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Let G be a compact Abelian group and E a subset of the group Ĝ of continuous
characters of G. We study Arens regularity-related properties of the ideals L1

E(G) of

L1(G) that are made of functions whose Fourier transform is supported on E ⊆ Ĝ.
Arens regularity of L1

E(G), the centre of L1
E(G)∗∗ and the size of

L1
E(G)∗/WAP(L1

E(G)) are studied. We establish general conditions for the
regularity of L1

E(G) and deduce from them that L1
E(G) is not strongly Arens

irregular if E is a small-2 set (i.e. μ ∗ μ ∈ L1(G) for every μ ∈ M1
E(G)), which is not

a Λ(1)-set, and it is extremely non-Arens regular if E is not a small-2 set. We deduce

also that L1
E(G) is not Arens regular when Ĝ \ E is a Lust-Piquard set.

Keywords: Arens product; Arens-regular algebra; centre; extremely non-Arens
regular; Lust-Piquard set; Riesz set; strongly Arens irregular; small-2 set;
Sidon set
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1. Introduction

It has long been known, since the work of Arens [1] in the fifties, that the bidual
A∗∗ of a Banach algebra A can be turned into a Banach algebra containing A as
a subalgebra. Two different multiplications can actually be introduced on A∗∗ to
this effect. But, while both these multiplications are defined following completely
symmetric and absolutely natural rules, they can be essentially different. The left
multiplication operator defined by one of them is always weak∗-continuous but may
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fail to be so for the other, with the situation reversed for the right multiplication
operator.

The subset of A∗∗ made of those elements that produce weak∗-continuous mul-
tiplication operators from both sides is usually referred to as the topological centre
of A∗∗, in symbols Z(A∗∗) and it always contains A. When the centre is as large
as possible, i.e. when A∗∗ = Z(A∗∗), we say that A is Arens regular, this is the
case, for instance, of C∗-algebras. Following Dales and Lau [4], we say that A is
strongly Arens irregular (SAI for short) when Z(A∗∗) is as small as possible, i.e.
when Z(A∗∗) = A. This is the case for the group algebra L1(G) discussed below.

Facing the problem from a different point of view, Pym [22] considered the space
WAP(A) of weakly almost periodic functionals on A. This is the precise subspace of
A∗ on which the two Arens-multiplications agree. So, A is Arens regular precisely
when A∗ = WAP(A), i.e. when the quotient A∗/WAP(A) is trivial.

When the quotient A∗/WAP(A) contains a closed subspace isomorphic to A∗,
and so it is as large as possible, we say that A is extremely non-Arens regular
(ENAR for short). Extreme non-Arens regularity was first studied in the context
of Fourier algebras with a slightly different definition, see the papers by Granirer
[11] and Hu [14].

Işik et al. [15] proved that the group algebra L1(G) of a compact group is always
SAI. Shortly afterwards, Lau and Losert [17] proved the same fact for every locally
compact group. Bouziad and Filali [3] proved that L1(G) is ENAR for locally
compact groups whose compact covering number is not smaller than their local
character (i.e. when G, topologically speaking, looks more discrete than compact)
and compact metrizable groups. The group algebra L1(G) was shown to be ENAR
for every infinite locally compact group in [8].

In this paper, we work with ideals of L1(G) with G a compact Abelian group. To
describe these ideals, it is necessary to resort to duality. We denote by Ĝ the group
of all continuous homomorphisms into the multiplicative group of unimodular com-
plex numbers, known as continuous characters. For μ ∈M(G), the Fourier–Stieltjes
transform of μ is the bounded function μ̂ : Ĝ→ C given by

μ̂(γ) =
∫

G

〈−x, γ〉dμ(x).

In terms of the duality between M(G) and C(G), for every γ ∈ Ĝ,

μ̂(γ) = 〈μ̌, γ〉,

where for a measure μ ∈M(G), we denote by μ̌ the measure in M(G) defined by

〈μ̌, φ〉 = 〈μ, φ̌〉 =
∫

G

φ(−x) dμ(x) (φ ∈ C(G)).

If f ∈ L1(G) this definition produces the function f̌(x) = f(−x) (x ∈ G).
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If X is a linear subspace of M(G) and E ⊂ Ĝ, we denote by XE the subspace
of X ,

XE = {μ ∈ X : μ̂(γ) = 0 for γ ∈ Ĝ \ E}.

Most prominent in our work will be the ideal ME(G) of M(G) and its subspace the
ideal L1

E(G) of L1(G).

1.1. Summary of results

In this paper, we address the Arens regularity properties of the ideals of L1(G)
when G is a compact Abelian group. These ideals are always of the form L1

E(G) for
some subset E of Ĝ, see e.g. [13, Theorem 38.7]. We relate the Arens regularity of
L1

E(G) with the size of the subspace of L1
E(G)∗ made of restrictions to L1

E(G) of
convolutions of the form μ̌ ∗ φ with μ ∈ME(G) and φ ∈ L∞(G).

As mentioned earlier, it is known that L1
E(G) is SAI and ENAR when E = Ĝ.

