ALGEBRAS WITH A DIAGONABLE SUBSPACE WHOSE CENTRALIZER SATISFIES A POLYNOMIAL IDENTITY

E. G. GOODAIRE

1. Introduction. The literature concerning rings with polynomial identity contains several theorems in which the existence of a polynomial identity on a subring implies the existence of such an identity on the ring itself. Belluce and Jain showed in 1968 that a prime ring will satisfy a polynomial identity provided it contains a right ideal with zero left annihilator which satisfies a polynomial identity [2]. This present paper was inspired by papers of Montgomery [7] and Smith [10] in which the P.I. subrings of interest were centralizers of certain elements in the ring. These authors have subsequently extended their work to the centralizers of separable subalgebras [8]; we extend to centralizers of certain subspaces.

In a previous work of this author [3], the notion of a diagonable subspace of an algebra over a field k was defined. This is a subspace L with the property that the linear transformations ad $x: a \mapsto(a, x)=a x-x a$ for $x \in L$ are simultaneously diagonalizable. Equivalently, the algebra A is the direct sum of the subspaces

$$
A_{\alpha}=A_{\alpha}(L)=\{a \in A:(a, x)=\alpha(x) a \text { for all } x \in L\}
$$

the α 's called roots of L in A being maps (easily seen to be linear) $L \rightarrow k$. The subspace L is finitely diagonable if the set Δ of roots is finite. Any idempotent or more generally any algebraic element whose minimal polynomial splits into distinct linear factors over k spans a finitely diagonable subspace as does any Cartan subalgebra of a finite dimensional simple Jordan algebra (with k algebraically closed and of characteristic 0) when embedded in the universal enveloping algebra. A Cartan subalgebra of a finite dimensional simple Lie algebra becomes a diagonable subspace of the universal enveloping algebra though not finitely diagonable. The centralizer of a diagonable subspace L plays an important role in the representation theory of the algebra. If one calls a module λ-weighted, λ a linear functional on L, if it contains a non-zero element which is annihilated by some power of $x-\lambda(x)$ for every x in L, then for any λ, there is a one-to-one correspondence between the irreducible λ weighted modules of the algebra and those of the centralizer of L. In the case where L is spanned by a separable element of the kind described above (and this includes the aforementioned case of the Cartan subalgebra of a Jordan

[^0]algebra) then any module is λ-weighted for some λ and this implies that the centralizer of L is actually "large" enough to distinguish between all irreducible representations of the algebra.

It is reasonable to expect that the algebraic structure of the centralizer of a diagonable subspace should be closely tied to that of the algebra itself, and in [3] we did give several results which substantiate this expectation. To these we here add another; namely, the existence of a polynomial identity for the centralizer of a finitely diagonable subspace implies the existence of a polynomial identity for the entire algebra.

Theorem 1.1. Let A be an algebra over a field k of characteristic 0 which possesses a finitely diagonable subspace L with no more than $2 n-1$ roots. Then if the centralizer of L satisfies a polynomial identity of degree m, A satisfies the standard identity $S_{n m}$ if A is semi-prime, else some power of $S_{n m}$.

Any finite set Ω of commuting algebraic elements each of whose minimal polynomials has distinct roots in the base field spans a finitely diagonable subspace (see 2.1 and 2.2 of [3]). Thus we obtain immediately the following corollary, which for the case card $\Omega=1$ is a consequence of a theorem of Smith [10].

Corollary 1.2. Let A be an algebra over a field k of characteristic 0 and suppose Ω is a finite set of commuting separable elements of A with all minimal polynomials splitting in k. Then if the centralizer of Ω satisfies a polynomial identity, A satisfies a standard identily if A is semi-prime, else some power of a standard identity.
2. Central simple algebras. In this section, we characterize diagonable elements of central simple algebras (finite dimensional over a field) as linear combinations of orthogonal idempotents and use this fact to establish Theorem 1.1 in this special situation. By a (finitely) diagonable element, we simply mean an element x which spans a (finitely) diagonable subspace. In this case, we will always identify a root α with the scalar $\alpha(x)$. The following general result about algebraic diagonable elements is crucial.

