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Abstract

The present paper is devoted to complete convergence and the strong law of large numbers under moment
conditions near those of the law of the single logarithm (LSL) for independent and identically distributed
arrays. More precisely, we investigate limit theorems under moment conditions which are stronger than
2p for any p < 2, in which case we know that there is almost sure convergence to 0, and weaker than
E X4/(log+ |X|)2 <∞, in which case the LSL holds.
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1. Introduction and main result

Let {S n, n ≥ 1} be the partial sums of independent and identically distributed (i.i.d.)
random variables {Xk, k ≥ 1}. As a complement to Kolmogorov’s strong law of large
numbers, Hsu and Robbins [12] introduced the concept of complete convergence,
denoted

c.c.
→, and proved that the sequence of arithmetic means {S n/n, n ≥ 1} converges

completely, that is,
∑∞

n=1 P(|S n| > nε) < ∞ for all ε > 0, if the mean is zero and the
variance is finite. The necessity was proved by Erdős [3, 4].

If only the mean is finite this provides a nice example when the second Borel–
Cantelli sum diverges, but P(|S n| > nε i.o.) = 0 for all ε > 0. Here, as usual, i.o. stands
for infinitely often.

For arrays the situation is different. Suppose that {(Xn,k, 1 ≤ k ≤ n), n ≥ 1} is an
array of i.i.d. random variables (in contrast to an array of row-wise i.i.d. random
variables). Let X stand for a generic random variable, independent of, and with the
same distribution as, those of the array. In this setting, it was shown in [5, Theorem 3.1]
that the strong law holds if and only if complete convergence holds, and if and only if
the variance is finite. For a precise statement, including the Marcinkiewicz–Zygmund
version, see Theorem 1.1 below.
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The ‘explanation’ for the discrepancy is that a necessary condition is that all random
variables in the sequence/array must be small for the strong law in question to hold.
For sequences this amounts to the requirement that

∑∞
n=1 P(|X| > nε) <∞, that is, finite

mean, whereas for arrays the requirement amounts to
∞∑

n=1

P
(

max
1≤k≤n

|Xn,k| > nε
)
<∞ ⇐⇒

∞∑
n=1

n∑
k=1

P(|Xn,k| > nε) =

∞∑
n=1

n P(|X| > nε) <∞,

which, in turn, holds if and only if E X2 <∞.
The present paper is devoted to limit laws near the counterpart to the law of the

iterated logarithm (LIL) for sequences, namely, the law of the single logarithm (LSL)
for i.i.d. arrays. For sequences, Hartman and Wintner [10] proved the law under the
assumption of finite variance. Here the ‘trivial’ necessary condition is, again, that all
summands must be small, which yields E X2/log+ log+ |X| <∞. Here and throughout,
log+ x = max{log x, 1}. However, as was proved by Strassen [16], finite variance is a
necessary condition. For an overview on the LIL, see [1].

Concerning the LIL for arrays, see [17] and, more recently, [11]. For i.i.d. arrays,
Qi [14] proved an LSL. As for the strong law, the necessary condition comes ‘for free’,
in the sense that all summands being small amounts to∑

n≥3

n∑
k=1

P(|Xn,k| > ε
√

n log n) <∞ ⇐⇒
∑
n≥3

nP(|X| > ε
√

n log n) <∞,

which holds if and only if E|X|4/(log+ |X|)2 <∞.
Next we recall the Marcinkiewicz–Zygmund strong law. From [5, Theorem 3.1],

complete convergence and almost sure convergence in the strong laws coincide for
i.i.d. arrays, in contrast to what is known for sequences (see [3, 4, 12] and [7, Ch. 6]).