On the contrary, if E is finite, L1
E(G) has finite dimension and so is reflexive, and

is thus Arens regular. One may therefore expect that the regularity properties of
L1

E(G) improve as E decreases in size. This is evidenced by the result of Ülger [26],
the paper that inspired this work: if E is a Riesz set, i.e. all measures on G with
Fourier–Stieltjes transforms supported in E are absolutely continuous, then L1

E(G)
is Arens regular. As an example, L1

N
(T) is Arens regular, N being a Riesz subset of

Z by the F. and M. Riesz theorem.
The absolute continuity (with respect to Haar measure) of measures in ME(G) ∗

ME(G) turns out to be important in this discussion. When ME(G) ∗ME(G) ⊆
L1

E(G) (such a set is said to be small-2), L1
E(G)∗∗ has a large centre and so L1

E(G)
cannot be SAI, unless it is reflexive, see corollary 5.6. We do not know whether
L1

E(G) can be Arens regular when E is not Riesz (the main question in [26]).
But, we are able to prove that regularity of L1

E(G) forces E to be small-2 (see
corollary 5.2).

Another type of sets giving non-Arens regularity is provided by complements of
Lust-Piquard sets (see below for the definition). For example, L1

Z\E(T) is not Arens
regular when E ⊆ Z is the Lust-Piquard set consisting of the primes in the coset
5Z + 2, see [20, Theorem 4].

Examples of L1
E(G) being SAI are provided by sets E in the coset ring of Ĝ. In

particular all maximal ideals of L1(G) happen to be SAI.

2. Arens regularity

In this section, we provide formal definitions for the concepts related to Arens
regularity discussed in this paper.

Let A be a commutative Banach algebra and let A∗ and A∗∗ be its first and second
Banach duals, respectively. The multiplication of A can be extended naturally to
A∗∗ in two different ways. These multiplications arise as particular cases of the
abstract approach of Arens [1, 2] and can be formalized through the following three
steps. For u, v in A, ϕ in A∗ and m,n ∈ A∗∗, we define φ · u, u · φ, m · φ, φ ·m ∈ A∗
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and m�n,m♦n ∈ A∗∗ as follows:

〈φ · u, v〉 = 〈φ, uv〉, 〈u · φ, v〉 = 〈φ, vu〉
〈m · φ, u〉 = 〈m,φ · u〉, 〈φ ·m,u〉 = 〈m,u · φ〉
〈m�n, φ〉 = 〈m ,n · φ〉, 〈m♦n, φ〉 = 〈n, φ ·m〉.

When � and ♦ coincide on A∗∗, A is said to be Arens regular.
For any m ∈ A∗∗ the mapping n 
→ n�m is weak∗–weak∗ continuous on A∗∗.

However, the mapping n 
→ m�n need not to be weak∗–weak∗ continuous. The
situation is reversed for ♦. The left topological centre of A∗∗ is then defined as

Z(A∗∗) = {m ∈ A∗∗ : n 
→ m�n is weak∗--weak∗ continuous on A∗∗}.
Since we are assuming that A is commutative, it is easy to see that

Z(A∗∗) = {m ∈ A∗∗ : m�n = n�m = m♦n for all n ∈ A∗∗} .
The algebra A is therefore Arens regular if and only if Z(A∗∗) = A∗∗. Observe that
A is always contained in Z(A∗∗). Sometimes, the elements of the centre stop here.

Definition 2.1. A commutative Banach algebra A is strongly Arens irregular
(SAI for short) when Z(A∗∗) = A.

In [22], Pym considered the space WAP(A) of weakly almost periodic functionals
on A, this is the set of all ϕ ∈ A∗ such that the linear map

A → A∗ : a 
→ a · ϕ
is weakly compact. The functionals ϕ ∈ WAP(A) satisfy Grothendieck’s double
limit criterion

lim
n

lim
m

〈ϕ, anbm〉 = lim
m

lim
n
〈ϕ, anbm〉

for any pair of bounded sequences (an)n, (bm)m in A for which both the iterated
limits exist. From this property, one may deduce that

〈m�n, φ〉 = 〈m♦n, φ〉 for every m,n ∈ A∗∗

if and only if φ ∈ WAP(A). So, A is Arens regular when A∗ = WAP(A), i.e.
when the quotient A∗/WAP(A) is trivial. This is the motivation for the following
definition.

Definition 2.2. A Banach algebra A is extremely non-Arens regular (ENAR for
short) when A∗/WAP(A) contains a closed subspace isomorphic to A∗.

The term extreme non-Arens regularity was coined by Granirer [11] to character-
ize a slightly more general behaviour: A is ENAR if the quotient space A∗/WAP(A)
contains a closed linear subspace which has A∗ as a quotient, i.e. as a continuous
linear image.

We have adopted here this simpler definition that is still enough to capture
the extreme behaviour of many of the Banach algebras that harmonic analysis
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associates with a locally compact group. Clearly, ENAR in the sense of definition 2.2
implies ENAR in the sense of Granirer, but we do not know whether the two
definitions are actually the same. See [5–7].

3. The structure of L1(G)∗∗ and L1
E(G)∗∗

We summarize here the structure of L1
E(G)∗∗ where G is a compact Abelian group

and E ⊆ Ĝ. Notation will be additive and the identities of both G and Ĝ will be
denoted by 0. All the facts mentioned here are well-known when E = Ĝ, see e.g.
[15]. No new insight is needed for them to hold for arbitrary E ⊆ Ĝ but having
them stated beforehand will simplify our proofs.

A good deal of the structure of L1(G)∗∗ is determined by the presence of right
identities. These can be obtained as accumulation points in L1(G)∗∗ of bounded
approximate identities of L1(G), which are always available (see e.g. [16, §1.3]).
The first use of right identities is to bring measures on G into elements of L1(G)∗∗.

For each μ ∈ME(G), one considers the convolution operator :

Cμ : L1(G) → L1
E(G) given by Cμ(u) = μ ∗ u, u ∈ L1(G).

