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Abstract

There is a Dutch Book argument for the axiom of countable additivity for subjective
probability functions, but de Finetti famously rejected the axiom, arguing that it wrongly
renders a uniform distribution impermissible over a countably infinite lottery. Dubins
however showed that rejecting countable additivity has a strongly paradoxical consequence
that a much weaker rule than countable additivity blocks. I argue that this rule, which also
prohibits the de Finetti lottery, has powerful independent support in a desirable closure
principle. I leave it as an open question whether countable additivity should be adopted.

1. Introduction
Kolmogorov’s continuity axiom (his Axiom V), equivalent with the other axioms to
the rule of countable additivity, lies at the heart of modern mathematical probability
theory, indispensable for the proofs of the celebrated “with probability one”
theorems (the most familiar of which is probably the strong law of large numbers).
These theorems not only figure among the great achievements of twentieth-century
pure mathematics but also have been central to many ground-breaking applications
in physics, particularly ergodic theory, as well to the well-known strong “convergence
of opinion” theorems of subjective Bayesianism.1 But one of the great architects of the
subjective Bayesian theory, Bruno de Finetti,2 claimed, on the basis of a very powerful
result that he proved,3 that finitely additive probability grounds sufficiently strong
versions of the “strong” theorems based as they are on repeated independent trials,
and he held in addition that because countable additivity forbids a countably infinite
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1 For an extended discussion of these see Earman 1992.
2 I have added Ramsey and Savage to my personal personalist pantheon.
3 The de Finetti Exchangeability Theorem.
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lottery from being modeled by a uniform distribution (such a lottery is now called a
de Finetti lottery), just as a finite lottery is, countable additivity should be rejected as
a general rule.4

But we shall see that admitting the de Finetti lottery has a paradoxical
consequence, a fact admitted by de Finetti though he attempted to dismiss concern
about it. I will argue that the concern is fully justified because the consequence does
represent a genuine inconsistency. Though it is blocked by countable additivity, this
by itself is not sufficient to justify the latter’s adoption because the consequence in
question is blocked by a much weaker rule having, I will claim, strong independent
support. All this in due course; first it will be useful to review some facts about
coherence and countable additivity in the context of the de Finetti lottery.

2. The de Finetti lottery
Countable additivity prohibits the de Finetti lottery because each ticket would have to
have probability zero and a countable sum of zeros is zero. But de Finetti argued that if a
uniform distribution over a finite partition, and a uniform probability density over a
bounded interval in Rn are permissible, then this should be the case also for a countably
infinite partition; otherwise, he pointed out, we are forced by what poses as a “purely
formal” axiom to demand a heavily biased probability distribution in which a finite
number of outcomes must receive nearly all the probability: “What is strange is simply
that a formal axiom, instead of being neutral with respect to the evaluations : : :
imposes constraints of the above kind” (1974, 122).

De Finetti’s case for the permissibility of the de Finetti lottery has some
plausibility, but it seems to be in clear conflict with his famous no-Dutch Book
criterion of consistency (coherence) for any assignment of subjective probabilities
considered as normalized fair betting odds.5 As he pointed out, his infinite lottery is
Dutch Bookable. Anyone offering odds of zero on each ticket would be forced to lose
one dollar by an opponent staking a dollar on each ticket winning: That person would
win a dollar on the ticket drawn and lose nothing on the others.6

However, as de Finetti pointed out, Dutch Book arguments depend on the
assumption that a sum of bets fair to the agent is fair to the agent. He called this
“the hypothesis of rigidity with respect to risk” (ibid., 82), and noted that because of
the phenomenon of risk-aversion it is strictly false (ibid., 74). Nevertheless, according
to him it is nevertheless an acceptable approximation to a rigorous utility-based
argument for the finitely additive axioms and the multiplication rule because for
these a sum of at most three bets is needed and the betting is assumed to be for
money-sums small enough to be roughly linear in utility. For countable additivity,

4 I should emphasise that de Finetti rejected countable additivity only as rule to be applied in all cases;
he certainly did not reject it where he thought it useful to employ it.

5 He proved that this criterion of consistency for fair betting quotients is equivalent to your truth-
value estimates not being able to be dominated (penalty uniformly reduced) according to the so-called
Brier scoring rule (1974, 88–89). He came to regard this second criterion as preferable because the former
is vulnerable to contamination by strategic considerations.

