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Abstract 

Supporting product developers in early design phases with Live-Simulation can enhance the quality of early 

product designs. Live-Simulation can also facilitate a democratization of simulation and puts away pressure 

from simulation experts. In this paper, a machine learning based quick evaluation tool is proposed to support 

product developers in interpreting Live-Simulation results. The proposed tool enables a quick evaluation of 

the Live-Simulation results and enables product developers to further enhance their simulations. The tool is 

shown within a use case in bike rocker switch design. 

Keywords: data-driven design, simulation-based design, structural analysis, machine learning, live-
simulation 

1. Introduction 
One big trend in design is the democratization of simulation by giving more abilities to carry out 

simulations to the product developers. One aspect of this can be Live-Simulation, this means doing the 

simulations during or shortly after creating a new design variation of a product currently in design. 

This aspect enables Live-Simulation for product developers and puts away some work from simulation 

experts, as they get more sophisticated simulation models and fewer simulation requests from design 

departments. 

Also, with rising graphical computing power, Live-Simulation can be carried out on the graphic processing 

units (GPU) directly on the hardware of the product developers (Abbey, 2019). Moreover, Live-Simulation is 

especially useful during the embodiment design phase because it enables the product developer to get a grasp 

on the physics of their product currently in design. However, user experience in simulation design and 

evaluation is often missing, so product developers struggle with creating correct and meaningful models that 

can be directly used for simulation (Kestel et al., 2019). 

This paper presents an approach to support the product developers in carrying out their Live-Simulations via a 

proposed machine learning (ML) based quick evaluation tool, using existing finite element analysis (FEA) 

simulations and validated simulation results. The proposed evaluation tool therefore aims to evaluate the 

quality of each Live-Simulation. Moreover, ML in general also benefits heavily from the rising GPU power 

of the user. 

The proposed ML-based quick evaluation tool combines the advantages of Live-Simulation with the 

knowledge of FEA simulations and validated simulation results, to further support the product developers. 

The goal of this support is to enable more sophisticated models for the product developers to hand them over 

to simulation experts and to reach a better level of communication in simulation and product development 

departments. 

This paper first presents the related work in finite element analysis, Live-Simulation and ML. Then a 

focus is set on the research question and a concept for a ML-based quick evaluation tool of live 
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simulations is highlighted, before presenting a possible use case in mountain bike rocker switch 

design. The paper is rounded off by a discussion of the results and an outlook on further improvements 

of the presented approach. 

2. Related Work 

2.1. Finite-Element-Analysis 

FEA is a numerical approach to solving engineering problems, via dividing solid or fluid bodies into a 

finite number of small elements (finite elements). Between those elements, small boundary conditions 

have to be applied. The sum of elements represents the behaviour of the whole model and the physics 

of the finite element model one wants to numerically predict. Foundations of FEA lie in the 

contributions of Courant (1942), Argyris (1955), Zienkiewicz (1977) and Ciarlet (1978). 

FEA is currently one of the most used techniques in the realm of mechanical or fluid dynamical 

problems and allows predictions about the expected product behaviour in the real world. For example, 

the behaviour of a beam under load. On broader use case of FEA lies in the crash simulation of cars 

and car parts. The typical procedure of a FEA according to Vajna et al. (2018) can be the following. 

After specifying which predictions need to be made by the FEA, an adequate finite element model is 

produced. Product developers can use their off-the-shelf CAD software to create the geometry of real-

world problems. Simulation engineers then enter a three-step process consisting of Preprocessing, 

Processing and Postprocessing. During Preprocessing, the geometry and product features are specified 

and boundary conditions, as well as forces, are applied. Lastly, the geometry gets discretized, resulting 

in a mesh. In the Processing step, the FEA is carried out by a solver, which numerically approximates 

the desired solution. Lastly, during Postprocessing, the results are projected onto the geometry of the 

finite element model. When a solution was found during Processing the technical job is finished and 

the job of the simulation experts is to interpret and assess the found solution, when there are no 

changes required an adequate solution was found. 