Its double adjoint C∗∗
μ then maps L1(G)∗∗ into L1

E(G)∗∗. When necessary we will
use i : L1

E(G) → L1(G) to denote the inclusion map, then i∗ : L∞(G) → L1
E(G)∗

will be the restriction map and i∗∗ : L1
E(G)∗∗ → L1(G)∗∗ will be an embedding of

Banach algebras. We will normally omit mentioning i and i∗∗ and see L1
E(G)∗∗ as

an ideal of L1(G)∗∗.
With these notations, if μ ∈ME(G) and φ ∈ L∞(G) are given, a straightforward

computation shows, that if e is a right identity in L1(G)∗∗, then

C∗∗
μ (e) · i∗(φ) = i∗ (μ̌ ∗ φ) . (3.1)

The lifting map

Je : ME(G) → L1
E(G)∗∗ given by Je(μ) = C∗∗

μ (e),

turns out to be an algebra isomorphism onto e� i∗∗(L1
E(G)∗∗).

The algebra L1
E(G) can be seen both as an ideal in ME(G) and as an ideal in

L1
E(G)∗∗ and, in that sense, it is left invariant by Je, i.e.

Je(f) = C∗∗
f (e) = f for all f ∈ L1

E(G). (3.2)

The canonical quotient map RE : L1
E(G)∗∗ →ME(G), defined, for each m ∈

L1
E(G)∗∗, by RE(m) = m

∣∣
C(G)

is then a left inverse for Je and the composition
Je ◦RE is a projection. Regardless of the right identity e, kerRE can always be
identified with i∗(C(G))⊥, the annihilator of the subspace i∗ (C(G)) in L1

E(G)∗∗.
The projection Je ◦RE therefore induces the decomposition

L1
E(G)∗∗ = Je(ME(G)) ⊕ i∗ (C(G))⊥ . (3.3)

So, for a given right identity e of L1
E(G)∗∗, an element m ∈ L1

E(G)∗∗, may be
uniquely decomposed as

m = C∗∗
μ (e) + r, (3.4)

where μ ∈ME(G) and r ∈ i∗(C(G))⊥.
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The above decomposition becomes handier if one observes that the elements of
i∗ (C(G))⊥ are left annihilators of L1

E(G)∗∗. Indeed, for r ∈ i∗ (C(G))⊥, if m ∈
L1

E(G)∗∗ is such that m = σ
(
L1

E(G)∗∗, L1
E(G)∗

) − limα uα, with uα ∈ L1
E(G), and

φ ∈ L∞(G), then

〈m� r, i∗(φ)〉 = 〈i∗∗ (m� r) , φ〉
= lim

α
〈uα, i

∗∗(r) · φ〉
= lim

α
〈r, i∗ (̌uα ∗ φ)〉=0, (3.5)

where the last identity follows from ǔα ∗ φ ∈ C(G).
Next, as we see, left annihilators can actually be used to characterize Arens

regularity. We first need a definition.

Definition 3.1. Let G be a compact Abelian group, E ⊆ Ĝ and put

S = i∗(C(G))⊥ �L1
E(G)∗∗.

Note that for any fixed right identity e ∈ L1(G)∗∗, the set S is given by

S =
{
r�C∗∗

μ (e) : r ∈ i∗(C(G))⊥ and μ ∈ME(G)
}
.

Observe as well that, S ∩ L1
E(G) = {0}. To see this, one can fix a right identity e ∈

L1(G)∗∗ and a bounded approximate identity (uα)α in L1(G). Then, if r�C∗∗
μ (e) ∈

S ∩ L1
E(G), we have that

r�C∗∗
μ (e) = lim

α
uα ∗ (

r�C∗∗
μ (e)

)
= 0.

Theorem 3.2. Let G be a compact Abelian group and let E ⊆ Ĝ. Then, L1
E(G) is

Arens regular if and only if S = {0}.

Proof. Since S �= {0} immediately implies that L1
E(G)∗∗ is not commutative, by

the preceding paragraph, we only need to show that S = {0} implies that L1
E(G)

is Arens regular.
Assume S = {0} and fix a right identity e in L1

E(G)∗∗ and let C∗∗
μ1

(e) + s1 and
C∗∗

μ2
(e) + s2 be arbitrary in L1

E(G)∗∗, with s1, s2 ∈ i∗(C(G))⊥ and μ1, μ2 ∈ME(G).
Then, (

C∗∗
μ1

(e) + s1
)

�
(
C∗∗

μ2
(e) + s2

)
= C∗∗

μ1∗μ2
(e)

= C∗∗
μ2∗μ1

(e)

=
(
C∗∗

μ2
(e) + s2

)
�

(
C∗∗

μ1
(e) + s1

)
,

and so L1
E(G)∗∗ is commutative, i.e. L1

E(G) is Arens regular. �

We wish to record the following lemma, a restatement of Theorem 3.3(v) of [15],
for later use.
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Lemma 3.3. Let G be a compact Abelian group. Consider E ⊆ Ĝ and μ ∈ME(G).
If for every pair e and f of right identities in L1(G)∗∗, C∗∗

μ (e) = C∗∗
μ (f), then

μ ∈ L1(G).