Lemma 2.1. Let x be a diagonable algebraic element in an algebra A (with 1) over a field k of characteristic 0 . Assume that the minimal polynomial of x is irreducible. Then x is central.

Proof. Let q be the minimal polynomial of x and let $A_{\alpha}, \alpha \in k$, be any (nonzero) root space. Since $A_{\alpha} q(x)=0$, it is readily checked that $q(x+\alpha) A_{\alpha}=0$. But $q(x) A_{\alpha}=0$ and so the polynomials $q(t)$ and $q(t+\alpha)$ cannot be relatively prime. Assuming as we may that they are monic, they are equal because they are irreducible. Now comparing the terms in $q(t)$ and $q(t+\alpha)$ of degree $(\operatorname{deg} q)-1$ we find $\alpha=0$; i.e., $A=A_{0}$ and x is central.

Proposition 2.2. Suppose A is a finite dimensional central simple algebra over
a field k of characteristic 0 . Then an element of A is diagonable if and only if it is a linear combination of orthogonal idempotents.

Proof. If $x=\sum_{1}^{n} \alpha_{i} e_{i}$ is a linear combination of the orthogonal idempotents e_{1}, \ldots, e_{n} (which we assume have sum 1 with no loss of generality), every $a \in A$ can be written $a=\sum_{i, j} e_{i} a e_{j}$. Since $e_{i} a e_{j} \in A_{\alpha_{j}-\alpha_{i}}, x$ is diagonable. For the converse, suppose the minimal polynomial for x is $\prod_{1}^{s} q_{i}^{n_{i}}$, where q_{1}, \ldots, q_{s} are distinct irreducible monic polynomials. Then since A is semiprime, so is $A_{0}\left[3\right.$, Theorem 5.4] and thus each $n_{i}=1$; otherwise, $\Pi_{1}^{s} q_{i}(x)$ would be a nilpotent element in the centre of A_{0}. Using a standard argument, we can write $1=\sum_{1}^{s} e_{i}, e_{1}, \ldots, e_{s}$ being orthogonal idempotents which commute with x and are such that $q_{i}(x) e_{i}=0$ for all i. It follows that q_{i} is the minimal polynomial of $x_{i}=x e_{i}$. Denote by $A_{1}\left(e_{i}\right)$ the algebra $e_{i} A e_{i}$. This is central simple over k because it is isomorphic to $\operatorname{End}_{D} V e_{i}$, where A is isomorphic to $\operatorname{End}_{D} V$, the ring of linear transformations of the vector space V over division ring D. Since $A_{1}\left(e_{i}\right)$ ad $x=A_{1}\left(e_{i}\right)$ ad $x_{i} \subset A_{1}\left(e_{i}\right)$, we see as in $[\mathbf{3}, 2.2]$ that x_{i} is a diagonable element of $A_{1}\left(e_{i}\right)$ and hence $x_{i}=\alpha_{i} e_{i}, \alpha_{i} \in k$ by Lemma 2.1. Thus $x=x\left(\sum_{i} e_{i}\right)=\sum_{i} \alpha_{i} e_{i}$.

One feature of the root structure of semi-prime algebras that we will find very useful in what follows is this:
(1) If A is semi-prime with 1 and a_{α} is a non-zero element of a root space A_{α}, $\alpha \neq 0$, then $a_{\alpha} A_{-\alpha} \neq 0$ and $A_{-\alpha} a_{\alpha} \neq 0$.

To see this, simply notice that if $a_{\alpha} A_{-\alpha}=0$, then $a_{\alpha} A$ is a right ideal of A not meeting A_{0}. Hence it is nilpotent by [3, Lemma 5.3], an impossibility. In particular, the remark (1) implies that in a semi-prime ring with 1 , the number of roots, including 0 , is always odd. We are now in a position to prove Theorem 1.1 for finite dimensional central simple algebras.