Nowadays there exist several pieces of software for doing FEA, which cover either all three steps of a 

FEA or are useful for only one certain step in FEA. One piece of software is Ansys Mechanical in 

particular, which can be used to solve problems inside the mechanical realm (Alawadhi, 2009). In the 

realm of fluid dynamics on the other side, there exists different software like for example Flow-

3D (Glatzel et. al, 2008). 

2.2. Live-Simulation 

In contrast to the well-known field of FEA, Live-Simulation is an approach to carry out simulations 

and get a prediction about resulting product behaviour directly when changing the geometry of the 

product. By harnessing GPU-based solver technology the simulation results get updated "on the fly" 

and mostly in sync with editing the geometry of the product. As it is a relatively new field of research, 

not many papers exist describing the general approach. However, Live-Simulation seems to be heavily 

influenced by mesh-free and voxelization techniques, also described by Zhou (2020).  

Moreover, a very similar field besides Live-Simulation exists, which is called real-time finite element 

modelling. For example, Nikitin (2003) presented a system for the simulation of large elastic objects while 

using an offline inversion of the stiffness matrix. In real-time finite element modelling, linear elastic models 

are applied to mechanical structures. In Live-Simulation however, the goal is to incorporate not only linear 

elastic models. Therefore, meshfree and voxel-based methods are applied (Zhou, 2020). Live-Simulation 

allows faster results and faster predictions versus a "full-size" FEA by simulation engineers, with respect to 

the quality of the prediction. In the context of this contribution the term quality mainly refers to the aspect of 

prediction quaility regarding prediction errors. One can obtain faster results with the trade-off of a lower 

overall simulation prediction quality compared to the real-world behaviour of the product. Live-Simulation 

can be carried out for example by the software Ansys Discovery (Live) as shown by Fleischmann (2019). In 

this context Ansys Discovery can be seen as a mesh-free or voxel-based FEA solver. 

Behind the background of putting simulation competencies into product developers hands, Live-

Simulation has the potential to provide faster insights on the product for the product developers, 
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during the early phases of product design and mainly embodiment design and secondly reducing the 

load on the simulation engineers, for not having to carry out as many simulations anymore. Moreover, 

a higher maturity of the product and the simulation model can be reached before even carrying out a 

FEA. 

2.3. Machine Learning (ML) 

With rising amounts of data generated by finite element simulations and predictions about the overall 

product behaviour, a ML-based approach can be considered. For example, ML can be used on existing 

simulation results and allows fast design exploration and quick evaluation of designs based on 

previous simulation data. ML is a data-driven method that allows application inside the product 

development process (Vajna et al., 2018; Gerschütz, 2021). As mentioned above, ML can, besides 

other use cases, be used to predict product behaviour based on existing simulation results. The most 

common tasks for ML can be grouped into classification and regression tasks. For both tasks, a variety 

of different prediction models exists. The focus for this contribution lies on regression problems 

because this paper focusses on the prediction quality of a Live-Simulation with respect to a full-size 

FEA. ML can be divided into four methods, as shown in the following figure (Figure 1): Supervised 

learning, unsupervised learning, semi-supervised learning, and reinforcement learning. 

 
Figure 1. ML and its methods, tasks and algorithms 

In Supervised Learning, the ML model is trained with labelled training data, therefore it is trained with 

previously known solutions. Unsupervised Learning focuses on unlabelled training data, for example 

when clustering unknown data. Semi-supervised Learning presents some sort of mixed procedure, 

where data gets labelled from the trained model. Lastly, Reinforcement Learning presents a novel 

approach where the machine learning model learns by exploring a design space based on a quality 

criterion of the underlying data. 