Proof. Suppose that μ ∈ME(G) but μ /∈ L1(G), we can then find φ ∈ L∞(G) such
that μ̌ ∗ φ is not continuous, see [13, Theorem 35.13]. By Lemma 2.3 of [15] we
can find two different right identities f1, f2 ∈ L1(G)∗∗ such that 〈f1, μ̌ ∗ φ〉> �=
〈f2, μ̌ ∗ φ〉. Since

〈C∗∗
μ (fi), φ〉=〈fi, μ̌ ∗ φ〉, i = 1, 2,

we deduce that C∗∗
μ (f1) �= C∗∗

μ (f2), a contradiction with our hypotheses. �

4. Special subsets of Ĝ

We describe here the sets E ⊆ Ĝ that lead to the concrete ideals L1
E(G) that will

appear later in the paper.
We first recall that an invariant mean M on L∞(G) is a linear functional on

L∞(G) such that 〈M, 1〉 = ‖M‖ = 1 and, for each φ ∈ L∞(G) and each x ∈ G,
〈M,Lxφ〉 = 〈M,φ〉 where Lx is the translation operator by x. An invariant mean
that is always available is the one produced by Haar measure: φ 
→ ∫

φ(x) dx. If G
is compact, L∞(G) always has other invariant means [23] but all them have the
same effect on some functions. We say then that a function φ ∈ L∞(G) has a unique
invariant mean if 〈M,φ〉 =

∫
φ(x) dx for every invariant mean M on L∞(G).

Definition 4.1. Let G be a compact Abelian group and E ⊂ Ĝ. We say that E
is a

(i) Sidon set, if every f ∈ CE(G) has an absolutely convergent Fourier series.

(ii) Λ(p)-set, p > 0, if there are 0 < q < p and C > 0 such that ‖f‖p � C‖f‖q, for
every trigonometric polynomial, f =

∑n
k=1 ckχk, with χ1, . . . , χn ∈ E.

(iii) Rosenthal set, if L∞
E (G) = CE(G).

(iv) Lust-Piquard set, if γφ has a unique invariant mean for every φ ∈ L∞
E (G) and

every γ ∈ Ĝ. We say in this case that φ is totally ergodic.

(v) Riesz set, if ME(G) = L1
E(G).

(vi) Small-2 set, if μ ∗ μ ∈ L1
E(G) for every μ ∈ME(G).

As pointed out to us by the referee, with the identity 2μ ∗ ν = (μ+ ν)2 − μ2 − ν2,
one quickly checks that μ ∗ ν ∈ L1

E(G) for every μ, ν ∈ME(G) if and only if μ ∗ μ ∈
L1

E(G) for every μ ∈ME(G) (i.e. if E ⊆ Ĝ is a small-2 set).
Sidon sets are Rosenthal, see, e.g. [9, Corollary 6.2.5], and Rosenthal sets are

Lust-Piquard (as continuous functions always have a unique invariant mean). Lust-
Piquard sets are in turn always Riesz (see [18]) and Riesz sets are, obviously,
small-2.
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Figure 1. Relations between properties of E ⊂ Ĝ, G compact and Abelian.

On the contrary, Sidon sets are Λ(p) for every p > 0 and Λ(p) sets are Λ(q) for
every q < p [13, Section 37]. It is a result of Hare [12] that a Λ(p) is always a Λ(q)
set for some q > p. The following is a consequence that is important in our context.

Theorem 4.2 (Corollary in [12]). Let G be a compact Abelian group and let E ⊂ Ĝ.
The Banach space L1

E(G) is reflexive if and only if E is a Λ(1) set.

It follows from this Corollary that Λ(1)-sets are necessarily Riesz. For, if μ ∈
ME(G) \ L1

E(G) then Je(μ) ∈ e�L1
E(G)∗∗ \ L1

E(G), since Je is an isomorphism
that fixes L1

E(G).
The preceding remarks are summarized in figure 1.
To the authors’ knowledge, it is still unknown whether small-2 sets are Riesz. As

already mentioned by Ülger in [26, p. 273], this is a long-standing open problem
that goes back to Glicksberg [10]. It might therefore happen that the classes defined
in items (v)–(vi) above are actually the same.

Since L1
E(G) is Arens regular when E is Riesz (see [26] or corollary 6.3) we will

not be interested in L1
E(G) for E in any class contained in that Riesz sets. However,

sets E whose complement Ĝ \ E belongs to such a class will be of interest in § 7.2,
especially after one learns that the union of a Riesz set and Lust-Piquard set is
Riesz [19], and hence that complements of Lust-Piquard sets are never Riesz.

We turn now our attention to small-2 sets.

5. Small-2 sets

We start with the following result of Ülger which reveals the relevance of non-small-2
sets in the analysis of Arens regularity.

Theorem 5.1 (Theorem 2.2 of [25]). Let A be a commutative, semisimple, weakly
sequentially complete and completely continuous Banach algebra, then an element
m ∈ A∗∗ is in the centre of A if and only if m�A∗∗ ⊆ A and A∗∗ �m ⊆ A.

Corollary 5.2. Let G be a compact Abelian group and assume that E ⊆ Ĝ is
not a small-2 set. For every pair μ1, μ2 ∈ME(G) such that μ1 ∗ μ2 /∈ L1

E(G) and
every right identity e of L1(G)∗∗, we have that neither C∗∗

μ1
(e) nor C∗∗

μ2
(e) is in

Z(L1
E(G)∗∗).
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Proof. Let μ1, μ2 ∈M(G) such that μ1 ∗ μ2 /∈ L1
E(G). Towards a contradiction,

assume that C∗∗
μ1

(e) ∈ Z(L1
E(G)∗∗). By theorem 5.1:

C∗∗
μ1∗μ2

(e) = C∗∗
μ1

(e)�C∗∗
μ2

(e) ∈ L1
E(G).