Theorem 2.3. Let A be a central simple algebra of finite dimension over a field k of characteristic 0 . Suppose L is a finitely diagonable subspace of A with no more than $2 n-1$ roots whose centralizer satisfies a polynomial identity of degree m. Then A satisfies $S_{n m}$ and $[A: k] \leqq \frac{1}{4}(n m)^{2}$.

Proof. We have $A \simeq D_{t}$ for some division algebra D, central over k. Letting K be any maximal subfield of D containing $k, D \otimes_{k} K \simeq K_{s}, s=[D: k]$, using a result in Herstein [4, p. 96]. Thus $A \otimes_{k} K \simeq D_{t} \otimes_{k} K \simeq K_{s t}$. Since $K_{s t}$ satisfies $S_{2 s t}$, so does A. Also $[A: k]=(s t)^{2}$ so we may complete the proof by establishing $s t \leqq \frac{1}{2} \mathrm{~nm}$. For this, we first note that the finite dimensionality of A implies that any collection of centralizers of diagonable elements in A has minimal elements (with respect to inclusion), and thus there is some $x \in L$ for which the centralizer of L is just the centralizer of x [$\mathbf{3}$; Theorem 6.2]. In our notation, $A_{0}(L)=A_{0}(x)$. By Proposition 2.2,

$$
\begin{equation*}
x=\sum_{1}^{t} \alpha_{i} e_{i} \tag{2}
\end{equation*}
$$

is a linear combination of orthogonal idempotents which we may assume are primitive with sum 1. Suppose that the number of distinct α_{i} appearing in (2) is l. Then some α_{j} occurs as a coefficient r times, $r \geqq t / l$. Thus D_{r} is a subring of $A_{0}(x)$ and consequently satisfies a polynomial identity of degree m. By Kaplansky's famous theorem (see for instance [4; p. 157]), $\left[D_{r}: k\right] \leqq[m / 2]^{2}$; i.e. $r s \leqq[m / 2]$ and so $s t \leqq(t / r)[m / 2]$. Since $r \geqq t / l$, st $\leqq \frac{1}{2} m l$. Now write $x=\sum_{1}^{l} \beta_{i} f_{i}$ where $\beta_{1}, \ldots, \beta_{l}$ are the distinct α_{i} and each f_{j} is the sum of all the e_{i} 's which had the same coefficient in (2). Then the f_{i} 's have sum 1 and so $A=\sum_{i, j} f_{i} A f_{j}$. Since A is prime, $0 \neq f_{i} A f_{j} \subset A_{\beta_{j}-\beta_{i}}(x)$ and so the non-zero roots of x are precisely the set of $\beta_{j}-\beta_{i}, i$ and j running from 1 to l. We conclude the proof by establishing that this set is of cardinality at least $2 l-1$, and hence $l \leqq n$ and $s t \leqq \frac{1}{2} n m$ as required.

Because its characteristic is 0 , we can consider k to be a vector space over the rationals. Let $\gamma_{1}, \ldots, \gamma_{p}$ be a basis for the subspace U spanned by $\beta_{1}, \ldots, \beta_{l}$ and order U be declaring $\sum_{1}^{p} r_{i} \gamma_{i}>0$ if the first non-zero r_{i} is positive. Assume that β_{1} is the largest β_{i} with respect to this ordering. Then $\beta_{1}-\beta_{2}, \beta_{1}-\beta_{3}$, $\ldots, \beta_{1}-\beta_{l}$ are $l-1$ different positive elements of U yielding together with their negatives and 0 , a total of $2(l-1)+1=2 l-1$ different elements $\beta_{j}-\beta_{i}$.
3. Prime algebras. We prove in this section two theorems on which our main Theorem 1.1 heavily depends.

Theorem 3.1. Let A be a prime algebra over a field k of characteristic 0 and L a finitely diagonable subspace. Then if the centralizer of L satisfies a polynomial identity, A satisfies a generalized polynomial identity.

