RINGS WITH ENOUGH INVERTIBLE IDEALS

P. F. SMITH

All rings are associative with identity element 1 and all modules are unital. A ring has enough invertible ideals if every ideal containing a regular element contains an invertible ideal. Lenagan [8, Theorem 3.3] has shown that right bounded hereditary Noetherian prime rings have enough invertible ideals. The proof is quite ingenious and involves the theory of cycles developed by Eisenbud and Robson in [5] and a theorem which shows that any ring S such that $R \subseteq S \subseteq Q$ satisfies the right restricted minimum condition, where Q is the classical quotient ring of R. In Section 1 we give an elementary proof of Lenagan's theorem based on another result of Eisenbud and Robson, namely every ideal of a hereditary Noetherian prime ring can be expressed as the product of an invertible ideal and an eventually idempotent ideal (see [5, Theorem 4.2]). We also take the opportunity to weaken the conditions on the ring R.

Section 2 is concerned with showing that if R is a prime Noetherian ring with enough invertible ideals then any locally Artinian R-module M is the direct sum of a completely faithful submodule C and a submodule U such that each element of U is annihilated by a non-zero ideal of R. This result generalises [4, Theorem 3.9].

1. Lenagan's theorem. Let R be a ring. An element c of R is regular if both $r c \neq 0$ and $c r \neq 0$ for every non-zero element r of R. Suppose that R is an order in a ring Q; that is, R is a subring of Q, each regular element of R is invertible in Q and each element of Q has the forms $r c^{-1}$ and $d^{-1} s$ where $r, s, c, d, \in R$ and both c and d are regular. An ideal I of R will be called invertible provided there exists a sub-bimodule X of ${ }_{R} Q_{R}$ such that $X I=I X=R$ and in this case we write I^{-1} for X. Note that if I is invertible then $1 \in I I^{-1}$ implies

$$
1=\sum_{i=1}^{n} a_{i} r_{i} c_{i}^{-1}
$$

for some positive integer $n, a_{i} \in I, r_{i}, c_{i} \in R$ with c_{i} regular ($1 \leqq i \leqq n$). By [6, Lemma 4.2] it follows that I contains a regular element. We call an ideal I integral if it contains a regular element.

Throughout this section we shall suppose that R is an order in Q. If I is an integral ideal of R define

$$
I^{*}=\{q \in Q: q I \leqq R\}
$$

Received October 21, 1981 and in revised form March 5, 1982.

Suppose further that I is a projective right R-module. By the Dual Basis Lemma there exist an index set Λ, elements $a_{\lambda} \in I$ and R-homomorphisms $f_{\lambda} \in \operatorname{Hom}(I, R)(\lambda \in \Lambda)$ such that

$$
a=\sum a_{\lambda} f_{\lambda}(a) \quad(a \in I)
$$

and for each a in $I, f_{\lambda}(a)=0$ for all but possibly a finite collection of elements $\lambda \in \Lambda$. Since $I Q=Q$ it follows that for each λ in Λf_{λ} can be lifted to an endomorphism of Q and hence there exists $q_{\lambda} \in I^{*}$ such that $f_{\lambda}(a)=q_{\lambda} a(a \in I)$. In particular, if $c \in I$ and c is regular

$$
c=\sum_{i=1}^{m} a_{i} q_{i} c
$$

for some positive integer $m, a_{i} \in I, q_{i} \in I^{*}(1 \leqq i \leqq m)$. Then

$$
1=\sum_{i=1}^{m} a_{i} q_{i}
$$

and so

$$
R \leqq I I^{*} \quad \text { and } \quad I=\sum_{i=1}^{n} a_{i} R .
$$

Moreover, $I=I I^{*} I$ implies that $I I^{*}$ is an idempotent ideal of R. Note that $R \leqq I^{*}$ and hence $I \leqq I I^{*}$. Conversely, if $R \leqq I I^{*}$ then

$$
1=\sum_{i=1}^{m} a_{i} q_{i}
$$

for some positive integer m and $a_{i} \in I, q_{i} \in I^{*}(1 \leqq i \leqq m)$. Then

$$
a=\sum_{i=1}^{m} a_{i}\left(q_{i} a\right) \quad(a \in I)
$$

and I is a projective right R-module by the Dual Basis Lemma. We have proved:

Lemma 1.1. Let I be an integral ideal of R. Then I is a projective right R-module if and only if $R \leqq I I^{*}$. In this case I is a finitely generated right ideal and $I^{*} I$ is an idempotent ideal containing I.