Since RE is a left inverse of Je, this is a contradiction. �

Remark 5.3. With corollary 5.2, the last trivial implication

E is Riesz =⇒ E is small-2

in figure 1 may now be split into two non-trivial implications:

E is Riesz =⇒ L1
E(G) is Arens regular =⇒ E is small-2.

We shall further see in §7 that L1
E(G) is even ENAR when E is not a small-2 set.

We proceed now to find non-trivial elements in the centre of L1
E(G)∗∗, when E is

a small-2 set. Recall that the set S was defined in §3 as S = i∗(C(G))⊥ �L1
E(G)∗∗.

Theorem 5.4. Let G be a compact Abelian group and let E ⊆ Ĝ be a small 2-set.
Then, S ⊆ Z(L1

E(G)∗∗).

Proof. We first fix a right identity e ∈ L1(G)∗∗.
Let r ∈ i∗(C(G))⊥ and μ ∈ME(G). Put p = r�C∗∗

μ (e). If q = C∗∗
σ (e) + s ∈

L1
E(G)∗∗, with s ∈ i∗(C(G))⊥ and σ ∈ME(G), then q� p = 0, as r is a left annihi-

lator, (3.5). Since s is also left annihilator and C∗∗
μ (e)�C∗∗

σ (e) ∈ Z(L1
E(G)∗∗), for

μ ∗ σ ∈ L1
E(G) since E is a small-2 set, one gets:

p� q = r�C∗∗
μ (e)�C∗∗

σ (e) = r�C∗∗
μ∗σ(e) = 0.

Hence, p ∈ Z(L1
E(G)∗∗), as needed. �

We choose to express the main consequence of this theorem in two equivalent
ways.

Corollary 5.5. Let G be a compact Abelian group and let E ⊆ Ĝ be a small-2 set.
Then, L1

E(G) is SAI if and only if it is reflexive.

Corollary 5.6. Let G be a compact Abelian group and let E ⊆ Ĝ. If E is a small
2-set that is not Λ(1), then L1

E(G) is not SAI.

Proof. Suppose that E is small-2 set with L1
E(G) SAI. Since S ∩ L1

E(G) = {0}
(see the remarks after definition 3.1), theorem 5.4 implies that S must be trivial.
Theorem 3.2 implies then that L1

E(G) is Arens regular, and so it must be reflexive,
i.e. E must be Λ(1) (theorem 4.2). �
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6. The role of M−E(G) ∗ L∞(G)

Many Arens regularity properties of L1
E(G)∗∗ can be described through the size of

the subset i∗ (M−E(G) ∗ L∞(G)).
We begin with the following observation.

Lemma 6.1. Let G be a compact Abelian group and let E ⊆ Ĝ. Then,

i∗ (M−E(G) ∗ L∞(G)) ⊆ i∗(C(G)) if and only if i∗(C(G))⊥⊆Z(L1
E(G)∗∗).

Proof. Assume first that i∗ (M−E(G) ∗ L∞(G)) ⊆ i∗(C(G)) and let r ∈ i∗(C(G))⊥.
Then, for each μ ∈ME(G) and φ ∈ L∞(G), i∗ (μ̌ ∗ φ) ∈ i∗(C(G)) and we have, by
(3.1), that

〈r�C∗∗
μ (e), φ〉=〈r, i∗(μ̌ ∗ φ)〉 = 0. (6.1)

Thus, if m ∈ L1
E(G)∗∗ is decomposed as in (3.4) m = C∗∗

μ (e) + s, with e being
some right identity in L1(G)∗∗, μ ∈ME(G) and s ∈ i∗(C(G))⊥, we have, using
that elements of i∗(C(G))⊥ are left annihilators of L1

E(G)∗∗, (3.5), that

r�m = r�C∗∗
μ (e) = 0 = m� r.

Hence, r ∈ Z (
L1

E(G)∗∗
)
.

For the converse, assume that i∗(C(G))⊥ ⊆ Z(L1
E(G)∗∗) and let μ ∈M−E(G)

and φ ∈ L∞(G). Then, for each r ∈ i∗(C(G))⊥, we have

〈r, i∗(μ̌ ∗ φ)〉=〈r�C∗∗
μ (e), φ〉=〈C∗∗

μ (e)� r, φ〉=0,

where the last equalities follow from r being in the centre of L1
E(G)∗∗

(by hypothesis) and a left annihilator in L1
E(G)∗∗. Hence, i∗(μ̌ ∗ φ) ∈ i∗(C(G))⊥⊥ =

i∗(C(G)). �

Theorem 6.2. Let G be a compact Abelian group and let E ⊆ Ĝ. Then:

(i) L1
E(G) is Arens regular if and only if i∗ (M−E(G) ∗ L∞(G)) ⊆ i∗(C(G)).

(ii) L1
E(G) is SAI if and only if the linear span of i∗ (M−E(G) ∗ L∞(G)) is dense

in L1
E(G)∗.

Proof. We start with statement (i). Assume that i∗ (M−E(G) ∗ L∞(G)) ⊆
i∗(C(G)). Lemma 6.1 then shows that i∗(C(G))

⊥
is contained in Z (

L1
E(G)∗∗

)
.