Theorem 1.1. Suppose that {(Xn,k, 1 ≤ k ≤ n), n ≥ 1} is an array of i.i.d. random
variables and set S n =

∑n
k=1 Xn,k, n ≥ 1. Let 0 < p < 2. The following are equivalent:

(1) E|X|2p <∞, 0 < p < 2, and E X = 0 when E|X| <∞;
(2) n−1/pS n → 0 completely as n→∞;
(3)

∑∞
n=1 P(|S n| > n1/pε) <∞ for all ε > 0;

(4) n−1/pS n
a.s.
→ 0 as n→∞.

Remark 1.2. If the array is only row-wise independent, then the first two statements
are equivalent and they imply the last one.

Our aim is to investigate possible limit theorems under moment conditions which
are stronger than 2p for any p < 2, in which case we know that there is almost sure
convergence to 0, and weaker than E|X|4/(log+ |X|)2 <∞, in which case the LSL holds.
A companion paper [8] is devoted to the analogous problem for sequences and a second
one [9] on Cesàro summation involves a sequence of i.i.d. random variables and a
special array of weights.
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Here is our main result.

Theorem 1.3. Let {(Xn,k, 1 ≤ k ≤ n), n ≥ 1} be an array of identically distributed,
row-wise independent random variables with mean 0, and set S n =

∑n
k=1 Xn,k, n ≥ 1.

Let φ(x) be a positive, nondecreasing and unbounded function such that x/φ(x) is
nondecreasing at infinity and, for some γ > 0,

φ(x)
φ(x log x φ(x))

≥ γ > 0 as x→∞. (1.1)

If

κ := E
( X4

(log+ |X| φ(X2))2

)
<∞, (1.2)

then
S n√

n log n φ(n)

c.c.
→ 0 as n→∞. (1.3)

Conversely, if (1.3) holds, then so does (1.2) and E X = 0.

Remark 1.4. Condition (1.1) is needed in order for the function x log x φ(x) to be
invertible in a specific way. Strictly speaking we need (1.2) as well as convergence
of

∑∞
n=3 nP(|X| > ε

√
n log n φ(n)) for the sufficiency, and the latter for the necessity.

Lemma 2.1 below shows that the two are equivalent under Condition (1.1).

The proof of the sufficiency involves truncation and estimates of sums of tail
probabilities of the row sums. In particular, almost sure convergence holds under
the given assumptions. In this case the converse remains true under the additional
assumption that the whole array consists of i.i.d. random variables, the reason being
that the second Borel–Cantelli lemma then applies (cf. the analogue for the strong laws
in [5, Theorem 3.1 and Proposition 1.1]).

Theorem 1.5. If, in addition, the rows are independent, then almost sure convergence
holds in Theorem 1.3 if and only if complete convergence holds.

Remark 1.6. The i.i.d. array is the most random one, the other extreme being an array
in which the nth row equals the nth partial sum of a sequence of i.i.d. random variables,
that is, Xn,k = Xk for 1 ≤ k ≤ n, n ≥ 1. In this case it is an immediate consequence of
the LIL for sequences that (1.3) holds. Of course, finite variance is sufficient.

Example 1.7. For φ(x) = (log+ x)α−1, α > 1,

S n√
n(log n)α

c.c.
→ 0 as n→∞ ⇐⇒ E

( X4

(log+ |X|)2α

)
<∞.

For φ(x) = (log+ log+ x)β, β > 0,

S n√
n log n(log log n)β

c.c.
→ 0 as n→∞ ⇐⇒ E

( X4

(log+ |X|)2(log+ log+ |X|)β

)
<∞.

In particular, almost sure convergence holds in both cases.
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In Section 2 we collect some preliminaries for later use. Proofs of the theorems
follow in Section 3, after which Section 4 contains some remarks on dependence, and
Section 5 a few words on domination and weighted averages, a special case of which
is Cesàro summation, the topic of our companion paper [9].

2. Preliminaries

Here we collect some tools and observations that will be of use later. Throughout, X
represents a generic random variable in cases when the random variables in the array
are identically distributed. Also log+ x = max{1, log x}.