In particular Lemma 1.1 shows that invertible ideals are projective as right and left modules. Note also that if M is a maximal ideal of R then $M \leqq M^{*} M \leqq R$. Thus $M=M^{*} M$ or $M^{*} M=R$. It follows that if M is integral and projective as a right and left module then M is invertible or idempotent by the lemma. We mention one other consequence of Lemma 1.1 here. If I is an integral ideal of R and there exist ideals A_{1}, \ldots, A_{n} such that $I=A_{1} \ldots A_{n}$ and A_{i} is a projective right R -
module $(1 \leqq i \leqq n)$ then I is a projective right R-module. For

$$
\begin{aligned}
A_{n}^{*} \ldots A_{1}^{*} I=A_{n}^{*} \ldots\left(A_{1}^{*} A_{1}\right) \ldots & A_{n} \\
& \leqq A_{n}^{*} \ldots\left(A_{2}^{*} A_{2}\right) \ldots A_{n} \leqq R
\end{aligned}
$$

which implies $A_{n}{ }^{*} \ldots A_{1}{ }^{*} \leqq I^{*}$. Moreover

$$
R \leqq A_{1} A_{1}^{*}=A_{1} R A_{1}^{*} \leqq A_{1}\left(A_{2} A_{2}^{*}\right) A_{1}^{*} \leqq I\left(A_{n}^{*} \ldots A_{1}^{*}\right) \leqq I I^{*}
$$

By Lemma $1.1 I$ is a projective right R-module.
Lemma 1.2. Let R be a ring such that the integral prime ideals are finitely generated as right ideals. Let I be an integral ideal of R. Then there exists a finite collection of prime ideals P_{i} containing $I(1 \leqq i \leqq n)$ such that $P_{1} \ldots P_{n} \leqq I$.

Proof. Suppose not and let $\left\{I_{\lambda}: \lambda \in \Lambda\right\}, \Lambda$ some index set, be a chain of integral ideals for each of which the result fails. Let I be the integral ideal $\cup_{\Lambda} I_{\Lambda}$. If

$$
P_{1} \ldots P_{n} \leqq I \leqq \bigcap_{i=1}^{n} P_{i}
$$

with P_{i} prime $(1 \leqq i \leqq n)$ then $P_{1} \ldots P_{n}$ is a finitely generated right ideal and hence $P_{1} \ldots P_{n} \leqq I_{\lambda}$ for some λ in Λ, a contradiction. Thus Zorn's Lemma can be applied to give an ideal J maximal with respect to the property that there does not exist a finite collection of prime ideals $P_{i}(1 \leqq i \leqq n)$ with

$$
P_{1} \ldots P_{n} \leqq J \leqq \bigcap_{i=1}^{n} P_{i}
$$

Clearly J is not prime. It follows that there exist ideals A and B properly containing J such that $A B \leqq J$. By the choice of J there exist prime ideals $Q_{i}(1 \leqq i \leqq n)$ such that

$$
Q_{1} \ldots Q_{k} \leqq A \leqq \bigcap_{i=1}^{k} Q_{i} \text { and } \quad Q_{k+1} \ldots Q_{m} \leqq B \leqq \bigcap_{i=k+1}^{m} Q_{i}
$$

for some $1 \leqq k<m$. Then

$$
Q_{1} \ldots Q_{m} \leqq A B \leqq J \leqq A \cap B \leqq \bigcap_{i=1}^{m} Q_{i}
$$

a contradiction. The result follows.
Corollary 1.3. Let R be a ring such that the integral prime ideals are finitely generated as right ideals. Then R satisfies the ascending chain condition on integral semiprime ideals.

Proof. Let $X_{1} \leqq X_{2} \leqq \ldots$ be an ascending chain of integral semiprime ideals of R and let X be the ideal $\cup_{i \geqq 1} X_{i}$. By the lemma there exists a
finite collection of prime ideals P_{i} containing $X(1 \leqq i \leqq n)$ such that $P_{1} \ldots P_{n} \leqq X$. Since each P_{i} is a finitely generated right ideal it follows that $P_{1} \ldots P_{n}$ is a finitely generated right ideal and hence $P_{1} \ldots P_{n} \leqq X_{m}$ for some positive integer m. Hence $X^{n} \leqq P_{1} \ldots P_{n} \leqq X_{m}$ and $X \leqq X_{m}$ because X_{m} is semiprime. Thus $X_{m}=X_{m+1}=\ldots$.

We next generalize [$\mathbf{5}$, Theorem 4.2]. The proof is rather similar in parts but is included for completeness. An ideal I is called eventually idempotent if $I^{k}=I^{k+1}$ for some positive integer k.

Theorem 1.4. Let R be an order in a ring Q. Let I be an integral ideal of R such that the prime ideals containing I are invertible or maximal and projective as right and left modules. Then there exists an invertible ideal A and an eventually idempotent ideal B such that $I=A B$.