Proof. Denote by $\tilde{\Delta}$ the vector space over the rationals (the prime field of k) spanned by the set Δ of roots of L. Since Δ is finite, $\tilde{\Delta}$ has a finite basis α_{1}, \ldots, α_{n} relative to which $\tilde{\Delta}$ may be ordered just as in the previous section. Let $\alpha \in \Delta$ be a maximal root in this ordering. Then for any positive root $\beta, \alpha+\beta$ cannot be a root and so $A_{\alpha} A_{\beta}=0$ (because $A_{\alpha} A_{\beta} \subset A_{\alpha+\beta}$). Also $-\alpha$ will be a minimal root and so $A_{\beta} A_{-\alpha}=0$ for any negative root β. We recall here the earlier remark (1) and its implication that γ is a root if and only if $-\gamma$ is also a root. Let a_{α} and $a_{-\alpha}$ be arbitrary (non-zero) elements of A_{α} and $A_{-\alpha}$ respectively such that $a_{-\alpha} a_{\alpha} \neq 0$. Then $f(u)=a_{\alpha} u a_{-\alpha} \in A_{0}$ for any $u \in A$. Now as in Herstein [4, p. 156-7], we may assume A_{0} satisfies a multilinear homogeneous identity of the form

$$
g\left(x_{1}, \ldots, x_{t}\right)=x_{1} \ldots x_{t}+\sum_{1 \neq \sigma \in S_{t}} a_{\sigma} x_{\sigma(1)} \ldots x_{\sigma(t)}
$$

Then A certainly satisfies the generalized polynomial identity $g\left(f\left(y_{1}\right), \ldots\right.$, $f\left(y_{t}\right)$). This is a non-trivial identity because the term involving y_{1}, \ldots, y_{t} in this order is $a_{\alpha} y_{1} a_{-\alpha} a_{\alpha} y_{2} a_{-\alpha} \ldots a_{\alpha} y_{t} a_{-\alpha}$ which is non-zero because of the primeness of A and the fact that $a_{-\alpha} a_{\alpha} \neq 0$.

Theorem 3.2. Let A be a primitive algebra over a field k of characteristic 0 with non-zero socle. Suppose L is a finitely diagonable subspace whose centralizer satisfies a polynomial identity. Then A is the complete ring of linear transformations of a vector space finite dimensional over a division ring D.

Proof. Let S denote the socle of A. Then as a two-sided ideal of A, S is homogeneous, $S=S_{0}+\sum_{0 \neq \alpha \in \Delta} S_{\alpha}$ relative to the collection Δ of roots of L in A. For if $s \in S$, we can write $s=\sum_{\alpha \in \Delta} u_{\alpha}$ with $u_{\alpha} \in A_{\alpha}$. Because S is twosided, the commutator $(s, x)=\sum_{\alpha \neq 0} \alpha(x) u_{\alpha}$ is in S and hence so is $((s, x), x)=$ $\sum_{\alpha \neq 0} \alpha(x)^{2} u_{\alpha}$. Generally
(3) $\sum_{\alpha \neq 0} \alpha(x)^{j} u_{\alpha}=s_{j}$
is in S for any positive integer j. Now $u_{\alpha}=0$ except for α in some finite set $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\} \subset \Delta$ and since the α_{i} are linear functionals on L and k is infinite, there is some $x \in L$ for which the scalars $\alpha_{1}(x), \alpha_{2}(x), \ldots, \alpha_{n}(x)$ are distinct (the union of the finitely many subspaces which are the kernels of $\alpha_{i}-\alpha_{j}$ cannot be all of L). Then letting j run from 1 to n, the matrix of coefficients of the system of linear equations given by (3) is an invertible Vandermonde matrix. Consequently each u_{α} with $\alpha \neq 0$ is in S, but then so is $u_{0}=s-\sum_{\alpha \neq 0} u_{\alpha}$. We next recall that S is a von Neumann regular ring: for every $u \in S$, there is a $v \in S$ such that $u=u v u$, and the homogeneity of S implies that if $u \in S_{\alpha}$, we may assume $v \in S_{-\alpha}$. In particular, $S_{\alpha} S_{-\alpha} S_{\alpha}=S_{\alpha}$ for for all $\alpha \in \Delta$ and also S_{0} is a von Neumann regular ring satisfying the same polynomial identity as A_{0}. A key point in proving this theorem is the observation that
(4) Any non-zero (two-sided) ideal of S_{0} contains a central idempotent.