2.1. Moments and tail sums. For truncation and converses one frequently uses the
connection between tail sums of the summands and existence of moments. Standard
cases can be found in [7, Section 2.12]. However, here the connection is more subtle
because some less elementary functions are involved.

Lemma 2.1. Let X be a random variable. Suppose that φ(·) is a nondecreasing and
unbounded function such that x/φ(x) is nondecreasing at infinity and that Condition
(1.1) holds. Then

E
( X4

(log+ |X| φ(X2))2

)
<∞ ⇐⇒

∑
n≥3

n P(|X| > ε
√

n log n φ(n)) <∞

for some ε > 0.

Proof. Suppose that z ≥ εx log xφ(x). Since h(z) = z/(log z φ(z)) is eventually nonde-
creasing,

h(z) ≥ h(εx log x φ(x)) =
εx log x φ(x)

log(εx log x φ(x))φ(εx log x φ(x))
≥ ε′x

for large x and some ε′ > 0. Hence, if E (h(X2)2) <∞, then∑
n≥3

n P(|X| > ε
√

n log nφ(n)) ≤
∑
n≥3

n P(h(X2) > ε′n) <∞.

For the inverse conclusion, put H(x) = x log x φ(x), which is increasing. Then

H(z/(log z φ(z)) =
z log(z/(log z φ(z)) φ(z/(log z φ(z)))

log z φ(z)
≤ z,

from which we conclude that∑
n≥3

nP
( X2

log+ |X|2 φ(X2)
> n

)
=

∑
n≥3

nP
(
H

( X2

log+ |X|2 φ(X2)

)
> H(n)

)
≤

∑
n≥3

nP(X2 > n log n φ(n)) <∞

and, hence, the moment condition holds. �
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The following result will be needed for converses.

Proposition 2.2. Let {(Xn,k, 1 ≤ k ≤ n), n ≥ 1} be an array of row-wise independent
random variables and {αn, n ≥ 1} a sequence of positive reals. Then

∞∑
n=1

P
(

max
1≤k≤n

|Xn,k| > αn

)
<∞ ⇐⇒

∞∑
n=1

n∑
k=1

P(|Xn,k| > αn) <∞.

In particular, if the random variables in each row are i.i.d., then the above are
equivalent to

∞∑
n=1

nP(|Xn,1| > αn) <∞.

If, moreover, {αn = α(n), n ≥ 1} with some function α(·) having an inverse β, then the
above are equivalent to

E((β(|X|))2) <∞.

The first part is [5, Theorem 2.5], the third equivalence is obvious and the last one
follows via inversion.

It turns out that the sufficiency sometimes holds for arrays whether the rows are
independent or not, whereas the necessity does not. The special case when the array
reduces to a sequence is an illustrative example. Recall also Theorems 1.3 and 1.5.

2.2. A sharper exponential bound. Essential tools for proving LILs are the
exponential bounds (see [7, Ch. 8]). Since our limits concern convergence to 0 we
only need an upper bound. The basis is a Taylor expansion of the exponential function
up to order two. One complication is that two truncations are necessary for the proof
of the classical LIL—one to adapt to the exponential bound and one to match finite
variance. The main technical task to handle is ‘the middle portion’. In the present case
we have higher order moments at our disposal, which permits us to improve the upper
bound by a further expansion of the exponential function. As a consequence we only
need to truncate the original random variables once.

By modifying the procedure of [14, page 221], we first note that, for x > 0,

ex = 1 + x +
1
2

x2 +
1
3!

x3 +
1
4!

x4 + x5
∞∑

k=5

1
k!

xk−5

≤ 1 + x +
1
2

x2 +
1
3!

x3 +
1
4!

x4 +
x5

5!
ex. (2.1)

Now suppose that Y is a symmetric random variable (which implies that odd moments
vanish) and let t > 0. It then follows from (2.1) that

E(etY )≤ 1 + 0 +
t2

2
E Y2 + 0 +

t4

4!
E Y4 +

t5

5!
E(|Y |5et|Y |)

≤ exp
{ t2

2
E Y2 +

t4

4!
E Y4 +

t5

5!
E(|Y |5et|Y |)

}
.