Using ML inside product development focuses mainly on supervised learning methods, to be more 

specific regression or curve fitting tasks. For these ML tasks, one can start from data that describes a 

given input or feature set, such as the product features defined by product developers and attributed 

labels such as resulting product characteristics. ML mainly relies on numerical data in the form of n-

dimensional arrays for regression-based supervised learning to first train and later predict via ML 

models. ML models therefore try to predict an input-output-correlation between input data, called 

features and output data, called targets. One ML basic model to highlight is a linear regression model 

with a varying polynomial degree. This model can predict very basic functional connections between 

the above-specified input and output data. Moreover, one more sophisticated algorithms used in 

modelling can be decision tree regressors (DTR). DTRs are piecewise-defined tree models consisting 

of many simple linear or polynomial functions as their leaves (Breimann, 1984). DTRs can also be 

called ensemble models. Decision trees can also be used for classification. The data for the models 

needs to be in the form of flat tables or tabular format, which also comes in handy, as FEA can 

produce big tables of resulting outputs. The prediction quality of ML models can be evaluated via 

quality criteria like the coefficient of prognosis (CoP) or the root-mean-squared-error (RMSE). 

According to the CoP is calculated with the following equation (Equation 1). 
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Predicted values from the ML model are arranged in a vector called yp. Its mean value is calculated 

and described by the barred yp. The ground truth target values of the samples used for testing the 

models quality are stored in the vector yt. Following the same scheme as the predicted values, barred 

yt represents the mean of the true target values. On the other hand, the standard deviations of 

prediction and the true target are described by the sigma variables. The total count of data samples is 

represented by the variable n. The main advantage of the calculated performance value is its 

scalability to the size of the data, by employing the total number of samples and calculating their 

performance with respect to their mean and standard deviation (Most T. and Will J., 2008). The 

RMSE on the other hand, is the root of the mean squared error between the predicted values of the 

model and the ground truth or test dataset. 

Besides using ML for regression tasks, works of Sprügel et al. (2018) and Bickel et al. (2019) exist for 

plausibility checking of FEA simulations. Both use a Deep Learning Neural Network approach to 

check on existing simulation data if errors in the build-up of a finite element analysis (FEA) were 

made by the simulation engineers and if the results of the FEA seem plausible against stored results. 

Moreover, new FEA simulations can be completely replaced by ML predictions when there is 

previous simulation data available as Martinez-Martinez et al. (2017) have shown. In their 

contribution three ML models were used to predict real-time biomechanical behaviour from FEA data, 

replacing new FEA simulations to acquire the resulting behaviour. 

2.4. Summary of Related Work and Main Research Question 

As mentioned above FEA provides meaningful predictions for product behaviour, Live-Simulation 

provides almost real-time results of possible product behaviour based on finite element methods and 

ML can be used to harness data, mainly produced by simulation models from both worlds FEA and  

Live-Simulation. 

One aspect of Live-Simulation which was not stressed out enough before is that if product developers 

get a Live-Simulation result, no statement about the quality of this result is given. Live-Simulation 

solvers simply do not present any form of confidence interval about their predictions. So maybe ML 

can be used to get a statement about the quality of the Live-Simulation results, during the design and 

at the same time as the Live-Simulation is carried out? 

Following this, the main research question in this paper is: Is there a way to equip product developers 

with a tool for getting a prediction about the quality of their Live-Simulation at the same time as they 

carry out the product design with the help of Live-Simulation? 

As stated above, ML needs existing data for these types of predictions, but with rising amounts of 

simulation data, this problem can be addressed. 

3. Concept for a ML-based quick evaluation of Live-Simulations 
To answer the formulated research question above, a concept was needed. Some initial considerations 

around the structure of a Live-Simulation were made. It was found that on the Input side of a Live-

Simulation product developers need to always defines parameters, boundary conditions and forces. 

