate points and without loss of Δs and ΔSlxn.
Orthodromic navigation, although very promising, is possible only in automatic

steering systems where an autopilot (course controller which stabilises the required
course) is connectedwith a track controller (which nearly continuously fixes the position
and calculates Cgs from the current position to the destination point) but such systems
are very rare in marine navigation. Most common is a separate autopilot and for
example a GPS receiver which sometimes can calculate the orthodromic or loxodromic
course (mainly on a sphere) and this course must be manually set on an autopilot.
Let us assume that we will be steering with a manually set autopilot and we will

be fixing position at Δt intervals where Δt is for example equal to 1, 2 or 4 hours.

Table 3. Intermediate points for n = 10 and the optimal division.

i φi λi Si Cgsi Slxi Cglxi

° ′ ″ ° ′ ″ NM ° NM °

−55 59 0 −67 17 0 211·3 216·4
1 −64 17 56 −79 39 17 620·6 222·1 621·5 228·2
2 −69 10 56 −93 31 54 440·4 234·9 441·4 241·9
3 −71 53 49 −108 47 24 346·0 249·3 346·9 256·9
4 −73 1 58 −124 58 18 300·8 264·7 301·7 272·6
5 −72 48 57 −141 24 10 290·3 280·4 291·2 288·1
6 −71 12 14 −157 20 57 311·3 295·6 312·2 302·8
7 −67 52 10 −172 11 34 370·3 309·5 371·2 315·9
8 −62 3 14 174 25 39 487·0 321·7 487·9 327·0
9 −52 7 17 162 29 52 711·1 331·7 712·0 336·0
10 −33 50 0 151 17 0 1 199·8 Cge 339·5 1200·7

S 5 077·7 Slxn 5 086·8
ΔSlxn 9·1

0·179 %
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ForΔt = 1 h and our speed Vg = 20 kn for 20 NM the orthodrome at the maximum lati-
tude of our exemplary voyage (−73·1°) Cge – Cgs = 1·1°. Let us assume that, to be very
accurate, we will be changing our course in 0·1° steps, therefore our course should be
changed 11 times in 1 hour to obtain 56 cm (the difference between the loxodromic
and the orthodromic distance). On the other hand if we steer for 1 hour on the constant
Cgs course we will be off the route by 0·19 NM. This deviation is given by equation

Δsdev¼ Cglx – Cgs
� �

VgΔt ð14Þ

Table 4 gives these deviations for different latitudes and different Cgs for VgΔt = 20
NM (for example Δt = 1 hour at Vg = 20 kn). These deviations increase very quickly
with longer VgΔt as Table 5 shows (VgΔt = 80 NM e. g. Δt = 4 hours at Vg = 20 kn).

Figure 3. Return to the required route.

Table 4. Δsdev [NM] for VgΔt = 20 NM.

Cgs [°] 0 10 20 30 40 50 60 70 80 90

φ1 [°]
0 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00
10 0·00 0·00 0·00 0·01 0·01 0·01 0·01 0·01 0·01 0·01
20 0·00 0·00 0·01 0·01 0·01 0·02 0·02 0·02 0·02 0·02
30 0·00 0·01 0·01 0·02 0·02 0·03 0·03 0·03 0·03 0·03
40 0·00 0·01 0·02 0·02 0·03 0·04 0·04 0·05 0·05 0·05
50 0·00 0·01 0·02 0·03 0·04 0·05 0·06 0·07 0·07 0·07
60 0·00 0·02 0·03 0·05 0·06 0·08 0·09 0·09 0·10 0·10
70 0·00 0·03 0·06 0·08 0·10 0·12 0·14 0·15 0·16 0·16
80 0·00 0·06 0·12 0·17 0·22 0·26 0·29 0·31 0·32 0·33
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The solution is to steer the loxodromic course Cglx to the locally predicted position
after Δt on the orthodrome from the current position to the destination point, that is

φΔt; λΔt ¼ DGP φc; λc;VgΔt;Cgs
� � ð15Þ

Cglx ¼ LX φc; λc;φΔt; λΔt
� � ð16Þ

Table 5. Δsdev [NM] for VgΔt = 80 NM.