The following upper exponential bound is now immediate.
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Lemma 2.3. Let {Xk, k ≥ 1} be i.i.d. symmetric random variables with variance 1. For
n fixed, set Yn,k = Xk1I{|Xk| ≤ bn} for k = 1, 2, . . . , n and some bn > 0. Let t > 0. Then,
for x > 0,

P
(∣∣∣∣∣ n∑

k=1

Yn,k

∣∣∣∣∣ > x
)
≤ 2 exp

{
−tx +

nt2

2
+

nt4

4!
E Y4

n,1 +
nt5

5!
E(|Yn,1|

5et|Yn,1 |)
}
.

3. Proofs of Theorems 1.3 and 1.5

Since symmetrisation and desymmetrisation follow standard procedures we assume
without loss of generality that all random variables are symmetric. Moreover,
since variance is a matter of scaling, we assume, without restriction, that Var X = 1
throughout the proof.

3.1. Theorem 1.3: sufficiency.
Proof. Set κ = E (X4/(log+ |X| φ(X2))2), which, by assumption, is finite. For n ≥ 1
fixed and 1 ≤ k ≤ n, define Yn,k = Xn,k1I{|Xn,k| ≤ bn} and Zn,k = Xn,k1I{|Xn,k| > bn}, and
set S ′n =

∑n
k=1 Yn,k and S ′′n =

∑n
k=1 Zn,k.

In Lemma 2.3, take bn = (ε/4)
√

n log n φ(n), x = ε
√

n log n φ(n) and
t = (2/ε)

√
log n/nφ(n) (so that, in particular, tx = 2 log n and tbn = 1

2 log n) and set
A(n) =

√
n log n φ(n). Then, for n large,

P(|S ′n| > ε
√

n log n φ(n))

≤ 2 exp
{
−2 log n +

2 log n
ε2 φ(n)

+
16(log n)2E(Yn,1)4

nε4(φ(n))2 4!
+

32(log n)5/2E|Yn,1|
5et|Yn,1 |

n3/2ε5(φ(n))5/2 5!

}
≤ 2 exp

{
−2 log n +

2 log n
ε2 φ(n)

+
2(log n)2κ

3nε4(φ(n))2 ·

(
log

(
ε

4
A(n)

))2
·

(
φ
(
ε2

16
A(n)2

))2

+
4(log n)5/2κ e1/2 log n

15n3/2ε5(φ(n))5/2 ·
ε

4
A(n) ·

(
log

(
ε

4
A(n)

))2
·

(
φ
(
ε2

16
A(n)2

)2}
≤ 2 exp

{
−2 log n +

2 log n
ε2 φ(n)

+ C1
(log n)2

nε4(φ(n))2 · (log n + log(φ(n)))2 · (φ(n)/γ)2

+ C2
(log n)5/2e1/2 log n

n3/2ε4(φ(n))5/2 · A(n) · (log n + log(φ(n)))2 · (φ(n)/γ)2
}

≤ 2 exp
{
−2 log n

(
1 −

2
ε2 φ(n)

)
+ C3

(log n)4

nε4 + C4
(log n)5

√
n ε4

}
= 2 exp

{
−2 log n

(
1 −

2
ε2 φ(n)

)
+ O

( (log n)5

√
n

)}
≤ 2 exp{−3/2 log n},

which tells us that∑
n≥3

P(|S ′n| > ε
√

n log n φ(n)) <∞ for all ε > 0. (3.1)
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As for the other sum,

P(|S ′′n | > ε
√

n log n φ(n)) ≤ nP(|Zn,1| , 0) = nP
(
|X| >

ε

4

√
n log n φ(n)

)
,

so that ∑
n≥3

P(|S ′′n | > ε
√

n log n φ(n)) ≤
∑
n≥3

nP
(
|X| >

ε

4

√
n log n φ(n)

)
<∞ (3.2)

for all ε > 0, in view of Lemma 2.1.
Finally, combining (3.1) and (3.2) shows that

S n√
n log n φ(n)

c.c.
→ 0 as n→∞.