Aside from the geometry of the product these are the most important things to consider. The Live-

Simulation software then produces outputs in the form of deformations, stresses, and more FEA or CFD 

relevant output values. The proposed solution should receive those outputs and transfer them via a ML-

approach into deviations between FEA and Live-Simulation, overall plausibility checks of the Live-

Simulation results and further improvements to the Live-Simulation inputs and structure of the Live-

Simulation. In the developed concept the ML-approach which brings together the initial considerations 

needs to facilitate an adequate architecture and needs to be model agnostic. Model agnostic means that 

later different ML models can be applied to the concept. The created concept is shown in the following 

figure (Figure 2). 
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Figure 2. Concept and prototypical realisation for a ML-based quick evaluation of Live-

Simulations 

One aspect of the concept is that on the input side different Live-Simulation parameters need to be 

considered (as mentioned above). For example, a parametric CAD model of the geometry, different 

load cases, simulation boundary conditions and external forces on the products. The ML-based quick 

evaluation needs to also receive the solution of the Live-Simulation software to generate outputs. On 

the output side, the ML-based quick evaluation should be able to predict resulting deviations between 

the Live-Simulation and FEA solutions. Moreover, the quick evaluation should allow a plausibility 

check of the Live-Simulation result and automatically present possible improvements in the Live-

Simulation to rise the resulting quality. In between Input and Output, the ML-based quick evaluation 

should provide the necessary architecture to facilitate an adequate prediction of the output parameters, 

based on the respective inputs described above. For this prediction, it should be possible to select from 

different machine learning models, e.g. the ones stated in the related work section above. To get from 

this very abstract concept to a more feasible approach a prototypical realisation was carried out. The 

different parameters of this realisation are shown in the lower part Figure 2. 

For our prototypical realisation, the only inputs selected are the actual geometry of the product, mostly 

based on the geometric parameters inside the CAD and the forces applied to the respective product. 

On the output side, the existing differences between FEA and Live-Simulation get aggregated. These 

differences result from stresses or deformations predicted for sooner product designs and can support 

product designers, especially in the embodiment design phase. 

To facilitate the ML side, input and output data needs to be of a certain format and form. The different 

data types and structures are shown in the table below (Table 1). 

Table 1. Data types and structures needed 

Parameter Data type Data structure 

Input - geometry CAD parameters Float Vector or Matrix 

Input - forces Live-Simulation parameters Float Vector or Matrix 

Input - Accuracies FEA/Live-Simulation accuracy Float number 

Output - stresses FEA/Live-Simulation result Float number 

Output - deformations FEA/Live-Simulation result Float number 

 

Resulting from this, one can see that the data structures needed are always in a vectorial or matrix-like 

form. To build up training data for the ML-based quick evaluation the storage of the in- and outputs 

inside flat table format is advised. Because a supervised learning approach is selected, the data points 

need to always contain the inputs alongside their respective outputs on which the ML model is then 

trained (Figure 3). 
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Figure 3. Tabular structure for ML model training 

To create such a flat table the scripting interfaces of the different tools can be used. Every major FEA 

or Live-Simulation software has some scripting capability, which allows users to automatically change 

a parametric simulation model and later extract solutions found for this model. In our protype case we 

used the programming language Python and the tools provided by Ansys Mechanical and Discovery 

software. 

Once the flat-table data was created, ML models need to be trained on the dataset. This can also 

happen via Python and the ML library scikit-learn (Pedregosa, 2011). Moreover scikit-learn allows via 

a ML model API the creation and addition of custom ML models to the prototype. The training of the 

ML model can be carried out via a train-test-split. This means the dataset is split into a training subset 

and a test subset, the test subset of the data is not used during training and can be used to validate the 

prediction quality of the model after training. 

Prediction quality is not only interesting for Live-Simulation results. In our case, the ML-based quick 

evaluation models also need to be checked for their prediction quality of resulting deviations between 

the Live-Simulations and FEA. For the initial use case those deviations were calculated via simple 

subtraction of the maximum values for deformation and Von-Mises-Stress found either from Live-

Simulation or FEA. To check the prediction quality of those resulting deviations a model quality 

statement needs to be introduced, so for every prediction, the ML-based quick evaluation makes, a 

model quality statement is added. Users can easily see how certain their quick evaluations are with the 

guess on the resulting deviations. 

