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COMMUTATIVITY OF RINGS SATISFYING CERTAIN
POLYNOMIAL IDENTITIES

HAZAR ABU-KHUZAM, HOWARD BELL AND ADIL YAQUB

It is shown that an n-torsion-free ring R with identity such that, for all x,y in R,
xnyn = ynxn and (asy)n+x - xn+1yn+1 is central, must be commutative. It is also
shown that a periodic n-torsion-free ring (not necessarily with identity) for which
(xy)n — (yx)n is always in the centre is commutative provided that the nilpotents
of R form a commutative set. Further, examples are given which show that all the
hypotheses of both theorems are essential.

R is called periodic if for every x in R, there exist distinct positive integers m —
m(x), n = n(x) such that xm = xn. By a theorem of Chacron (see [6, Theorem 1]),
R is periodic if and only if for each x € R, there exists a positive integer k = k(x) and
a polynomial /(A) = /i(A) with integer coefficients such that xk — xk+1f(x).

Throughout, R is an associative ring, N denotes the set of nilpotent elements of
R, Z denotes the centre of R, C(R) denotes the commutator ideal of R, and [x,y]
denotes the commutator xy — yx. We start with our first theorem:

THEOREM 1. Let R be a ring with identity and let n be a fixed positive integer.
Suppose that R is n-torsion-free, and that for all x,y in R, xnyn = ynxn and [xy)n —
xn+1yn+1 is in the centre Z of R. Then R is commutative.

In preparation for the proof of Theorem 1, we state the following known lemmas
[2,11,5].

LEMMA 1. IS [x,y\ commutes with x, then [xk,y] = kxk~1[x,y] for all positive
integers k.

LEMMA 2 . Suppose that R is a. ring with identity 1. If xm[x,y] - 0 and
(a; + l)m[z,y] = 0 for some x,y in R and some integer m > 0, then [x,y] = 0.
A similar statement holds if we assume [x,y]xm = 0 and [x,y](z + l ) m = 0 instead.

LEMMA 3 . Let R be an n-torsion-free ring with identity 1 such that [xn,yn] = 0
for all x,y in R. Let N denote the set of nilpotent elements of R. Then

(i) a€N,xeRimply[a,xn}=0.
(ii) a G N, be N imply [a, b] - 0.
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PROOF OF THEOREM 1: By hypothesis, [xn,yn] = 0 for all x,y in R and hence,
by [8], the commutator ideal is nil. This implies that the set of nilpotent elements N
forms an ideal. Hence, by Lemma 3(ii), TV is a commutative ideal. This implies that

(1) N2 C Z.

Let a e N, b € R. Then by hypothesis,

(2) ((a + l)6)n + 1 - (a + l ) n + V + 1 e Z, and

(3) (6(a + l ) ) n + 1 - 6n+1(a + l ) n + 1 e Z.

Subtracting (3) from (2), and using the fact that N2 C Z we get

a6«+i _ b
n+1a - (n + I)o6n+1 + (n + l)6n+1o G Z,

and thus n[a,6n+1] G Z. Hence, since R is n-torsion-free, we get

(4) • [a,bn+1]eZ, (a EN, b € R).

Therefore,

(5) [a, bn+1] = [a, b]bn + b[a, bn] e Z, by (4).

But, by Lemma 3(i), [a,bn] = 0, and hence by (5),

(6) . [a,b)bn £Z, (a£ N, b e R).

Thus, [[a,b]bn,b] = O=[[a,b),b]bn.

Replacing 6 by b + 1 in the above argument and using Lemma 2, we see that

(7) [[a,b],b]=0,{aeN,beR).

Using Lemma 3(i), (7), and Lemma 1 we get

0 = [o,6n]=n6n-1[a,6].

Since R is n-torsion-free, we conclude that 6n~1[a,6] = 0. Putting 6 + 1 instead of b,

and using Lemma 2, we get

[a,b) = 0, (aeN, b£R).
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Thus, the nilpotent elements are central and hence (since C(R) is nil)

(8) [x,y)eZ, for all x,y in R.

Using (8) and Lemma 1, we have 0 = [asn,l/n] = nxn-1[a;,yn]. Now, using the fact
that R is n-torsion-free and Lemma 2 we get [*,yn] = 0 for all x,y in R. Similarly,
0 — [a:,!/n] = nyn~1[x,y] yields [x,y] = 0 for all x,y in R. This completes the proof
of Theorem 1. D

In preparation for the proof of the next theorem, we state the following lemma
which is proved in [4].

LEMMA 4 . Let R be a periodic ring such that N is commutative. Then the
commutator ideal of R is nil, and N forms an ideal of R.

THEOREM 2 . Let n be a Axed positive integer and let R be an n-torsion-free
periodic ring (not necessarily with identity) such that (xy)n — (yx)n G Z. If N is
commutative, then R is commutative.

PROOF: Consider first the case that R has an identity 1. By Lemma 4, N is an
ideal of R. Also, since N is commutative,

N2 CZ.

Let o e N, b&R. Taking x = (1 + a)b,y = (1 + a)"1 , the hypothesis (xy)n - (yx)n £
Z yields

(9) (

and hence

[(1 + a)bn(l + a)-1 - bn](l + a) = (1 + a)[(l + a)6"(l + a ) " 1 - bn].

Therefore (1 + a)bn - 6"(1 + a) = (1 + o)[(l + a)6n(l + a)'1 - bn],

(10) abn - bna = (1 + o)[(l + o)6n(l + a ) " 1 - bn).