6 It is straightforward to show that in conjunction with the other axioms, and subject to the condition
that only a finite sum changes hands, countable additivity is a necessary and sufficient condition for
invulnerability to a Dutch Book.
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however, as we have seen an infinite number of bets is required, and de Finetti saw
the countable Dutch Book argument therefore as begging the question that rigidity
extends to the infinite case (1972, 91). Indeed, utility-based theories like Savage’s do
not extend to providing a justification for countable additivity; for that, a separate
continuity assumption is required (e.g., as in Villegas 1964). Nor do the well-known
accuracy arguments for the finitely additive axioms appear to extend to countable
additivity without such additional assumptions (Pettigrew 2016, 222).

Accordingly, de Finetti restricted the definition of coherence to finite sums of bets:
A set of subjective probability assignments is coherent just in case no finite subset is
vulnerable to a Dutch Book. Because the opponent in the Dutch Book against the de
Finetti lottery must make bets on each of the infinite number of tickets to ensure a
win, the uniform-0 distribution is, according that definition, coherent despite being
Dutch Bookable. De Finetti’s resolution is certainly formally adequate: The restricted
definition of coherence permits the uniform-0 distribution and is sufficient for Dutch-
Book-argument proofs of all the finitely additive probability axioms and the
multiplication theorem, but not the continuity axiom. As we shall see in the following
section, however, merely finitely additive probability functions seem to come at a
considerable price.

3. More paradox
In a personal communication to de Finetti, the probabilist and mathematician Lester
Dubins showed that when regarded as a hypothesis about a data source the de Finetti
lottery generates a bizarre posterior probability distribution (de Finetti 1972, 105). In
Dubins’s example7 a number n∈N is to be announced (on a screen, or by some other
method). There are two propositions A and B, each having prior probability ½, such
that your probability of getting the number n conditional on A is uniformly 0, while
on B it is 2−(n�1). So A states that the data source generates a de Finetti lottery. Let Xn

state that the number n is the number displayed (we can regard Xi as abbreviating the
statement that a random variable X, defined on the sample space N with X(m) ≡ m,
takes the value i). A straightforward Bayes’s Theorem calculation yields P(A|Xn)= 0
and P(B|Xn)= 1 for every n (the conditional probabilities are all well-defined since by
the theorem of total probability P(Xi) is positive and equal to P(Xi|A)P(A) � P(Xi|B)
P(B)= 0� 2−1.2−(i�1)= 2−(i�2)). It follows that before observing the value of X you will
know for certain in advance that the probability of A will be 0 and that of B will be
1 after you conditionalize.8

This certainly sounds paradoxical; Kadane et al. call it “reasoning to a foregone
conclusion” (1996). De Finetti conceded its paradoxical appearance, but commented
that nevertheless:

7 I am taking N here to be {1, 2, 3, : : : }.
8 This is a striking example of the phenomenon of nonconglomerability. A probability function is

conglomerable in a partition {Ci: i∈N} just in case for every D in the domain of P, if for every i∈N, P(D|Ci)
lies in any given interval, then so does P(D). It turns out that, subject to certain quite general conditions,
every merely finitely additive probability function whose range is infinite is nonconglomerable in some
countably infinite partition (Schervish et al. 1984). By contrast, it is straightforward to show that
countably additive probabilities are conglomerable in every countable partition.
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[a]ll these surprises are but the inevitable unforeseen complications met in
every field when we pass from the finite to the infinite, and they are called
paradoxical only until we become accustomed to them. (1972, 106)

This is surely disingenuous. The Dubins example is more than just a “complication”:
Acknowledging ex ante that after conditionalizing on whatever result you observe you
will be certain that A is false and that B is true, being at the same time maximally
uncertain of A (prior= ½), may not be an outright contradiction but it is nevertheless—
at any rate intuitively—extremely close to one.9 De Finetti’s own gloss of P(E|H) as “the
probability that You attribute to E if You think that in addition to Your present
information : : : it will become known to You that H is true (and nothing else)” (1974, 134;
emphasis in the original) seems to commit him to the claim that you should now regard
0 and 1 as the probabilities of A and B, respectively, though he follows with the caveat
that the gloss is only “a preliminary guide to the meaning of : : : P(E|H) [and we] ought
to warn the reader : : : against an overhasty acceptance of these initial explanations”
(ibid., 135). Nevertheless, he attempted to bypass the objection by advancing a rule for
betting on A or B given any Xi, in fact an infinite family of rules parametrized by i, each
recommending betting on B if the observed value is no greater than i, and on A if
greater. He pointed out that the expected gain from this strategy increases with i and
has no upper bound (1972, 105-6). While that betting strategy is sound enough, it simply
brushes under the carpet the apparent—I believe real—inconsistency in the prior
assignments P(A) = P(B) = ½ (or indeed any nonextreme values) and the conditional
probabilities P(A|Xi) ≡ 0 and P(B|Xi) ≡ 1.