�

3.2. Theorem 1.3: necessity.
Proof. We first observe that, if (1.3) holds, then the Kolmogorov strong law holds,
which, via its converse, shows that the mean equals zero. It follows that the
Marcinkiewicz–Zygmund law holds and so E|X|r <∞ for any r ∈ (0, 2).

In order to verify (1.2), we assume, without loss of generality, that X is symmetric.
Following the arguments of [5], we first note that |Xn,k| ≤ |S k| + |S k−1|, so that
max1≤k≤n |Xn,k| ≤ 2 max1≤k≤n |S k|. If (1.3) holds, then, via an application of the Lévy
inequalities (see [7, Theorem 3.7.1]), it follows that∑

n≥3

P
(

max
1≤k≤n

|Xn,k| > ε
√

n log n φ(n)
)
<∞ for all ε > 0,

which, in turn, in view of Proposition 2.2, is equivalent to∑
n≥3

nP(|X| > ε
√

n log n φ(n)) <∞ for all ε > 0.

A concluding appeal to Lemma 2.1 establishes the desired result. �

3.3. Theorem 1.5.
Proof. Since complete convergence always implies almost sure convergence, it
follows that almost sure convergence always holds in Theorem 1.3. The converse
holds if, in addition, the rows are independent, since then almost sure convergence
holds if and only if the corresponding Borel–Cantelli sum converges. This completes
the remaining piece in the proof of Theorem 1.5. �

4. Dependence between rows

In this section we discuss analogues when there is special dependence between the
rows, such as partly overlapping rows and m-dependence between rows.
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4.1. Examples with special dependence schemes between rows. In this
subsection we consider a special class of row-wise dependent random variables via
a certain class of weighted sums. Let X, X1, X2, . . . , be i.i.d. random variables with
partial sums S n, n ≥ 1, and define

S̃ n =
∑
k≥1

an,k Xk for n ≥ 1,

with weights

an,k =

{
1 for αn < k ≤ αn + n,
0 otherwise,

where αn = [c nα] for some c ≥ 1/2 and α ≥ 0, so that S̃ n = S αn+n − S αn .
The following result on complete convergence follows from [5].

Theorem 4.1. Let αn be any nondecreasing sequence and 0 < p < 2 and let E X = 0. If
p ≥ 1/2, then∑

n≥1

P(|S̃ n| > εn1/p) <∞ for some ε > 0 ⇐⇒ E |X|2p <∞.

Here the dependence structure between the rows does not matter. However, when
we look at the strong law it does.

Theorem 4.2. Let 0 < p < 2 and E X = 0 whenever the first moment exists.

(i) If αn ≡ 1, then

S̃ n

n1/p

a.s.
→ 0 as n→∞ ⇐⇒ E |X|p <∞.

(ii) If c = 1 and αn = n2, then

S̃ n

n1/p

a.s.
→ 0 as n→∞ ⇐⇒ E |X|2p <∞.

Proof. The first part of the result follows from the Marcinkiewicz–Zygmund theorem
[13], whereas the second, once again, follows from [5], since, in this case, the
rows are independent, so that complete convergence and almost sure convergence are
equivalent. �

The next natural question is: what happens in between these cases?

Theorem 4.3. Let 0 < p < 2 and E X = 0 whenever the first moment exists. Define

α∗ = 1I{α ≤ 1} + α1I{1 < α < 2} + 2 1I{α ≥ 2}.