Let e be a right identity in L1
E(G)∗∗. If m1 = C∗∗

μ1
(e) + r1 and m2 = C∗∗

μ2
(e) + r2

are two arbitrary elements of L1
E(G)∗∗, decomposed following (3.4), and we use that

r1 and r2 are left annihilators, (3.5):

m1 �m2 = C∗∗
μ1∗μ2

(e) = C∗∗
μ2∗μ1

(e) = m2 �m1,

proving that L1
E(G) is Arens regular.

Lemma 6.1 proves the converse statement.
We now prove statement (ii). Assume first that the linear span of

i∗ (M−E(G) ∗ L∞(G)) is dense in L1
E(G)∗ and let m ∈ Z (

L1
E(G)∗∗

)
. Pick a right
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identity e ∈ L1(G)∗∗ and let m = C∗∗
μ (e) + r be a decomposition of m following

(3.4).
Take ν ∈ME(G) and φ ∈ L∞(G), then 〈m, i∗(ν̌ ∗ φ)〉 = 〈m�C∗∗

ν (e), φ〉. Since m
is in the centre, and r is a left annihilator, (3.5):

〈m, i∗ (ν̌ ∗ φ)〉 = 〈C∗∗
ν (e)�

(
C∗∗

μ (e) + r
)
, φ〉

= 〈C∗∗
μ (e), i∗ (ν̌ ∗ φ)〉.

Since the linear span of i∗ (M−E(G) ∗ L∞(G)) is dense in L1
E(G)∗, it follows that

m = C∗∗
μ (e) and this for every right identity e. It follows from lemma 3.3 that

μ ∈ L1
E(G) and we conclude that L1

E(G) is SAI.
Assume now that L1

E(G) is SAI. Let r ∈ L1
E(G)∗∗ be such that r ∈

(i∗(M−E(G) ∗ L∞(G)))⊥. Then, if m = C∗∗
μ (e) + s ∈ L1

E(G)∗∗, with μ ∈ME(G)
and s ∈ i∗(C(G))⊥, and φ ∈ L∞(G):

〈r�m, i∗(φ)〉=〈r, i∗(μ̌ ∗ φ)〉=0.

This means that r�m = 0 and, hence, that r ∈ Z (
L1

E(G)∗∗
)
. Since L1

E(G) is SAI,
L1

E(G) ∩ i∗(C(G))⊥ = {0} and i∗ (M−E(G) ∗ L∞(G))⊥ ⊆ i∗(C(G))⊥, we conclude
that r = 0. Having shown that i∗ (M−E(G) ∗ L∞(G))⊥ = {0}, the denseness of the
linear span of i∗(M−E(G) ∗ L∞(G)) in L1

E(G)∗ is a simple consequence of the
Hahn–Banach theorem. �

Theorem 6.2 immediately implies Ülger’s theorem.

Corollary 6.3 ([26]). Let G be a compact Abelian group and let E ⊆ Ĝ. If E is
a Riesz set, then L1

E(G) is Arens regular.

Proof. Simply apply (i) of theorem 6.2, taking into account that L1(G) ∗ L∞(G) ⊆
C(G). �

Note that corollary 6.3 also follows from theorem 3.2 since S is trivial when E is
a Riesz set.

7. The irregular side

The easy way to show that L1
E(G) is SAI is to require the presence of a bounded

approximate identity. By [16, Corollary 5.6.2], this happens if and only if E ∈ ΩĜ,
where ΩĜ denotes the Boolean ring generated by the left cosets of subgroups of Ĝ,
known as the coset ring of Ĝ. This is a consequence of P. J. Cohen’s theorem to
the effect that for a subset E of Ĝ, 1E is in B(Ĝ), the Fourier–Stieltjes algebra on
Ĝ, if and only if E ∈ ΩĜ (see [24, Theorem 3.1.3] for an exposition of this result).

With these facts in mind, it is an immediate consequence of statement (ii) of
theorem 6.2 that L1

E(G) is SAI if E ∈ ΩĜ. It is enough to observe that for μ ∈M(G)
with μ̂ = 1E , one has that i∗(μ ∗ φ) = i∗(φ).

Corollary 7.1. Let G be a compact Abelian group and let E ∈ ΩĜ. Then, L1
E(G)

is SAI. In particular, L1
Ĝ\F

is SAI if F is finite.
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7.1. L1
E(G) is ENAR if E is not a small-2 set

Under conditions similar to those of theorem 5.1 we see that the set WAP(A)
can be as small as possible. For this we need to produce approximations of triangles
in A that are �1-sets, as done in [6]. We recall here the main concepts and results
developed in that study. To avoid further technicalities, we will restrict ourselves
to the countable case.

Definition 7.2. Let A be a Banach algebra. Consider two sequences in A,
A = {an : n ∈ N} and B = {bn : n ∈ N}. Then:

(i) The sets

Tu
AB = {anbm : n,m ∈ N, n � m} and T l

AB = {anbm : n,m ∈ N,m � n}
are called, respectively, the upper and lower triangles defined by A and B.

(ii) A set X ⊆ A is said to approximate segments in Tu
AB, if it can be enumerated

as

X = {xnm : n, m ∈ N, n � m} ,
and for each n ∈ N

lim
m

‖xnm − anbm‖ = 0.

(iii) A set X ⊆ A is said to approximate segments in T l
AB, if it can be

enumerated as

X = {xnm : n, m ∈ N, m � n} ,
and for each m ∈ N,

lim
n
‖xnm − anbm‖ = 0.

(iv) A double indexed subset X = {xnm : n, m ∈ N} is vertically injective if the
identity xnm = xn′m′ implies m = m′. If xnm = xn′m′ implies n = n′ we say
that X is horizontally injective.