In what follows, I will show that the Dubins assignments are inconsistent with a
principle, of ancient pedigree, that certainty is carried through deduction from
premises to conclusions. Granted it, we shall see that not only are the Dubins
conditional assignments ruled inadmissible but also the de Finetti lottery.

4. Closing off certainty
The finitely additive probability axioms harmonise nicely with first-order logic (FOL). It
is a consequence of first-order completeness that if A is a logical consequence of a set G
of sentences in FOL, then A is a consequence of some finite conjunction Gm of members
of G. It is also easily proved by induction that for every n∈N, if n propositions in the
domain of a finitely additive probability function each has probability one so does their
conjunction. Hence, if each member of G has probability one so does Gm. It also follows
from the finitely additive probability axioms that if B entails C, then P(B)≤ P(C). Hence,
we conclude that if eachmember of G has probability one then so does A. Thus, we seem
to have a formal corroboration of the traditional belief that deducibility carries
certainty—at any rate probability-1 certainty—with it (in this case the strongest form
of certainty short of deductive) from even infinitely many premises to conclusions.

But probably the majority of calculations in mathematical probability involve
infinitary propositions and their consequences. The de Finetti lottery is a
particularly simple example defined in an infinitary probability system. In the

9 Compare Uffink: “If it is certain beforehand that a probability value will be revised downward, this
value must have been too high to start with, and could not have been a faithful representation of our
opinion” (1996, 68).
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usual σ-algebra formalism, the outcome-space is N, and the algebra, or field, of
events is some appropriate subfield of the power set of N, including possibly the
power set.10 The disjunction over the possible exclusive outcomes of the lottery is
represented by the event ∪i∈N Xi ∩ Êp;i∈N(∼Xi ∪ ∼∪j≠ i∈N Xj) (I am taking ∼ as
complement) where the Xi are defined as in section 2. Probability theory came of
age in dealing with infinitary events, of which the celebrated “with probability one”
theorems are the outstanding exemplars. The simplest and best-known of these is
the Strong Law of Large Numbers, attributing probability one to a formula of the
form Êp;i∈N∪j∈NÊp;k∈N A(i,j,k), an infinite conjunction followed by an infinite
disjunction followed by an infinite conjunction followed by a formula free in i, j, and
k. In the 1930s Kolmogorov’s famous monograph laying the measure-theoretic
foundations of modern probability theory made σ-fields, the loci of such infinitary
formulas, the typical context of investigation.

But within the finitely additive probability calculus there is no corresponding theorem that
probability one is inherited by the logical consequences of such infinitary propositions; in fact, it is
not true. At this point we face the possible objection that the relation of logical
consequence is not defined for any logic incorporating such propositions. The objection is
unfounded. In fact, formal logics with that property have been extensively studied since
the 1950s, and one merely extends the formalism of FOL to accommodate countably
infinite conjunctions and disjunctions, in much the same way that a field of sets is
extended to a σ-field. This is the so-called Lω1,ω0 family, where the ordinal ω1 signifies
countable conjunctions and disjunctions, and ω0 finite quantifier strings; Lω0,ω0 is of
course just FOL.11 Now the de Finetti lottery can be represented by (among equivalents)
the sentence ∀x(x = a) ∧ \/i∈ω Bi(a) ∧ /\i∈ω (Bi(a) → /\j≠ i∈ω ∼Bj(a)) (this says that the
individual domain has just one outcome—the draw—and the Bi are its denumerably
many possible ticket numbers).