Proof. By Lemma 1.1 any prime ideal containing I is a finitely generated right ideal. Thus by Corollary $1.3 R / I$ satisfies the ascending chain condition on semiprime ideals and there exists a finite collection of prime ideals $P_{i}(1 \leqq i \leqq n)$ such that $P_{i} \nsubseteq P_{j}(i \neq j), I \subseteq P_{i}(1 \leqq i \leqq n)$ and $N^{k} \subseteq I$ for some positive integer k where $N=\bigcap_{i=1}^{n} P_{i}$ (Lemma 1.2). Clearly N is a semiprime ideal. Suppose the result is false for I and I is chosen so that N is as large as possible.

Suppose first that the intersection of any collection of the ideals P_{i} is not invertible. In particular this means that each ideal P_{i} is maximal $(1 \leqq i \leqq n)$. By the Chinese Remainder Theorem

$$
R / N \cong\left(R / P_{1}\right) \oplus \ldots \oplus\left(R / P_{n}\right)
$$

Since P_{i} is a projective right R-module it follows that the right R-module R / P_{i} has projective dimension at most $1(1 \leqq i \leqq n)$ and hence the right R-module R / N has projective dimension at most 1 . By Schanuel's Lemma N is a projective right R-module. Similarly N is a projective left R-module. By assumption N is not invertible. Suppose $N^{*} N \neq R$. If $N=N^{*} N$ then N is idempotent (Lemma 1.1) and hence $I=N$. Suppose $N<N^{*} N$. Again using the Chinese Remainder Theorem, if $X=N^{*} N$ then there exists an ideal Y such that $R=X+Y$ and $X \cap Y=N$. Moreover $N=N X$ and hence

$$
X Y \leqq X \cap Y=N=N X \leqq Y X \leqq X \cap Y=N
$$

so that $N=Y X$ and $X Y \leqq Y X$. Since $N<Y<R$ it follows that Y is the intersection of a proper subset of the $P_{i}(1 \leqq i \leqq n)$ and, by the choice of $I, Y=A B$ where A is invertible and B eventually idempotent. Since $N<A$ and the intersection of any collection of the ideals P_{i} is not invertible we have $A=R$ and hence Y is eventually idempotent, say $Y^{m}=Y^{m+1}$. Then

$$
N^{m} \geqq N^{m+1}=(Y X)^{m+1} \geqq Y^{m+1} X^{m+1}=Y^{m} X \geqq(Y X)^{m}=N^{m}
$$

giving $N^{m}=N^{m+1}$. Since $N^{k} \leqq I$ it follows that I is eventually idempotent.

Now suppose that $P_{1} \cap \ldots \cap P_{t}$ is invertible where $1 \leqq t \leqq n$ and no intersection of $t+1$ of the ideals $P_{i}(1 \leqq i \leqq n)$ is invertible. Let

$$
C=P_{1} \cap \ldots \cap P_{t}
$$

If D is the intersection of any collection of the ideals $P_{i}(t+1 \leqq i \leqq n)$ then $C \cap D=C V$ where V is the ideal $C^{-1}(C \cap D)$. Then $C V \leqq D$ and $C \nsubseteq P_{i}(t+1 \leqq i \leqq n)$ together imply $V \leqq D$. Thus $C \cap D=C D$ and similarly $C \cap D=D C$. This shows in particular that for all $t+1 \leqq i \leqq n, P_{i}$ is not invertible and hence is maximal. Define

$$
G=\bigcap_{i=t+1}^{n} P_{i} \quad \text { if } t<n
$$

and $G=R$ if $t=n$. Then

$$
N=C G=G C \text { and } C+G=R
$$

It follows that $C^{k} G^{k} \leqq I$. Suppose $I \leqq C^{k+1}$. Then $C+G^{k}=R$ implies

$$
C^{k}=C^{k+1}+C^{k} G^{k} \leqq C^{k+1}
$$

and $C=R$, a contradiction. There exists a positive integer $s \leqq k$ such that $I \leqq C^{s}, I \nsubseteq C^{s+1}$. Consider the ideal $C^{-s} I$. Clearly

$$
I \leqq C^{-s} I \text { and } C^{k-s} G^{k} \leqq C^{-s} I
$$

If $C^{-s} I=R$ then $I=C^{s}$ and I is invertible. Otherwise there exist a positive integer v and prime ideals $Q_{i}(1 \leqq i \leqq v)$ such that if $N_{1}=$ $\bigcap_{i=1}^{v} Q_{i}$ then $C^{-s} I \leqq N_{1}$ and $N_{1}{ }^{q} \leqq C^{-s} I$ for some $q \geqq 1$. Since $C^{k-s} G^{k} \leqq C^{-s} I$ it follows that $N \leqq N_{1}$. If $N=N_{1}$ then $C^{-s} I \leqq N \leqq C$ and hence $I \leqq C^{s+1}$, a contradiction. Thus, $N<N_{1}$ and by the choice of $I, C^{-s} I=E F$ for some invertible ideal E and eventually idempotent ideal F. Thus $I=\left(C^{s} E\right) F$ and $C^{s} E$ is invertible, a contradiction.