Firstly, as a von Neumann regular ring S_{0} is semi-prime and so any non-zero ideal I at least contains some central element u by Rowen's result [9]. Then choosing $v \in S_{0}$ such that $u v u=u, e=u v$ is an idempotent in I which is central because $e s_{0}=u v s_{0}=v s_{0} u=v s_{0} e u=u v s_{0} e=e s_{0} e=e s_{0} u v=e u s_{0} v=$ $u s_{0} v=s_{0} u v=s_{0} e$ for any $s_{0} \in S_{0}$.

Now define for each non-zero $\alpha \in \Delta, I_{\alpha}=S_{\alpha} S_{-\alpha}$. Amongst the minimal elements in the set U of non-zero intersections of these ideals, choose $I=\bigcap_{\alpha \in \Delta_{1}}$ I_{α} with Δ_{1} of maximal cardinality. Since S is simple, $S=S I S$, and so $S_{0}=$ $\sum_{\beta \in \Delta} S_{\beta} I_{-\beta}$. Now for any $\beta \in \Delta, S_{\beta} I S_{-\beta} \subset \bigcap_{\alpha \in \Delta_{1}} S_{\beta} I_{\alpha} S_{-\beta}$, and $S_{\beta} I_{\alpha} S_{-\beta} \subset I_{\alpha+\beta}$ if $\alpha+\beta \neq 0$ (because $S_{\alpha} S_{\beta} \subset S_{\alpha+\beta}$) and $S_{\beta} I_{\alpha} S_{-\beta}=S_{\beta} S_{-\beta} S_{\beta} S_{-\beta}=S_{\beta} S_{-\beta}=I_{\beta}$ if $\alpha+\beta=0$. As a consequence, $S_{\beta} I S_{-\beta}$ is contained in $\bigcap_{\alpha \in \Delta^{\prime}} I_{\alpha}$ for some set $\Delta^{\prime} \subset \Delta$ of the same cardinality as Δ_{1}. Thus if $S_{\beta} I S_{-\beta}$ is not zero, neither is $\cap_{\alpha \in \Delta^{\prime}} I_{\alpha}$ which must then be a minimal ideal of U by the definition of I. We thus see that S_{0} is a sum of ideals A_{1}, \ldots, A_{n}, minimal elements of U, each $A_{i}=\bigcap_{\alpha \in \Delta_{i}} I_{\alpha}$, all the Δ_{i} 's of the same maximal cardinality. Assuming the A_{i} 's are distinct, their intersections and hence products in pairs is 0 , by minimality.

Moreover,

$$
\begin{equation*}
A_{i} S_{\beta} A_{i}=0 \quad \text { for any } \beta \neq 0 \tag{5}
\end{equation*}
$$

If this were not so for some particular β, we would have $0 \neq A_{i} S_{\beta} S_{\alpha} \subset A_{i} S_{\beta+\alpha}$ for any $\alpha \in \Delta_{i}$ and so $0 \neq A_{i} I_{\beta+\alpha} \subset A_{i} \cap I_{\beta+\alpha}$ by (1). This forces $\beta+\alpha \in \Delta_{i}$ because of the maximality of Δ_{i}. Repeating this argument with α replaced by $\beta+\alpha$, we see that $2 \beta+\alpha \in \Delta_{i}$. It follows that $n \beta+\alpha \in \Delta_{i}$ for any $\alpha \in \Delta_{i}$ and integer n, a contradiction to the finiteness of Δ_{i}.