The only distinctive rule of proof for Lω1,ω0 is an ω rule permitting /\Ai∈ω to be
inferred from A1, A2, : : : , so its proofs can be infinite (though countable) and may
have a complex ordinal structure. Though there is a completeness theorem, for
countable sets of assumptions, compactness fails, and the proof-predicate is hardly
effective in the usual recursively enumerable sense like that of FOL. Thus there is a
powerful lobby including Boolos and Shapiro who because of its strong categoricity
properties believe that full second order logic12 (SOL) is fundamental, yet SOL-validity
is as far from being effective as it is possible to be: Its set of codes of valid sentences is
not even in the analytic hierarchy, let alone the arithmetical.13 Although the

10 Kadane and O’Hagan (1995) show that there is a variety of ways for the uniform distribution to be
achieved; for example, there is a “random” measure on the entire power set of N giving “even” the
probability 1/2. The events in the subjective theory are better described as propositions: They are
ascribed truth-values and are the objects of an individual’s partial beliefs. The truth-value of A for any s
in the outcome-space is given by the indicator function (random variable) IA(s), taking the value 1 if s
makes A true and 0 if s makes A false (though 1 and 0 are purely conventional values).

11 For more details of this and other infinitary languages/logics see Bell (2000). Note that the standard
model of arithmetic can be characterized up to isomorphism in Lω1,ω0.

12 “Full”means that the domain of the n-place relation variables is the power set of Dn, where D is the
domain of the individual variables.

13 This does not of course mean that one can’t prove an extensive class of SOL sentences true:
We can for example prove the second-order quantifier rules corresponding to the first-order ones
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semantics of SOL may at first blush seem perspicuous, it is often criticized for its
intimate relation to axioms of set theory that are much less transparently “logical”
than contentiously set-theoretical: For example, there is a sentence of SOL that is
valid just in case the continuum hypothesis is true. By contrast Lω1,ω0 is much less
vulnerable, though admittedly vulnerability is a question of degree. Even FOL is not
wholly innocent of association with powerful set-theoretical principles: Its
metatheory appeals to all set-theoretic structures (what are they?), truth in a model
is third-order (McGee, 2000, 73), while a theorem of Trakhtenbrot (1950) implies that
FOL-completeness requires the Axiom of Infinity (note that ω is a strongly
inaccessible cardinal). Dana Scott, who established several of the major results for
infinitary logic wrote that he

feels that he has justified the contention that Lω1,ω0 is the proper generalization
of Lω0,ω0 to denumerable formulas. In fact we have seen several reasons for
claiming that Lω1,ω0 plays the same role for Lω0,ω0 that the theory of Borel sets
and σ-fields plays for the ordinary fields of sets. (1965, 341)

Scott’s observation does however tend to hide an important point, which is that the
theory of Borel sets and σ-fields functions, within the ambient set theory, as its own
logical structure. We do not need the extra elaboration of a full logical language
because everything we want to say in the infinitary case, being essentially
propositional, can be said in that formalism, and it contains the relation of logical
consequence between its own propositions in the relation of set-theoretical inclusion:
A is a consequence of B just in case B ⊆ A.

That granted, we now return to the problem of extending the finitely additive
axioms so that probability one is closed under consequence. It is easy to see that
countable additivity suffices because if each of the members of a countably infinite set
Q has probability one then a simple consequence of the Kolmogorov Continuity axiom
is that so does Êp;i∈NQ, and if A is a consequence of Q then it is a consequence of
Êp;i∈NQ, so 1 = P(Êp;i∈NQ) ≤ P(A). But countable additivity is an unnecessarily strong
axiom for this purpose. Clearly, all we need is a strict consequence of the equivalent
continuity axiom: If each of the members of a countably infinite set Q has probability one
then so does Êp;i∈NQ.14 I will call this the C-minus rule (“Continuity minus”). It is also
easy to see that it is the weakest rule having the property that probability one is closed
under logical consequence from a countable set of premises.

The word “countable” is important. With FOL we need no extra rule about the
cardinality of the premisses because the completeness theorem says that independently
of cardinality, if C is a consequence and if the premises have probability one then so
does C. But what about infinitary rules in non-FOL languages? Indeed, even in the
σ-algebras of ordinary probability theory we seem to face a problem. If for uncountably

(∀X(A→B) →(∀XA→∀XB)), etc., where X is a second order variable). One simply can’t prove all the valid
statements from some recursively enumerable set of logical axioms.