Definition 7.3. Let E be a normed space. A bounded sequence B is an �1-base
in E, with constant K > 0, when, for every choice of scalars, z1, . . . , zp and of
elements a1, . . . , ap ∈ B, the following inequality holds:∥∥∥∥∥

p∑
n=1

znan

∥∥∥∥∥ � K

p∑
n=1

|zn|.

Theorem 7.4 (Corollary 3.10 of [6]). Let A be a Banach algebra. Suppose that A

contains two bounded sequences A and B and two disjoint sets X1 and X2 with the
following properties:

(i) X = X1 ∪X2 is an �1-base in A.

(ii) X1 and X2 approximate segments in Tu
AB and T l

AB, respectively.

(iii) X1 is vertically injective and X2 is horizontally injective.
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Then, there is a bounded linear map of A∗/WAP(A) onto �∞. If, in addition, A

is separable, then A is ENAR.

Theorem 7.5. Let A be a commutative weakly sequentially complete Banach algebra
that is an ideal in A∗∗. If A contains a sequential multiplier bounded approximate
identity (MBAI) (en)n and there are p, q ∈ A∗∗ such that (en � p� q)n does not
converge weakly, then A∗/WAP(A) is not separable. If A is in addition separable,
then A is ENAR.

Proof. We start by observing that the sequence (en � p� q)n cannot have weakly
Cauchy subsequences. If (en(k) � p� q)k was such, weak sequential completeness of
A would produce a ∈ A such that, in the σ(A,A∗)-topology, limk en(k) � p� q = a.
Now, for any subnet (en(β) � p� q)β of the sequence (en � p� q)n, we have that, in
the σ(A,A∗)-topology, which on A coincides with the σ(A∗∗,A∗):

lim
β
en(β) � p� q = lim

β
lim

k
en(k)

(
en(β) � p� q

)
(multiplication by en(β)is weak∗-continuous)

= lim
β
en(β)

(
lim

k
en(k) � p� q

)
= lim

β
en(β)a = a,

showing that a is the only accumulation point of (en � p� q) and, hence that the
sequence (en � p� q) is convergent. Since this goes against our assumption, we can
invoke Rosenthal’s theorem to deduce that there is a subsequence of (en � p� q)n

that is an �1-base. We denote this �1-base again as (en � p� q)n.
Now put

A = {e2n � p : n ∈ N} , and

B = {e2n+1 � q : n ∈ N}

and define, for each m,n ∈ N, xnm = e2m+1 � (p� q), if m < n and xnm =
e2n � (p� q), if n < m. If we let

X1 = {xnm : m,n ∈ N, n < m} and

X2 = {xnm : m,n ∈ N,m < n}.

Then, we have

lim
m

‖xnm − (e2n � p)(e2m+1 � q)‖
= lim

m
‖e2n � (p� q) − (e2n � p)(e2m+1 � q)‖

= lim
m

‖e2n � (p� q) − e2m+1 � (e2n � (p� q))‖ = 0.
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for each n ∈ N. A symmetric computation yields, for each m ∈ N:

lim
n

‖xnm − (e2n � p)(e2m+1 � q)‖
= lim

n
‖e2m+1 � (p� q) − (e2n � p)(e2m+1 � q)‖ = 0.

The sets X1,X2 therefore approximate the segments in Tu
AB and T l

AB , respectively.
Since (en � (p� q)) is an �1-base, we have that en � (p� q) �= en′ � (p� q) when

n �= n′ and, hence, X1 is vertically injective and X2 is horizontally injective.
Theorem 7.4 can then be applied to deduce that A is ENAR. �

While L1(G) always has bounded approximate identities whose accumulation
points in L1(G)∗∗ are right identities, L1

E(G) may well fail to have any. Approximate
identities that are bounded in the multiplier norm (MBAIs) are however always
available. This is proved in [27, Proposition 1]. Since our G is Abelian, the proof
of this result is simple and follows from Plancherel’s theorem. We include the proof
for convenience.

Lemma 7.6. Let G be a compact Abelian group and E ⊂ Ĝ. Then, L1
E(G) contains

a net (eα)α∈Λ with the following properties:

(i) If u ∈ L1
E(G), then limα‖eα ∗ u− u‖ = 0, so that (eα)α∈Λ is an approximate

identity.

(ii) If u ∈ L1
E(G), then ‖eα ∗ u‖ � ‖u‖ for every α ∈ Λ, so that (eα)α∈Λ is an

MBAI.

(iii) For every μ ∈ME(G), limα eα ∗ μ = μ in σ(M(G), C(G)).

Proof. Let (uα)α be an approximate identity that is made of continuous functions of
norm 1 (see e.g. [16, § 1.3]). By Plancherel’s theorem, (ûα) ⊆ �2(Ĝ). So (ûα · 1E) ⊆
�2(Ĝ). Let now (eα) be a net in L2(G) such that

êα = ûα · 1E (α ∈ I).

Then, for each μ ∈ME(G), we have

(eα ∗ μ)̂ = êα · μ̂ = ûα · 1E · μ̂ = (uα ∗ μ) .̂

Thus, by the uniqueness theorem, eα ∗ μ = uα ∗ μ for each α ∈ I. From this all the
assertions of the lemma follow easily. �

Corollary 7.7. Let G be a metrizable compact Abelian group. If E ⊂ Ĝ is not a
small-2 set, then L1

E(G) is ENAR.