Then
S̃ n

n1/p

a.s.
→ 0 as n→∞ ⇐⇒ E |X|α

∗p <∞.
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Proof. For α ≥ 2, the rows are independent and the argument from Section 3 applies.
Since αnk+1 − αnk ≥ nk, the subsequence {S̃ nk , k ≥ 1} with nk = ((α − 1/α c)k)1/(α−1) is a
sequence of independent random variables. Hence,

S̃ nk

n1/p
k

a.s.
→ 0 as n→∞ ⇐⇒

∞∑
k=1

P(|S̃ nk | > ε(nk)1/p) <∞

⇐⇒

∞∑
k=1

P(|S nk | > ε(nk)1/p) <∞.

The latter sum converges if and only if
∑∞

k=1 k1/(α−1)P(|X|p > εk1/(α−1)) converges. But
∞∑

k=1

k1/(α−1)P
(
|X|p > εk1/(α−1)) =

∞∑
k=1

k1/(α−1)P
(
|X|p(α−1) > ε1/(α−1) k

)
<∞

⇐⇒ E|X|pα <∞.

In order to fill the gaps, we consider symmetric random variables and use the Lévy
inequalities and the fact that nk/nk+1 ≥ 1/2 to see that

P
(

max
nk≤n≤nk+1

|S̃ n|

n1/p > ε
)

≤ P
(

max
nk≤n≤nk+1

|S αn+n − S αnk
|

n1/p
k

> ε/2
)

+ P
(

max
nk≤n≤nk+1

|S αn − S αnk
|

n1/p
k

> ε/2
)

≤ P
(

max
1≤ j≤αnk+1 +nk+1−αnk

|S j|

n1/p
k

> ε/2
)

+ P
(

max
1≤ j≤αnk+1−αnk

|S j|

n1/p
k

> ε/2
)

≤ P
(

max
1≤ j≤2 nk+1

|S j|

n1/p
k

> ε/2
)

+ P
(

max
1≤ j≤nk

|S j

n1/p
k

> ε/2
)

≤ 2 P
(
|S 2 nk+1 |

(2 nk+1)1/p > ε/8
)

+ 2 P
(
|S nk |

n1/p
k

> ε/2
)
.

This and the subsequence considerations from above imply the sufficiency of the
moment condition. The necessity follows via the above subsequence argument.

In case c = α = 1, we have S̃ n = S n+n − S n and, under the moment condition
E|X|1/p < ∞, both sums normalised with n1/p converge to zero and, hence, so does
the difference. Conversely, if P(|S̃ n| > εn1/p i.o.) = 0, then

P(|X2(n+1) + X2n+1 − Xn+1| > 2εn1/p i.o.) = P(|S̃ n+1 − S̃ n| > 2εn1/p i.o.) = 0,

so that P(|Xn+1| > (2/3)ε(n + 1)1/p i.o.) = 0, from which we recover the desired
moment. The proof for α ≤ 1 and different values of c works similarly. �

Remark 4.4. Suppose that 1 < α < 2. Then S̃ n/n1/p is a subsequence of

S m,m1/α/(m/c)1/(pα) = (S m+(m/c)1/α − S m)/(m/c)1/(pα)

and the sufficiency is contained in [2, Theorem 1].
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Remark 4.5. Note that, for n ≤ m,

corr(S̃ n, S̃ m) =


cnα + n − cmα

√
mn

if cmα ≤ cnα + n,

0 if cmα > cnα + n.

4.2. m-dependent rows. Here we consider a triangular array of row-wise i.i.d.
random variables {(Xn,k, 1 ≤ k ≤ n), n ≥ 1}, but assume a more special dependence
structure on the row sums.

Theorem 4.6. If the row sums S n are m-dependent for some m ∈ N, then

S n

n1/p

a.s.
→ 0 as n→∞ ⇐⇒ E|X|p <∞.

Proof. For each ` = 1, . . . , m − 1, we consider the independent subsequences
{S m k+`, k ≥ 1} for which the law holds if and only if the moment condition is satisfied.
But then the full sequence converges as well. �

5. Domination

The sufficiency part of most (almost all) limit theorems for sums of i.i.d. random
variables can be extended to limit theorems for sums of independent, not necessarily
identically distributed, random variables, under suitable additional conditions. The
same goes for arrays. Let us make some elementary remarks to this end.