The presented concept and the prototypical realisation are now completed and in the next section a 

possible use case in mountain biker rocker switch design is shown and the prototypical realisation is 

implemented for this specific use case. 

4. Use Case 
This section is to show a prototypical implementation of our concept based on the mountain bike 

rocker switch design. This part can be used in full-suspension mountain bikes for facilitating the 

suspension of the rear wheel. In the use case force is always applied from the rear wheel side. The 

other holes of the product are fixed in Y-direction and the other side is fixed against the suspension. 

The use case rocker switch is shown in the figure below (Figure 4). 

 
Figure 4. Parametric CAD model of the use case mountain bike rocker switch 
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In the figure above (Figure 4) one can see the parametric CAD model of our mountain bike rocker 

switch. The CAD model is fully parametrized; therefore, the product developers can design their 

mountain bike rocker switch by simply accessing the CAD parameters. Moreover, different boundary 

conditions are applied to the model. The translation in Z-direction is fixed in the top hole of the rocker 

switch. The translation in Y-direction is fixed in the top hole as well as in the bottom holes. In the 

bigger bottom hole also a sliding support was added. On the rocker side, a 3D force is applied (X-Y-Z 

force). 

To get an initial dataset an initial set of FEA simulations was carried out in Ansys Mechanical and 

around 20 design points were created. Those design points were created via a full-factorial design of 

experiments. The same models were also run inside Ansys Discovery, as an example for Live-

Simulation software. The resulting 20 design points were validated, and plausibility checked by a 

simulation expert either for Ansys Mechanical and Ansys Discovery. From these 20 design points, an 

initial dataset was created. This dataset holds the following eight parameters (Table 2). 

Table 2. Parameters of the initial dataset 

Parameter Input/output parameter Type and unit 

Bar width of the rocker switch Geometrical input Float number in mm 

Distance hole to frame Geometrical input Float number in mm 

Solver accuracy of Live-Simulation Live-Simulation input Float number in between 0.0 - 1.0 

Maximum deformation Live-Simulation Live-Simulation result Float number in m 

Maximum Von-Mises-Stress Live-Sim. Live-Simulation result Float number in Pa 

Element size of FEA FEA input Float number in mm 

Maximum deformation FEA FEA result Float number in m 

Maximum Von-Mises-Stress FEA FEA result Float number in MPa 

 

One can see that two geometrical inputs from CAD were used, which were directly extracted from the 

CAD system (in this case PTC Creo). The current prototype was also focused on parametric CAD 

models with a fixed set of parameters. For future use cases it is thinkable to use a Deep Learning 

approach to facilitate predictions for similar geometric shapes. 

From the Live-Simulation software, the solver accuracy was considered. This is an Ansys Discovery 

specific value for Live-Simulation to control the speed of the Live-Simulation. For example, one can 

select very low accuracy to get near-real-time results and very high accuracy to get near FEA 

simulation time and high accuracy results. On the FEA side, the element size of the Ansys Mechanical 

solution was considered. Results from Live-Simulation and FEA were collected for the maximum 

deformations and the maximum Von-Mises-Stresses of the model. It is worth noting, those different 

units must be considered, for example, the maximum Von-Mises-Stress of the FEA solver was in 

MPa, the maximum Von-Mises-Stress of the Live-Simulation was in Pa. Both results get aggregated 

to calculate a difference between resulting deformations and Von-Mises-Stresses between FEA and 

Live-Simulation. It is worth noting that the prototype focuses on static FEA simulations, as the 

dynamic ones are more difficult to predict with state of the art Live-Simulation tools. 

Based on this initial dataset a decision tree regression model was trained. The decision tree ML 

models were selected because of their prediction quality for this type of tabular data structure (Kim, 

2008). The model was trained with a train-test-split of 70-30 and later evaluated via RMSE and CoP 

values being inside specified quality criteria. For example, the model quality for the deformations got 

a CoP of around 95%, the model quality for the Von-Mises-Stress got a CoP of around 91%. The 

resulting software prototype is shown in the following figure (Figure 5).  