14 It is strictly weaker than the Continuity axiom because there is a strictly positive probability
measure on any infinite separable Boolean algebra that is not countably additive (Horn and Tarski, 1948:
Theorem 3.10; this uses the Axiom of Choice. A separable Boolean algebra is one in which every element
joins a dense set; the power set algebra N is separable). Trivially the limit of the probabilities of the
sequence <1, 1, 1, : : : > is the limit of the sequence.
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many Aξ, P(Aξ)= 1 implies that P(Êp;Aξ) is equal to 1, that would spell the end of
continuous distributions, and indeed of mathematical probability. Many if not most
of the important spaces that one meets in measure theory are isomorphic to
Lebesgue measure in Rn, or else on [0,1] (in ergodic theory, for example, they are often
the completion of the closure of the cylinder sets of RN, or what comes to the same
thing 2N 15), and these contain all the singletons {x} over whichever uncountable set of
reals we are considering. Any continuous distribution over these each has measure 0
while the whole space has probability 1. But the continuous density functions are
merely mathematical devices for computing the probabilities of intervals in Rn, and of
the measurable sets they generate, down to the degenerate intervals {x}. The rationals
are of course countable. The irrationals are certainly uncountable, but nobody
measures them, even in physics, except up to a finite point in any sequence in their
decimal (or other) expansion, in other words up to some strictly nonempty interval.
Any such interval can be refined without limit, but it is always nonempty, and no
interval can be partitioned into more than countablymany nondegenerate subintervals.

So we have now identified a window, between uncountable conjunctions of
probability one statements, for which there should be no closure of consequence, and
FOL, which fails to identify the fault at the heart of the Dubins paradox, which is that
consequence should be closed under probability one. That window is filled by C-minus.
I will consider later whether there are grounds for adopting countable additivity but
we will now see how the C-minus rule prohibits the anomalous distribution in the
Dubins example.

5. Dubins’s paradox—lost
The notation will be the same as in the earlier discussion, but to speed things up I will
change P(A|Xi) ≡ 0 into the equivalent P(∼A|Xi) ≡ 1. A straightforward calculation
shows that P(∼A|Xi) ≤ P(Xi→∼A), where in terms of the basic Boolean operations
Xi→∼A is just ∼Xi∪∼A. Thus we infer that each of the countably infinitely many
propositions Xi→∼A has probability 1. By the C-minus rule we now infer that Êp;i∈N
(Xi →∼A) has probability 1. However, Êp;i∈N (Xi →∼A) ↔ (∪j∈NXi) →∼A, so the latter
has probability 1. But ∪j∈N Xi is necessarily true, so P(∼A)= 1 and P(A)= 0. Hence,
given C-minus, P(A) = ½ is probabilistically inconsistent with P(A|Xi) ≡ 0 – which,
intuitively, is as it should be.

That is not all that is inconsistent with the C-minus rule: Clearly, so is the de Finetti
lottery. The statements “1 does not win,” “2 does not win,” : : : , “n does not win,” : : :
all have probability one in that lottery and so, given the C-minus rule, does their
conjunction. But one of those numbers must win, and that statement too has
probability one. But I think there is no reason to mourn the de Finetti lottery: It has
the property that whichever number you pick, however large, the probability is one that the
number of the winning ticket will be greater, or to put it another way, every initial
segment of N has probability zero except the supremum, which has probability one.
One might conceivably try to defend this with the reasoning of the so-called Wang’s

15 That RN= 2N often surprises people unused to transfinite cardinal arithmetic because R is not
merely infinite but uncountable.
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Paradox: Every positive integer is small, where the proof is by induction (because if n is
small, so presumably is n�1). I leave the reader to judge how convincing that is.