Proof. The algebra L1
E(G) is commutative, weakly sequentially complete and

has a sequential MBAI (en), as shown in lemma 7.6. By (iii) of lemma 7.6,
(en �C∗∗

μ (e))n = (en ∗ μ)n, μ ∈ME(G), can only converge (weakly) to μ. By
weak sequential completeness, this implies that the sequence (en �C∗∗

μ (e))n can-
not be weakly convergent unless μ ∈ L1

E(G). But, since E is not small-2, one
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can find a measure μ ∈ME(G) such that μ2 /∈ L1
E(G) so that the sequence

(en �C∗∗
μ (e)�C∗∗

μ (e))n does not converge weakly. Apply now theorem 7.5. �

7.2. Complements of Lust-Piquard sets

Certain thin subsets of Ĝ have a complement E that may not be very large,
but is large enough to ensure that L1

E(G) is not Arens regular. Complements of
Lust-Piquard sets can be regarded as such.

Lemma 7.8. Let G be a compact metrizable Abelian group. If Ĝ \ E is a Lust-
Piquard set, then for each measure μ ∈ME(G) \ L1(G), there exists φ ∈ L∞(G)
such that i∗(μ̌ ∗ φ) /∈ i∗(C(G)).

Proof. Notice first that, by [18, Proposition 2], there exists φ ∈ L∞(G) such that
μ̌ ∗ φ is not totally ergodic. Fix such a φ ∈ L∞(G). Towards a contradiction, assume
that there is a sequence (ψn) in C(G) such that

lim
n
i∗(ψn) = i∗(μ̌ ∗ φ).

Then, since the restriction mapping i∗ is a quotient map, one can find (see, e.g.
[21, Theorem 1.7.7]) a sequence (ξn) in L∞(G) and ξ ∈ L∞(G) such that, for each
n ∈ N, i∗(ψn) = i∗(ξn), and limn ξn = ξ. The equality i∗(ψn) = i∗(ξn) entails that
ψn − ξn ∈ L∞

−Ĝ\E
(G), so that (−Ĝ \ E is a Lust-Piquard set) ψn − ξn is totally

ergodic. Since ψn is continuous, hence totally ergodic, we deduce that ξn is totally
ergodic for each n ∈ N. Thus, ξ is totally ergodic. Indeed, for γ ∈ Ĝ, limn ξ̂n(−γ) =
ξ̂(−γ), so for each invariant mean M , we have, using that, by total ergodicity,
〈M,γξn〉 = ξ̂n(−γ):

〈M,γξ〉 = lim
n
〈M,γξn〉 = lim

n
ξ̂n(−γ) = ξ̂(−γ),

so ξ is totally ergodic. On the contrary, i∗(μ̌ ∗ φ) = i∗(ξ) and, hence, μ̌ ∗ φ− ξ ∈
L∞
−Ĝ\E

(G). So μ̌ ∗ φ− ξ is totally ergodic, and, therefore, μ̌ ∗ φ is totally ergodic, a

contradiction. We conclude that i∗(μ̌ ∗ φ) /∈ i∗ (C(G)). �

With the aid of lemma 7.8, the elements of Z(L1
E(G)∗∗) can be confined when

Ĝ \ E is a Lust-Piquard set.

Proposition 7.9. Let G be a compact metrizable Abelian group and let E ⊂ Ĝ such
that Ĝ \ E is a Lust-Piquard set. Fix a right identity e ∈ L1(G)∗∗. Then,

Z(L1
E(G)∗∗) ⊆ {

C∗∗
u (e) + r : u ∈ L1

E(G), r ∈ i∗(C(G))
⊥}
.

Proof. Let p = C∗∗
μ (e) + r ∈ L1

E(G)∗∗ be an arbitrary element of L1
E(G)∗∗ with μ ∈

ME(G) and r ∈ i∗(C(G))⊥.
Assume that μ ∈ME(G) \ L1

E(G). By lemma 7.8, there exists φ ∈ L∞(G) such

that μ̌ ∗ φ /∈ i∗(C(G)). So there exists s ∈ i∗(C(G))
⊥

such that 〈s, i∗(μ̌ ∗ φ)〉 �= 0.
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As in (6.1),

0 �= 〈s, i∗(μ̌ ∗ φ)〉> = 〈s�C∗∗
μ (e), φ〉> = 〈s� p, φ〉>,

showing that p /∈ Z(L1
E(G)∗∗) because p� s = 0. �

The preceding proposition 7.9 yields the following result.

Corollary 7.10. Let G be a compact metrizable Abelian group. If E ⊆ Ĝ is such
that Ĝ \ E is a Lust-Piquard set, then L1

E(G) is not Arens regular.

We close the paper observing that, contrarily to what the previous corollary might
suggest, the regularity properties of L1

E(G) do not determine those of L1
Ĝ\E

(G).

Example 7.11. L1
E(G) and L1

Ĝ\E
(G) can be both SAI and regular.

If E ∈ ΩĜ, then Ĝ \ E ∈ ΩĜ, then both L1
E(G) and L1

Ĝ\E
(G) are SAI by

corollary 7.1.
If on the other hand we consider E = N ⊆ Z the classical case of a Riesz set, then

Ĝ \ E = −N is also a Riesz set so that L1
E(G) and L1

Ĝ\E
(G) are both Arens regular

by corollary 6.3.

Remark 7.12. In our forthcoming paper, we shall deal with more general Banach
algebras of the same type dealt with in this paper. Our study will include the group
algebra of a non-Abelian compact group and the Fourier algebra of an amenable
discrete group.
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