We shall not require Theorem 1.4 in full in the sequel but only the following result which generalizes [5, Lemma 6.2] and which is proved in the course of proving Theorem 1.4.

Corollary 1.5. Let I be an integral ideal of a ring R such that the prime ideals containing I are invertible or maximal and projective as right and left modules. Then there exists an invertible ideal A and an integral idempotent ideal B such that $A B=B A \leqq I$ and $A+B=R$.

Note too that the proof of Theorem 1.4 shows that if R is a ring such that the integral prime ideals are invertible or maximal and projective as right and left modules and if R has the further property that integral maximal ideals commute then every integral ideal of R is projective as a
right and left module. For in this situation any integral ideal $J=A I$ where A is an invertible ideal and I an idempotent ideal. There exists a semiprime ideal N such that $I \leqq N$ and $N^{k} \leqq I$ for some positive integer k. Moreover, $N=B \cap C=B C=C B$ where B is invertible and C a finite intersection of idempotent maximal ideals. As before C is a projective right R-module. Moreover, C is idempotent. Thus I idempotent implies

$$
I=I^{k} \leqq N^{k}=(B C)^{k}=B^{k} C \leqq I
$$

and hence $I=B^{k} C$. Thus $J=D C$ where $D=A B^{k}$ is invertible. Then

$$
J^{*}=C^{*} D^{-1}
$$

and

$$
R=D R D^{-1} \leqq D\left(C C^{*}\right) D^{-1}=J J^{*}
$$

and it follows that J is a projective right R-module (Lemma 1.1). Similarly J is a projective left R-module.

A ring R will be called right truncated if for every element a in R the descending chain

$$
a R \geqq a^{2} R \geqq a^{3} R \geqq \ldots
$$

terminates. Left perfect rings have descending chain condition on principal right ideals (see for example [2, p. 315. Theorem 28.4]) and hence are right truncated. On the other hand let K be a field of characteristic $p>0, G$ the Prüfer group of type p^{∞} and R the group algebra $K G$. Then R is a commutative ring and its augmentation ideal A is the unique maximal ideal. The ideal A is nil and hence R is truncated. However R is not perfect for if G is generated by the elements $\left\{x_{i}: i \geqq 1\right\}$ where $x_{1}{ }^{p}=1, x_{i+1}^{p}=x_{i}(i \geqq 1)$ then

$$
\left(x_{1}-1\right) R>\left(x_{1}-1\right)\left(x_{2}-1\right) R
$$

$$
>\left(x_{1}-1\right)\left(x_{2}-1\right)\left(x_{3}-1\right) R>\ldots
$$

This is so because

$$
\left(x_{1}-1\right) \ldots\left(x_{n}-1\right)\left\{1-\left(x_{n+1}-1\right) r\right\}=0
$$

for some $n \geqq 1$ and r in R implies $\left(x_{1}-1\right) \ldots\left(x_{n}-1\right)=0$ since $\left(x_{n+1}-1\right) r \in A$ and so is nilpotent. If $\left(x_{1}-1\right) \ldots\left(x_{n}-1\right)=0$ then

$$
\left(x_{n}^{p^{n-1}}-1\right)\left(x_{n}^{p^{n-2}}-1\right) \ldots\left(x_{n}-1\right)=0
$$

and hence

$$
1+p+\ldots+p^{n-1} \geqq p^{n}
$$

a contradiction.

A ring R is right bounded provided every essential right ideal contains an integral ideal. Note that if R is an order in a ring Q then R satisfies the right Ore condition with respect to the regular elements of R and hence $c R$ is an essential right ideal for any regular element c of R.

Theorem 1.6. Let R be an order in a ring Q such that every integral prime ideal is invertible or maximal and projective as a right and left R-module. Suppose further that R is right bounded and R / I is right truncated for every integral idempotent ideal I. Then R has enough invertible ideals.

Proof. Let A be an integral ideal of R. Let c be a regular element in A. Let B be an integral ideal contained in $c R$. By Corollary 1.5 there exists an invertible ideal U and an integral idempotent ideal I such that $U I=I U \leqq B$. Consider the descending chain

$$
c R+I \geqq c^{2} R+I \geqq \ldots
$$

There exists a positive integer k such that $c^{k} R \leqq c^{k+1} R+I$ because R / I is right truncated. Now $B^{k+1} \leqq c^{k+1} R$ and hence

$$
I U^{k+1}=(U I)^{k+1} \leqq B^{k+1} \leqq c^{k+1} R
$$

Now

$$
c^{k} U^{k+1} \leqq\left(c^{k+1} R+I\right) U^{k+1}=c^{k+1} U^{k+1}+I U^{k+1} \leqq c^{k+1} R
$$

Thus $U^{k+1} \leqq c R \leqq A$ and U^{k+1} is an invertible ideal. This proves the theorem.