Now using (4), choose idempotents e_{1}, \ldots, e_{n}, central in S_{0}, each $e_{i} \in A_{i}$ (implying orthogonality). Since S is simple, $S=S e_{i} S$ for any i from which we see that

$$
\begin{equation*}
S_{0}=e_{i} S_{0}+\sum_{0 \neq \neq \alpha \in \Delta} S_{\alpha} e_{i} S_{-\alpha} \tag{6}
\end{equation*}
$$

Certainly $e_{i} S_{0} \subset A_{i}$, and for $\alpha \neq 0, S_{\alpha} e_{i} S_{-\alpha}$ is either zero or contained in a minimal element B of U, repeating a previous argument. This B must be one of the A_{j}, for $B \neq A_{j}$ implies $B A_{j}=0$ and if this occurs for all $j, B=B S_{0}=$ $B\left(\sum A_{j}\right)=0$. Also $B \neq A_{i}$, for otherwise $\left(S_{\alpha} e_{i} S_{-\alpha}\right)^{2} \subset\left(S_{\alpha} e_{i} S_{-\alpha}\right) A_{i}=0$ by (5). This cannot occur because S_{0} contains no non-zero nilpotent ideals. Using the directness of the sum $S_{0}=\sum A_{j}$ and (6) it follows readily that $e_{i} S_{0}=A_{i}$. Thus $\sum_{1}^{n} e_{i}$ is an identity element for S_{0} and hence for all of S because $S_{\alpha}=$ $S_{\alpha} S_{-\alpha} S_{\alpha} \subset S_{0} S_{\alpha} \cap S_{\alpha} S_{0}$. Now both the primitive algebra A and its socle S are dense rings of linear transformations of a vector space V over a division algebra D. To say that S has an identity element is to say that $[V: D]<\infty$, because every element of S has finite rank. Thus A is the complete ring of linear transformations of V.
4. Semi-prime algebras. We now prove Theorem 1.1. Suppose that L is a diagonable subspace of an algebra A over a field k of characteristic 0 , that L possesses at most $2 n-1$ roots, and that the centralizer of L satisfies a polynomial identity of degree m. If \bar{A} is any homomorphic image of A, then \bar{L} is a diagonable subspace of \bar{A}, in fact with no more roots than L because $\bar{A}_{\alpha}(\bar{L})=$ $A_{\alpha}(L)$. In particular, the centralizer of \bar{L} in \bar{A} is a homomorphic image of the centralizer of L in A and hence satisfies the same polynomial identity as $A_{0}(L)$. For the sake of completeness, we include here an argument due to Amitsur [1] which allows us to assume that A is semi-prime. Assuming the truth of 1.1 for semi-prime algebras and supposing A to be an arbitrary algebra satisfying the hypotheses of this theorem, we let N be the lower nil radical of A and deduce that $S_{d}\left(a_{1}, \ldots, a_{d}\right) \in N$ for any choice of $a_{1}, \ldots, a_{d} \in A$, $d=n m$. Let $A^{\prime}=\prod_{\lambda \in \Lambda} A_{\lambda}, \Lambda=\left\{\left(a_{1}, \ldots, a_{d}\right): a_{i} \in A\right\}, A_{\lambda}=A$ for all λ and $L^{\prime}=\left\{f_{x}: x \in L\right\}$, where for each $x \in L, f_{x}$ is defined by $f_{x}(\lambda)=x$, for every λ. Then L^{\prime} is diagonable in A^{\prime} with the same roots as L in A because every $f \in A^{\prime}$ can be written $f=\sum f_{\alpha}$ where $f_{\alpha} \in A_{\alpha}{ }^{\prime}\left(L^{\prime}\right)$ is defined by $f_{\alpha}(\lambda)=$ α-component in A of $f(\lambda)$. We see here that $A_{\alpha}{ }^{\prime}\left(L^{\prime}\right)=\left\{f: f(\lambda) \in A_{\alpha}\right.$ for all $\left.\lambda\right\}$ $=\Pi_{\lambda \in \Lambda} A_{\alpha}(L)_{\lambda}$. Thus the centralizer of L^{\prime} in A^{\prime} satisfies the same polynomial
identity as $A_{0}(L)$. As above, this means that $S_{d}\left(f_{1}, \ldots, f_{d}\right)$ is in the lower nil radical of A^{\prime} and hence is nilpotent for every $f_{1}, \ldots, f_{d} \in A^{\prime}$. Choosing f_{i} as that element of A^{\prime} such that $f_{i}(\lambda)=a_{i}$ for $\lambda=\left(a_{1}, \ldots, a_{d}\right)$ we obtain $S_{d}\left(a_{1}, \ldots, a_{d}\right)^{l}=0$ for some integer l and for all $\lambda=\left(a_{1}, \ldots, a_{d}\right)$. In other words, $S_{n m}{ }^{l}$ is an identity for A.