Cgs [°] 0 10 20 30 40 50 60 70 80 90

φ1 [°]
0 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00
10 0·00 0·03 0·06 0·09 0·11 0·13 0·15 0·16 0·16 0·16
20 0·00 0·06 0·12 0·17 0·22 0·26 0·30 0·32 0·33 0·34
30 0·00 0·10 0·19 0·27 0·35 0·42 0·47 0·51 0·53 0·54
40 0·00 0·14 0·27 0·40 0·51 0·61 0·68 0·74 0·77 0·78
50 0·00 0·20 0·39 0·57 0·73 0·86 0·97 1·05 1·09 1·10
60 0·00 0·29 0·57 0·83 1·06 1·26 1·42 1·53 1·59 1·60
70 0·00 0·47 0·92 1·34 1·71 2·02 2·27 2·44 2·53 2·54
80 0·00 1·02 2·01 2·90 3·68 4·32 4·80 5·11 5·25 5·23

Table 6. ΔSlx [m] for VgΔt = 20 NM.

Cgs [°] 0 10 20 30 40 50 60 70 80 90

φ1 [°]
0 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00
10 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00
20 0·00 0·00 0·00 0·00 0·00 0·00 0·01 0·01 0·01 0·01
30 0·00 0·00 0·00 0·00 0·01 0·01 0·01 0·02 0·02 0·02
40 0·00 0·00 0·00 0·01 0·02 0·02 0·03 0·03 0·04 0·04
50 0·00 0·00 0·01 0·02 0·03 0·04 0·06 0·07 0·07 0·07
60 0·00 0·00 0·02 0·04 0·07 0·09 0·12 0·14 0·15 0·16
70 0·00 0·01 0·05 0·10 0·17 0·23 0·30 0·35 0·38 0·39
80 0·00 0·05 0·21 0·44 0·72 1·02 1·29 1·50 1·63 1·66

Table 7. ΔSlx [m] for VgΔt = 80 NM.

Cgs [°] 0 10 20 30 40 50 60 70 80 90

φ1 [°]
0 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·01 0·01 0·00
10 0·00 0·00 0·01 0·03 0·05 0·07 0·09 0·10 0·11 0·11
20 0·00 0·01 0·06 0·12 0·20 0·28 0·35 0·40 0·44 0·45
30 0·00 0·04 0·14 0·29 0·48 0·68 0·86 1·00 1·09 1·11
40 0·00 0·08 0·29 0·62 1·02 1·43 1·82 2·11 2·30 2·34
50 0·00 0·15 0·59 1·26 2·06 2·90 3·67 4·27 4·63 4·71
60 0·00 0·33 1·27 2·70 4·42 6·20 7·81 9·06 9·79 9·93
70 0·00 0·87 3·33 7·05 11·47 16·01 20·04 23·07 24·76 24·93
80 0·00 4·25 16·23 33·86 54·21 74·11 90·75 102·08 106·97 105·27
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where: φc, λc is the current position. Such a combination of the orthodrome and short
loxodromes allows orthodromic navigation in manual steering without Δsdev and Δs
losses and quite negligible ΔSlx. For example, for 20 NM loxodromes, the maximal
ΔSlx = 1·66 m and for 80 NM loxodromes, the maximal ΔSlx =≈ 107m - for
maximal latitude 80° (Tables 6 and 7).

4. CONCLUSIONS. The presented procedures are quite general and universal.
They can be used for any geodetic solutions and required accuracy, on any reference
ellipsoid. For orthodromic navigation they can be used as well during route planning
with additional optimally divided orthodromes as during sailing on the planned route
with locally predicted short loxodromes.
The proposed locally predicted short loxodromes – calculated in real time during

sailing at position fix intervals – also allow orthodromic navigation in manual steering
without intermediate points and losses of returning to these points, without deviations
caused by constant orthodromic courses and quite negligible differences in distances
between loxodromes and orthodromes. In fact a dozen or so constant planned loxo-
dromes are replaced by a few hundred short loxodromes - locally adopted to set and
drift - on the orthodrome from the current position to the destination point.
It is worth mentioning that although analysis has been done on an ellipsoid, nothing

prevents using the results - optimal division and locally predicted short loxodromes - in
calculations even on a sphere.
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