The simplest case is when an array {(Xn,k, 1 ≤ k ≤ n), n ≥ 1} is dominated by a
positive random variable X∗, that is, |Xn,k| ≤ X∗ for all n and k = 1, 2, . . . , n. Then,
trivially, if E|X∗|r <∞ for some r > 0, then E|Xn,k|

r <∞ for all n and k = 1,2, . . . ,n, and
standard moment inequalities can be applied. A weaker concept is weak domination,
which means that tail probabilities are dominated. Even weaker is weak mean
domination (WMD). The array {(Xn,k, 1 ≤ k ≤ n), n ≥ 1} is weakly mean dominated
by the positive random variable X∗ if, for some θ > 0,

1
n

n∑
k=1

P(|Xn,k| > x) ≤ θP(X∗ > x) for all x > 0 and all n. (5.1)

An application of the fact that E Ur =
∫ ∞

0 FU(u) d(ur) for a positive random variable
with finite moment of order r shows immediately that (1/n)

∑n
k=1 E|Xn,k|

r ≤ θE(X∗)r

for all n; for more on this, we refer to [5, 6]. The same applies to E(h(U)) for a
nonnegative nondecreasing function h(·).

Theorem 5.1. Let {(Xn,k, 1 ≤ k ≤ n), n ≥ 1} be an array of row-wise independent
random variables with mean 0 satisfying Condition (5.1), and set S n =

∑n
k=1 Xn,k, n ≥ 1.

Further, let φ(x) be a positive, nondecreasing and unbounded function such that x/φ(x)
is nondecreasing at infinity and Condition (1.1) is satisfied. If the moment condition
(1.2) is satisfied, then

S n√
n log n φ(n)

c.c.
→ 0 as n→∞.
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Proof. We follow the proof of Theorem 1.3. An inspection of the proofs of the
sufficiency parts in Section 3 shows that all estimates are based on tail sums and
(truncated) moments. In order to estimate the moments in the exponential inequality,
we have to keep in mind that

|Yn,k| ≤ |Xn,k|1I{|Xn,k| ≤ bn} + bn1I{|Xn,k| > bn},

from which it follows, via [5, Lemma 2.1.c], that
n∑

k=1

E |Yn,k|
p ≤ θnE (X∗(bn))p for p ≥ 1,

where X∗(bn) = X∗1I{X∗ ≤ bn} + bn1I{X∗ > bn}. The bounds for the moments of X∗(bn)
are the same as those for Yn,k in Section 3. In view of the previous remarks, this shows
that the sufficiency part of Theorem 1.3 remains valid for weakly mean dominated
arrays. �

5.1. Weighted sums. A special example is weighted sums (as we have already seen
in Section 4). Let Y, Y1,Y2, . . . , be i.i.d. random variables, let {(an,k, 1 ≤ k ≤ n), n ≥ 1}
be an array of real numbers and set S n =

∑n
k=1 an,kYk, n ≥ 1. A particular case of interest

is when the weights are uniformly bounded; |an,k| ≤ a for all k, n and some a > 0. Then
an,kYk is dominated by the random variable a|Y |.

This is the case in Cesàro summation for 0 < α < 1. There one investigates the sums
S n =

∑n
j=0 Aα−1

n− j Yk, where the weights Aα−1
n− j ∈ (0, 1) for all n and j = 0, 1, . . . , n. This

is, however, a kind of ‘in between case’ in the sense that one considers sequences of
random variables, Y1, Y2, . . . , with weights {(an,k, 1 ≤ k ≤ n), n ≥ 1} that constitute an
array. This means that the object under investigation is the sequence S n =

∑n
k=1 an,kYk,

n ≥ 1 and, at the same time, S n+1 − S n is not just a ‘last term’, so in that sense one has
an array at hand. Our companion paper [9] using [15] is devoted to this problem.
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