Since N is a commutative ideal, (1 + o)(oi»n — bna) = abn — bna, and hence by (10),

(1 + a)(abn - bna) = (1 + a)[(l + a)6n(l + a)"1 - bn\.

Further, since a £ N, 1 + a is a unit in R, and thus

abn - bna = (1 + a)bn(l + a)'1 -bn£Z, by (9).

Thus,
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(11) [a,bn] &Z, {a£N, beR).

Now, suppose x\,...,Xk G R. Since R/C(R) is commutative,

(xi . . . xk)
n - x? ... z j £ C(R) C N, by Lemma 4.

But N is commutative, and hence

(12) [a, (a*. . . xk)
n] = [a, x» . . . xjj], (a € tf).

Combining (11) and (12), we conclude that

(13) [a, x? ... xj] G Z, (a G N; xx,..., xk £ R] any k ^ 1).

Let S be the subring of R generated by the n-th powers of elements of R. Then,
by (13),

(14) [a,x]e Z{S)i6iaHaeN(S), x£S,

(here Z(S) and N(S) denote the centre of S and the set of nilpotents of S, respec-
tively). Combining the facts that S is periodic, N(S) is commutative, and (14), a
theorem of [3] shows that S is commutative, and hence

(15) [xn,yn] = 0 for all x,y G R.

Note that R is an n-torsion-free ring with identity satisfying (15) and the hypothesis
"(xj/)n — (yx)n is always central", and hence by Theorem 1 of [1], R is commutative
(in the event R happens to have an identity).

We now consider the general case. We begin with the following two claims.

CLAIM 1. The idempotents of R are central.

Let e2 = e G R, r G R. By hypothesis,

[e(e + er - ere)]n - [(e + er - ere)e]n G Z,

and hence er — ere G Z. Therefore,

er — ere — e(er — ere) = (er — ere)e = 0,

and thus er = ere. Similarly, re — ere, and the claim follows.
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CLAIM 2. If a : R —* S is a homomorphism of R onto 5 , then the nilpotents of S
coincide with <r{N), where N is the set of nilpotents of R.

This claim was essentially proved in [9].

To complete the proof of the theorem, first recall that R is isomorphic to a subdirect
sum of subdirectly irreducible rings Ri (t G F) . Suppose that

<Ji : R -> Ri

is the natural homomorphism of R onto Ri. Let a;,- £ Ri and let ffi(z) = a;,-, x € R.
Since iZ is periodic,

x' = xT for some integers a > r > 0,

and hence

(16) e = x<-'~r)T is idempotent.

By Claim 1, e is central in R, and hence 0i(e) is a central idempotent of Ri. Since Ri
is subdirectly irreducible, ^(e) = 0 or fi(e) = lj (if 1; 6

CASE 1. Ri does not have an identity.

In this case, <Ti(e) = 0 and hence (see (16)), x\' T = 0. Thus Ri is nil and hence,
by Claim 2,

Ri - trt{N).

By hypothesis, N is commutative; therefore .Ri is commutative.

CASE 2. Ri has an identity 1,-.
Note that Ri need not be n-torsion-free. So let o't(eo) = 1%, eo € R, and choose

integers s > r > 0 such that ej = ej . Let

e - e ( j" r ) r

e — e0

Then e is idempotent and, moreover, <Ti(e) — lv~p'p = l j . Also, e is central (Claim
1), and hence e is a nonzero central idempotent element of R. Thus, eR is a ring with
identity e. Because eR inherits all the hypotheses of the ground ring R (including re-
torsion-free property), it follows by the first part of the proof that eR is commutative,
and hence

[ex, ey] = 0 for all x, y G R.

This implies (since Ci{e) = 1.)

[<ri(x), (Ti(y)} = 0 for all x, y £ R,
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and thus Ri = cn(R) is again commutative. Hence the ground ring 12 is commutative,

and the theorem is proved.

We conclude by giving examples which show that all the hypotheses of Theorems

1 and 2 are essential.

EXAMPLE 1: Let

( f a b c>
12 = H 0 a2 0

l \ 0 0 a,
and let n = 6. Then 12 satisfies all the hypotheses of Theorem 2 except that R is
not n-torsion-free. Note that 12 is not commutative, and hence the hypothesis "12 is
n-torsion-free" cannot be omitted in Theorem 2.

EXMAPLE 2: Let 12 be as in Example 1, and let n = 7. Then 12 satisfies all the
hypotheses of Theorem 2 except the hypothesis "(xj/)n — (yx)n G Z", and hence this
hypothesis cannot be omitted in Theorem 2.

EXAMPLE 3: Let

r / « 6 ex
12= U 0 a d\ a,b,c,d€GF(3)

l \ 0 0 a)
and let n = 7. Then 12 satisfies all the hypotheses of Theorem 2 except the hypothesis
"N is commutative", and hence this hypothesis cannot be omitted in Theorem 2 (note
that 12 is not commutative).

EXAMPLE 4: Let

6

R=([0 a

• } •
a,b,c,deGF(2)

0

and let n = 2. This ring shows that the condition "n-torsion-free" cannot be omitted
in Theorem 1.

EXAMPLE 5: Let R be as in Example 4 but with entries in GF(3), and let n = 2.

This ring shows that the condition "[xn,yn] = 0 " cannot be omitted in Theorem 1.

EXAMPLE 6: Let R be as in Example 1 with n — 3. This ring shows that the
condition "(xy)n+1 - xn+1yn+1 G Z" cannot be omitted in Theorem 1.

EXAMPLE 7:
'0 a

R={\0 0 c atb,c£GF(3)

) •,0 0 0;
and let n = 4. This ring shows that the condition "1 G R" cannot be omitted in

Theorem 1.
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