A ring R has the right restricted minimum condition provided the right R-module R / E is Artinian for any essential right ideal E of R. Theorem 1.6 generalizes the following result of Lenagan [8, Theorem 3.3].

Corollary 1.7. Any right bounded hereditary Noetherian prime ring has enough invertible ideals.

Proof. By [6, Theorems 4.1 and 4.4] R is an order in a simple Artinian ring. Also by a theorem of Webber [12] (or see [4, Theorem 1.3]) R satisfies the right restricted minimum condition so that every integral (i.e., non-zero) prime ideal is maximal and R / I is right truncated for every non-zero ideal I. Now apply the theorem.

To put Theorem 1.6 more into perspective we prove:
Theorem 1.8. Let R be a right Noetherian order in a simple Artinian ring such that every integral prime ideal is invertible or maximal and projective as a right and left R-module. Suppose further that R is right bounded and R / I is right truncated for every integral idempotent ideal I. Then R is right and left hereditary and left Noetherian.

Proof. Suppose P is a prime ideal of R and R / P is right truncated. If $c \in R$ and $c+P$ is a regular element of R / P then R / P right truncated implies that $c+P$ is a unit in R / P. By [$\mathbf{6}$, Theorem 3.9] R / P is a simple right Artinian ring.

Now suppose P is an invertible prime ideal. Let

$$
X=\bigcap_{n=1}^{\infty} P^{n} .
$$

Then X is a prime ideal of R. For let A and B be ideals of R and suppose $A \npreceq X, B \nsubseteq X$. There exist $m, n \geqq 0$ such that $A \leqq P^{m}, A \npreceq P^{m+1}$, $B \leqq P^{n}, B \npreceq P^{n+1}$, where we take $P^{0}=R$. Then $P^{-m} A$ and $B P^{-n}$ are ideals of R and $A B \leqq P^{m+n+1}$ implies

$$
\left(P^{-m} A\right) \cdot\left(B P^{-n}\right) \leqq P .
$$

But P is a prime ideal and so $P^{-m} A \leqq P$ (and $A \leqq P^{m+1}$) or $B P^{-n} \leqq P$ (and $B \leqq P^{n+1}$), giving a contradiction. Thus X is a prime ideal. Clearly P invertible implies $P>X$. If $X \neq 0$ then X is invertible and $X=P X$ gives $R=P$, a contradiction. Thus $X=0$. By the proof of [7, Lemma 1] R / P is a simple right Artinian ring. Also by the proof of [7, Theorem] R is right hereditary.

Let E be an essential left ideal of R. Let c be a regular element in E [6, Theorem 3.9]. There exists an invertible ideal J such that $J \leqq c R$ (Theorem 1.6). Then $c^{-1} J \leqq R$ and hence $c^{-1} \in J^{-1}$. Thus $c^{-1} \leqq R$ and we conclude $J \leqq R c \leqq E$. Thus R is left bounded. Since the prime ideals are finitely generated as left ideals and J contains a finite product of non-zero prime ideals (Lemmas 1.1 and 1.2) it follows that R / J is left Artinian and hence left Noetherian. Thus the fact that J is a finitely generated left ideal implies E is finitely generated. It follows that R is left Noetherian. By [11, Corollary 3] R is left hereditary.
2. Completely faithful modules. Let R be a ring. An R-module M is faithful provided $M r \neq 0$ for every non-zero element r of R, otherwise it is unfaithful. An R-module M is completely faithful if X / Y is faithful for all submodules $X>Y$ of M. Clearly any submodule and any factor module of a completely faithful module are completely faithful.

Lemma 2.1. Let N be a submodule of a module M such that N and M / N are both completely faithful. Then M is completely faithful.

Proof. Let $X \geqq Y$ be submodules of M such that $X r \leqq Y$ for some non-zero element r in R. Then $(X \cap N) r \leqq(Y \cap N)$ and N completely faithful together imply

$$
X \cap N=Y \cap N .
$$

Similarly $(X+N) r \leqq Y+N$ and M / N completely faithful give $X+N=Y+N$. Then

$$
Y=Y+(X \cap N)=Y
$$

It follows that M is completely faithful.
Lemma 2.2. For any module M there exists a unique maximal completely faithful submodule C which contains every completely faithful submodule of M.