The resulting software prototype is running alongside Ansys Discovery and can be accessed via a 

user-generated function inside the user interface. On every design change, an automatic quick 

evaluation of the resulting Live-Simulation result is made. Product developers then receive a 

prediction of how far off their Live-Simulation result is from a possible FEA solution. Moreover, the 

model quality of the ML is also presented to the user and shows feasible results for our use case 
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approach. This finishes our use case, and the next section is to further discuss our results and show the 

actual strengths and weaknesses of our presented approach. 

 
Figure 5. Resulting software prototype with Ansys Discovery and quick evaluation tool running 

alongside 

5. Discussion 
As stated above resulting CoP values for the trained decision tree regression models look sufficient, 

as they are both above 90%, same applies to resulting RSME values. Thus one can trust our trained 

models in predicting the differences between the Live-Simulation displayed to the user and the FEA 

simulation run before. In getting such high CoP values there was also no need for us to further 

investigate different ML models to do the task, as they were good enough. However, the prototype 

implementation uses a standard scikit-learn API for different ML models, so one can add ML 

models using this API without any further need for implementations (Pedregosa et al., 2011). 

Product developers can use the model quality prediction of the ML quick check to validate their 

Live-Simulation results. This means for example the solution of the Live-Simulation presents a 

positive output, but the ML-based quick evaluation predicts a low Live-Simulation result quality. 

Product developers then have the option to refine their simulation. So, the ML-based quick 

evaluation can for example provide a way to counteract under sizing of specific product areas. 

One aspect of this implementation is the model complexity of our ML-based quick evaluation. If 

more inputs are introduced and different types of inputs for example the boundary conditions are 

added, other types of models needed to be considered. Moreover, the prototype DTR needs to be 

retrained for a new geometry or parameter set. When switching from parametric models to a 

geometric approach, Deep Learning methods could be applied to predict results for similar 

geometries. For example, different models that can handle more and different types of inputs (e.g. 

Deep Learning models). 

Another weakness of the presented approach is the need for an initial set of FEA simulations for the 

specific use case, in our case the mountain bike rocker switch design. This weakness is tackled via 

newer and more sophisticated training data in the future. 

On the other hand, one strength of the presented approach is that in the first studies the ML-based 

quick evaluation together with the Live-Simulation is better than a simpler, in terms of simply 

training the model based on the existing FEA data, ML-based prediction of the FEA results without 

using any type of Live-Simulation as shown in the figure below (Figure 6). 
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Figure 6. ML-based quick evaluation of Live-Simulation vs. ML-based prediction of FEA results 

One can see that in every case and for every Live-Simulation accuracy tested with quick evaluation provides 

better or near ML-based (for the 0,68mm voxel size approach) prediction quality than a solo ML-based 

prediction of the results based on the FEA results. Even when changing the Live-Simulation solver accuracy 

this statement holds. This means that the presented approach of a ML-based quick evaluation can support the 

product developers during their design and when using Live-Simulation in early phases of design, like the 

embodiment design.  

This answers the initial research question of this paper. Moreover, it even exceeds the initial goal of 

supporting product developers because it presents a viable tool to enhance Live-Simulation prediction quality. 

6. Summary and Outlook 
To put it in a nutshell, this contribution presents an approach for a ML-based quick evaluation of Live-

Simulation results. For this, a concept for quick evaluating Live-Simulation results was introduced, 

consisting of an Input-Model-Output declaration. The concept uses ML to train models on available data. 

The concept was then implemented in a prototypical implementation and a use case inside the mountain 

bike rocker switch design was given. The first prediction quality studies look very promising and show 

potential beyond quick checking, this means enhancing Live-Simulation via our ML-based approach. 

The next steps include the addition of more input parameters, such as the simulation structure and 

included boundary conditions and loads. The database also needs further improvement and more and 

different types of simulation models should be added. The presented system is applicable to any domain 

with recent simulation solutions and can be applied to different domains, such as computational fluid 

dynamics (CFD). 
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