So we now assume that A is semi-prime. In this case, A is the subdirect sum of the prime algebras $A / P, P$ ranging over the prime ideals of A. As homomorphic images of A, each of the algebras A / P has finitely diagonable subspaces whose centralizers satisfy the same identity as $A_{0}(L)$. If each prime algebra A / P satisfies $S_{n m}$, certainly A does too. Thus we may assume that A is prime.

In this case, following Martindale [6], we let $C(\subset k)$ be the extended centroid and $S=A C$ the central closure of A. As a subspace of S, L is diagonable and $S_{\alpha}(L)=A_{\alpha}(L) C$ because C centralizes $A ; A_{\alpha}(L) C \subset S_{\alpha}(L)$ is easily seen, and for the converse, if $s=\sum_{i} a_{i} c_{i} \in S$ and $a_{i}=\sum_{\alpha \in \Delta} a_{i \alpha}$ relative to L, then $s=\sum_{\alpha}\left(\sum_{i} a_{i \alpha} c_{i}\right)$ showing that $S=\sum_{\alpha} A_{\alpha}(L) C$ and $S_{\alpha}(L)=A_{\alpha}(L) C$. Also the centralizer of L in $S, S_{0}(L)=A_{0}(L) C$ satisfies the same polynomial identity as does $A_{0}(L)$ (see the proof of Theorem 1, p. 225 of [5]). Since S is a prime algebra over C, our Theorem 3.1 shows that S satisfies a generalized polynomial identity and hence is primitive with non-zero socle by Theorem 3 of [6]. Our Theorem 3.2 indicates that S is the complete ring of linear transformations of a vector space which is finite dimensional over a division ring D, and a theorem of Amitsur [6, Theorem 5] reveals that D is finite dimensional over its centre. Thus S is finite dimensional central simple and satisfies $S_{n m}$ by Theorem 2.3. Since A is a subalgebra of S, A too satisfies $S_{n m}$.

References

1. S. A. Amitsur, Rings with involution, Israel J. Math. 6 (1968), 99-106.
2. L. P. Belluce and S. K. Jain, Prime rings with a one-sided ideal satisfying a polynomial identity, Pac. J. Math. 24 (1968), 421-424.
3. E. G. Goodaire, Irreducible representations of algebras, Can. J. Math. 26 (1974), 1118-1129.
4. I. N. Herstein, Noncommutative rings, Carus Mathematical Monographs, Math. Assoc. of Amer. (Wiley, New York, 1968).
5. N. Jacobson, Structure of rings, Coll. Pub. 37, Amer. Math. Soc. (1964).
6. W. S. Martindale, III, Prime rings satisfying a generalized polynomial identity, J. of Alg. 12 (1969), 576-584.
7. S. Montgomery, Centralizers satisfying polynomial identities, Israel J. Math. 18 (1974), 207-219.
8. Susan Montgomery and Martha K. Smith, Algebras with a separable subalgebra whose centralizer satisfies a polynomial identity, Comm. in Alg. 3 (2) (1975), 151-168.
9. L. Rowen, Some results on the center of a ring with polynomial identity, Bull. Amer. Math. Soc. 79 (1973), 219-223.
10. Martha K. Smith, Rings with an integral element whose centralizer satisfies a polynomial identity, Duke Math. J. 42 (1975), 137-149.

Memorial University of Nerwfoundland, St. John's, Newfoundland

[^0]: Received December 17, 1975 and in revised form, December 22, 1976. This research was supported by the National Research Council of Canada, Grant No. A-9087.