Proof. Suppose M contains non-zero completely faithful submodules, otherwise take $C=0$. Let \mathscr{S} denote the collection of completely faithful submodules of M. Define

$$
C=\sum_{X \in \mathscr{\mathscr { L }}} X
$$

It remains to prove that the submodule C is completely faithful. Let $A>B$ be submodules of C and suppose $A r \leqq B$ for some element r of R. Let $a \in A, a \notin B$. Then there exist a positive integer n and completely faithful submodules $X_{i}(1 \leqq i \leqq n)$ of M such that $a \in X_{1}+\ldots+X_{n}$. By Lemma 2.1 and induction on n the module $X_{1} \oplus \ldots \oplus X_{n}$ is completely faithful and hence so is $X_{1}+\ldots+X_{n}$. Thus $(a R) r \leqq(a R \cap B)$ implies $r=0$. It follows that C is completely faithful.

Let M be a module. The unique maximal completely faithful submodule of M will be denoted by $C(M)$. Note that $C(M / C(M))=0$ by Lemma 2.1. Note further that if $M=\bigoplus_{\Lambda} M_{\lambda}$, for some index set Λ, then

$$
C(M)=\bigoplus_{\Lambda} C\left(M_{\lambda}\right)
$$

For, by Lemma $2.2 C(M) \geqq \bigoplus_{\Lambda} C\left(M_{\lambda}\right)$; also if $\pi_{\lambda}: M \rightarrow M_{\lambda}$ is the canonical projection then $\pi_{\lambda}(C(M))$ is a completely faithful submodule of M_{λ} and hence

$$
\pi_{\lambda}(C(M)) \leqq C\left(M_{\lambda}\right)(\lambda \in \Lambda)
$$

so that $C(M) \leqq \bigoplus_{\Lambda} C\left(M_{\lambda}\right)$. In addition if N is a submodule of M then

$$
N \cap C(M)=C(N)
$$

For, by Lemma 2.2,

$$
N \cap C(M) \leqq C(N) \text { and } N /(N \cap C(M)) \cong(N+C(M)) / C(M)
$$

implies

$$
C(N /(N \cap C(M)))=0
$$

If M is a module then it may well happen that $C(M)=0$. Indeed if R is a ring then a necessary and sufficient condition for the existence of a
non-zero completely faithful right R-module is that R be right primitive. For, if R is right primitive and V is a faithful irreducible right R-module then clearly V is completely faithful. Conversely, suppose M is a nonzero completely faithful right R-module. Let $m \in M, m \neq 0$. Then $m R$ is completely faithful and any irreducible homomorphic image of $m R$ is faithful. Thus R is right primitive.

A module M is locally unfaithful provided every finitely generated submodule is unfaithful. If R is a prime ring then an R-module M is locally unfaithful if and only if for any non-zero element m in M there exists a non-zero ideal I of R such that $m I=0$.

Let R be a ring such that every non-zero ideal contains an invertible ideal. Then R is a prime ring. Conversely, if R is a prime Goldie ring with enough invertible ideals then every non-zero ideal of R contains an invertible ideal.

Lemma 2.3. Let R be a ring such that every non-zero ideal contains an invertible ideal. Let M be a cyclic R-module and N a submodule of M such that
(i) N is completely faithful and M / N unfaithful, or
(ii) N is unfaithful and M / N completely faithful.

Then N is a direct summand of M.
The proof uses arguments similar to those used to prove [4, Theorem 3.9 and Lemma 3.10] but we include it for completeness.

Proof. Suppose M is a right R-module. Without loss of generality we can suppose $M=R / E, N=F / E$ where $E \leqq F$ are right ideals of R.
(i) There exists an invertible ideal I such that $I \leqq F$. Since F / E is completely faithful it follows that $F=F I+E$. Hence $I=F I+$ $(E \cap I)$. Since I is invertible we have

$$
R=I I^{-1}=F+(E \cap I) I^{-1}
$$

Moreover, $E I \leqq E \cap I$ implies $E \leqq(E \cap I) I^{-1}$. Also

$$
\left\{F \cap(E \cap I) I^{-1}\right\} I \leqq E
$$

implies $F \cap(E \cap I) I^{-1}=E$ because F / E is completely faithful. Thus

$$
R / E=(F / E) \oplus\left\{(E \cap I) I^{-1} / E\right\}
$$

(ii) There exists an invertible ideal J such that $F J \leqq E$. Since R / F is completely faithful it follows that $R=F+J$. Now $(F \cap J) J^{-1}$ is a right ideal of R and

$$
\left((F \cap J) J^{-1}\right) J=F \cap J \leqq F
$$

Since R / F is completely faithful it follows that $(F \cap J) J^{-1} \leqq F$ and
hence $F \cap J \leqq F J \leqq E$. Thus

$$
R / E=F / E \oplus(J+E) / E
$$

The next result concerns the exact sequence
(1) $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$
of right R-modules.
Theorem 2.4. Let R be an order in a ring Q such that every non-zero ideal contains an invertible ideal. Then the exact sequence (1) splits provided any one of the following statements holds:
(i) A is completely faithful and C locally unfaithful, or
(ii) A is unfaithful and C completely faithful, or
(iii) R is right Noetherian, A is locally unfaithful and C completely faithful.