An alternative policy mooted to refute the Dubins paradox is to reject the rule
conditionalization that determines the new probabilities Q(A) and Q(B), a strategy
that even de Finetti might be thought to be questioning in his own remarks, quoted
earlier, about optimal betting strategies depending on the value of i in Xi

16: In this way
some posterior distribution depending on i could be chosen and the Q(A), Q(B) simply
disregarded. The argument for jettisoning conditionalization depends on an allegedly
further coherence condition called a Reflection Principle, stating that your current
probability of A, conditional on your future probability Q(A) of A being p, should be p.
That is the form in which the principle was introduced by van Fraassen (1984), but it is
reasonably clear that to acquire normative force it should be supplemented by the
additional condition that Q be obtained by an “epistemically sound” method (it is not
necessary for the argument to define this any more precisely, if indeed it can be so
defined). So amended, the principle seems sound. But (so the argument proceeds) the
assumption that conditionalization is an epistemically sound means of reaching Q(A)
from the prior P(A)= 1/2 given any observation report, results in an assignment
incompatible with that prior. For let us assume you have done the conditionalization
calculation and know that Q(A)= 1. So you know with certainty what your
conditionalization-updated probability of A will be. But a probability conditioned on a
proposition with probability 1 equals the unconditional probability, that is the prior
probability. By reflection, therefore, that prior probability must be 1. But it is surely
absurd to demand that, independently of all the information you used to generate the
priors of A and B, theymust be 1 and 0, respectively. That granted the argument seems
nothing less than a reductio of the assumption that, at any rate in the context of this
example, conditionalization is an epistemically sound method of updating priors
(Howson, 2014).

This solution seems a strategy of despair: Conditionalization is so deeply rooted in
Bayesian—methodology—it is the method by which we learn from experience
according to that philosophy, turning Bayesianism from an academic exercise in
probability into what its advocates claim is the foundation of all inductive inference—
that to abandon it is tantamount to abandoning Bayesianism. But fortunately, there is
no need to impugn conditionalization. There is another reason for placing the Dubins
example under suspicion, and that is the de Finetti lottery: Remove it, with the
assistance of C-minus, and the problem vanishes. The question then is whether we
should add countable additivity to the list if desirable items.

6. Conclusion
The most unwavering and trenchant opposition to continuity was of course that of de
Finetti, citing the alleged bias inherent in the de Finetti lottery in its front-loading of
the probabilities. It was also a point seized on by Wenmackers and Horsten, who like
de Finetti reject countable additivity precisely because it violates the “intuition [that]
fairness is absolutely central to our concept of a lottery,” including the lottery over

16 I pointed out that de Finetti in effect presented an infinite family of posterior distributions yielding
superior expected gains by comparison with those generated by conditionalizing, when judged from the
prior standpoint.
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N (2013, 41).17 If, as I think we should, we deny assumed fairness a central, or indeed
any, role in deciding the issue of countable additivity, what else is there? Countable
additivity does of course prohibit nonconglomerability not only in the case of Dubin’s
problem but in general. But prohibiting nonconglomerability simply because it might
seem counterintuitive is not itself a justification: Other things have seemed highly
counterintuitive that have been admitted into the canon because they have been
accompanied by principles and methods almost universally agreed to have advanced
if not revolutionised an entire discipline (like Lebesgue measure). Moreover,
Schervish et al. (1984) have shown that every probability function admitting
uncountable partitions is nonconglomerable in at least one partition (de Finetti had
earlier cited the Borel paradox as a case in point [1972, 204]).

But there are of course other considerations. There is, as we have seen, a Dutch
Book argument for countable additivity; admittedly its dependence on extending the
assumption of rigidity to infinite combinations of bets might render it questionable to
some, but possibly little if any more so than the Dutch Book arguments that remain
for many people the staple of the finitely additive axioms. And, of course, there is the
rich trove of “with probability one” theorems that continuity/countable additivity
generates. While the distinction between “objective” and “subjective” is certainly
overcrude (there is a multiplicity of subdivisions within each), it is probably
appropriate to place the scientific applications within the former. Here, it seems that
countable additivity has been adopted practically without question because of what is
seen as an indispensable role within highly successful explanatory models forming
the foundations of modern physical science. On the purely subjective side there are, of
course, the probability-one convergence-of-opinion results, but to cite these as
evidence for countable additivity would clearly be to beg the question.

But that C-minus should be added I am much more confident about. The failure to
close off probability one under countable consequence seems to me entirely arbitrary,
particularly given that the infinitary formulas of standard σ-algebras have been for
well over a century the probabilist’s stock in trade. If, however, we do go further and
adopt the Axiom of Continuity, then perhaps we should do so in the same cautious
spirit as Kolmogorov, the proposer of the axiom, when he said only that it “has been
found expedient in researches of the most diverse sort” (1956, 15).
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