Proof. Without loss of generality we can suppose that A is a submodule of B. Let $b \in B, b \notin A$. Consider the cyclic module $b R$. In (i) $b R \cap A$ is a completely faithful submodule of $b R$ and $b R /(b R \cap A) \cong(b R+A) / A$ is unfaithful. By Lemma 2.3
(2) $b R=(b R \cap A) \oplus D_{b}$
for some submodule D_{b}. In cases (ii) and (iii) $b R \cap A$ is an unfaithful submodule of $b R$ (in (iii) because $b R$ is a Noetherian module and hence $b R \cap A$ is finitely generated) and $b R /(b R \cap A) \cong(b R+A) / A$ is completely faithful. Again by Lemma 2.3 there exists a submodule D_{b} such that (2) holds.

Let $D=\sum_{b} D_{b}$. Note that in (i) D_{b} is unfaithful $(b \in B)$ and so D is locally unfaithful. On the other hand in (ii) and (iii) D_{b} is completely faithful $(b \in B)$ and hence so is D (Lemma 2.2). Clearly

$$
B=A+D
$$

and in all cases one of A, D is completely faithful and the other locally unfaithful. Thus $A \cap D=0$ and we conclude $B=A \oplus D$.

Corollary 2.5. Let R be a ring such that every non-zero ideal contains an invertible ideal. Let M be an R-module such that there exists a finite chain

$$
M=M_{0} \geqq M_{1} \geqq \ldots \geqq M_{n}=0
$$

of submodules M_{i} such that M_{i-1} / M_{i} is completely faithful or unfaithful $(1 \leqq i \leqq n)$. Then there exists an unfaithful submodule U of M such that $M=C(M) \oplus U$.

Proof. We prove the result by induction on n. The case $n=1$ is clear. Let $N=M_{1}$. Then $N=C(N) \oplus V$ for some unfaithful submodule V
of N. If M / N is unfaithful apply (i) of the theorem to the module M / V to obtain

$$
M / V=N / V \oplus W / V
$$

for some submodule W of M such that $V \leqq W$ and W / V is unfaithful. Since R is prime it follows that W is unfaithful and $M=C(N) \oplus W$. Now suppose M / N is completely faithful. In this case apply (ii) of the theorem to $M / C(N)$ to obtain

$$
M / C(N)=N / C(N) \oplus D / C(N)
$$

for some submodule D of M containing $C(N)$. Since $D / C(N) \cong M / N$ it follows that $D / C(N)$, and hence D, is completely faithful (Lemma 2.1). Thus $M=D \oplus V$ and since V is unfaithful we have $D=C(M)$.

Corollary 2.5 generalizes [4, Theorem 3.9] as does the next result. A module M is locally Artinian provided every finitely generated submodule is Artinian. Clearly any infinite direct sum of irreducible modules is locally Artinian but not Artinian.

Theorem 2.6. Let R be a right Noetherian order in a simple Artinian ring such that R has enough invertible ideals and let M be a locally Artinian right R-module. Then there exists a locally unfaithful submodule N of M such that $M=C(M) \oplus N$.

Proof. By Theorem 2.4(i) it is sufficient to prove that $M / C(M)$ is locally unfaithful. Let m_{1}, \ldots, m_{n} be a finite collection of elements of M and consider the module

$$
X=C(M)+m_{1} R+\ldots+m_{n} R .
$$

Clearly $X / C(M)$ has finite composition length and $C(X / C(M))=0$. By Corollary $2.5 X / C(M)$ is unfaithful. It follows that $M / C(M)$ is locally unfaithful and the result follows.

Note that in Theorem 2.6

$$
N=\{m \in M: m I=0 \text { for some non-zero ideal } I \text { of } R\} .
$$

Corollary 2.7. Let R be a prime Noetherian ring with enough invertible ideals and let M be a locally Artinian R-module. Then M is completely faithful if and only if the socle of M is completely faithful.

Finally we mention some examples of primitive rings with enough invertible ideals. A ring R is called hypercentral provided whenever $I>J$ are ideals of R the ideal I / J of the ring R / J contains a non-zero central element of R / J. In particular every non-zero ideal of R contains a nonzero central element of R. Let R be an order in a ring Q such that R is prime and hypercentral; then every non-zero ideal of R contains an
invertible ideal. This is because the ideal $c R$ is invertible for any non-zero element c.

Example 2.8. Let A_{n} denote the nth Weyl algebra over a field F of characteristic 0 and D_{n} the division ring of fractions of A_{n}. Let t be any positive integer with $t \leqq n$. Then the polynomial ring $D_{n}\left[x_{1}, \ldots, x_{t}\right]$ is a primitive Noetherian hypercentral ring and so has enough invertible ideals.

Let $R \doteq D_{n}\left[x_{1}, \ldots, x_{t}\right]$. Then R is primitive by [1, Theorem 3] and Noetherian by the Hilbert Basis Theorem. That R is hypercentral follows at once from the next result.

Lemma 2.9. Let H be a hypercentral ring and S the polynomial ring $H[x]$. Then S is a hypercentral ring.

Proof. Let $I>J$ be ideals of S. Let k be the least non-negative integer such that there is an element of degree k which lies in I but not J. Let I_{k}, J_{k} denote, respectively, the set of leading coefficients of elements of degree k in I, J together with the zero element in each case. Then $I_{k} \geqq J_{k}$ and I_{k} and J_{k} are ideals of H. Let

$$
a=a_{0}+a_{1} x+\ldots+a_{k} x^{k} \in I
$$

but $a \notin J$ where $a_{i} \in H(0 \leqq i \leqq k)$. Then $a_{k} \in I_{k}, a_{k} \notin J_{k}$, otherwise there exists $b \in J$ such that $a-b$ has degree $\leqq k$ and hence $a-b \in J$. Thus $I_{k}>J_{k}$. There exists $c_{k} \in I_{k}$ such that $c_{k}+J_{k}$ is a non-zero central element of the ring R / J_{k}. There exist $c_{i} \in H(0 \leqq i \leqq k-1)$ such that

$$
c=c_{0}+c_{1} x+\ldots+c_{k} x^{k} \in I
$$

If $h \in H$ then the leading coefficient of $c h-h c$ belongs to J_{k} and hence, by the choice of k, ch $-h c \in J$. It follows that $c+J$ is a non-zero central element of R / J. Hence R is a hypercentral ring.

Next we give a class of non-Noetherian examples.
Example 2.10. Let K be a field and G a torsion-free nilpotent group with centre Z such that G contains an Abelian subgroup A of rank not less than the cardinality of the group algebra $K Z$ such that $A \cap Z=1$. Let R be the group algebra $K G$. Then R is a primitive hypercentral right and left Ore domain. Moreover R is a non-Noetherian ring with enough invertible ideals.

The fact that R is primitive can be found in [3, Corollary 3.4]. That R is hypercentral is a consequence of [10, Theorem A]. The ring R is a right and left Ore domain by [9, Lemmas 13.1.6, 13.1.9 and 13.3.6].

An example of a group which satisfies the hypotheses of Example 2.10 can be obtained as follows. For each positive integer n define

$$
H_{n}=\left\langle x_{n}, y_{n}, z_{n} ;\left[x_{n}, z_{n}\right]=\left[y_{n}, z_{n}\right]=1,\left[x_{n}, y_{n}\right]=z_{n}\right\rangle .
$$

Let G be the direct product of the groups $H_{n}(n \geqq 1)$ and A the subgroup of G generated by the elements $x_{n}(n \geqq 1)$. Then G is torsion-free nilpotent of class $2, A \cap Z=1$ and the rank of A has the required property if K is a countable field.

References

1. S. A. Amitsur and L. W. Small, Polynomials over division rings, Israel J. Math. 31 (1978), 353-358.
2. F. W. Anderson and K. R. Fuller, Rings and categories of modules (Springer-Verlag, 1974).
3. K. A. Brown, Primitive group rings of soluble groups, preprint.
4. D. Eisenbud and J. C. Robson, Modules over Dedekind prime rings, J. Algebra 16 (1970), 67-85.
5. -Hereditary Noetherian prime rings, J. Algebra 16 (1970), 86-104.
6. A. W. Goldie, Semiprime rings with maximum condition, Proc. London Math. Soc. (3) 10 (1960), 201-220.
7. T. H. Lenagan, Bounded Asano orders are hereditary, Bull. London Math. Soc. 3 (1971), 67-69.
8. - Bounded hereditary Noetherian prime rings, J. London Math. Soc. (2) 6 (1973), 241-246.
9. D. S. Passman, The algebraic structure of group rings (Wiley, 1977).
10. J. E. Roseblade and P. F. Smith, A note on hypercentral group rings, J. London Math. Soc. (2) 13 (1976), 183-190.
11. L. W. Small, Semi-hereditary rings, Bull. Amer. Math. Soc. 73 (1967), 656-658.
12. D. B. Webber, Ideals and modules of simple Noetherian hereditary rings, J. Algebra 16 (1970), 239-242.

University of Glasgow,
Glasgow, Scotland

