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Abstract. We suggest a simple dynamical system which mimics a nonlinear dynamo which is
able to provide (in specific domains of its parametric space) the temporal evolution of solar
magnetic activity cycles as well as evolution of geomagnetic field including its polarity reversals.
A qualitative explanation for the physical nature of both phenomena is presented and discussed.
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1. Introduction
Temporal behaviour of solar magnetic activity is far from just a cycle. Discussions of

various features of long-term dynamics of solar activity including Maunder minimum and
other Grand minima are presented in many papers included in this volume. Temporal be-
haviour of geomagnetic field is obviously specific. In contrast to the solar magnetic cycle,
geomagnetic dipole field remains usually more or less constant and its secular and more
long-term archaeomagnetic variations do not result in its polarity reversals. In geological
timescales however geomagnetic field suddenly changed, as geologists believe, its polar-
ity many times (Christensen et al. 2010; Hulot et al., 2010). Sequence of geomagnetic
reversals as well as that one of solar Grand minima look aperiodic and irregular.

Various solar dynamo models including those discussed in this volume reproduce at
least qualitatively solar Grand minima as well as geodynamo model based on direct nu-
merical simulations give hundreds of reversals (Olson et al. 2010). Magnetic field reversals
similar to some extent to the geomagnetic reversals was reproduced in laboratory dy-
namo experiments (Berhanu et al. 2007). Physical nature of these phenomena remains
however not completely clear, cf. Choudhuri (2012).

Solar magnetic activity as well as geomagnetic field are thought to be driven by dy-
namos in spherical shells based on differential rotation and mirror-asymmetric convection.
Particular manifestations of these dynamos are obviously specific. However it looks at-
tractive to present both associated long-term dynamics as manifestations of a unique
physical mechanism acting in two separate domains of the parametric space of dynamo
governing parameters. Here we present a simple model which demonstrates a mechanism
which can be responsible for both long-term dynamics.

We consider fluctuations in regeneration rate of poloidal magnetic field from toroidal
one as the physical driver underlying mechanism leading to the magnetic long-term dy-
namics. To be specific, we discuss this mechanism in the framework of dynamo based on
the classical α-effect. However the idea looks applicable as well to the dynamos based on
meridional circulation.

360

https://doi.org/10.1017/S1743921312005091 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921312005091


A simple dynamo model for grand minima and geomagnetic reversals 361

α-coefficient being a result of averaging over an ensemble of a moderate number of
convective cells (say, N ≈ 104) contains a noisy component which importance for dy-
namo was stressed e.g. by Hoyng (1993). Hoyng (1993) supposed correlation time and
length of α-fluctuations to be comparable with that ones for convective vortexes. Then
one need fluctuations amplitude comparable with mean value of α to get an interesting
long-term dynamics for dynamo generated magnetic field. Basing on the later results of
direct numerical simulations of α-effect, (Brandenburg & Sokoloff 2002; Otmianowska-
Mazur, Kowal & Hanasz 2006), determinations of α-coefficient from dynamo shell models
(Frick, Stepanov & Sokoloff 2006) as well as laboratory measurements of the α-coefficient
(Stepanov et al., 2006) we presume that the correlation time and length of α-fluctuations
are comparable for the cycle period and size of solar convective zone; standard N−1/2

estimation for the fluctuation size do not contradict to this presumption. Then we need
δα/α ≈ 10% − 20% to get a desired behaviour for dynamo generated field (Moss et al.
2008; Usoskin, Sokoloff & Moss 2009).

2. Dynamical system
We obtain the desired simple model from general Parker mean-field dynamo models

with differential rotation and α-effect decomposing it in the Fourier series and truncating
the series keeping in consideration as small number of modes as possible to get generation
of magnetic field with nonvanishing magnetic moment (see Nefedov & Sokoloff 2010,
for details of calculations). More explicitly, we represent toroidal magnetic field B and
toroidal component of magnetic potential A as

B = −b1 sin 2θ + b2 sin 4θ, A = a1 cos θ − a2 cos 3θ, (2.1)

where θ is co-latitude and truncate Parker (1955) dynamo equation accordingly to get
the following dynamical system

da1

dt
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Rαb1

2
− a1 −
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Figure 1. Synoptic map for dynamo regimes: 1, 1a - decay, 2 - stationary field, 3 -
vacillations, 4 - dynamo bursts, 5 - oscillations.
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db1

dt
=

Rω

2
(a1 − 3a2) − 4b1 , (2.4)

db2

dt
=

3Rω a2

2
− 16b2 . (2.5)

Here Rα and Rω are dimensionless numbers for intensity of α-effect and differential rota-
tion correspondingly. We presume that the radial rotation shear is latitude independent
and dominate over the latitudinal one and α(θ) ∼ sin θ. We presume simple algebraic
α-quenching in form α ∼ 1/(1 + B2/B2

eq) and measure magnetic field in units of the
equipartition magnetic field, so Beq = 1. We neglected regeneration of toroidal field from
poloidal one due to the α-effect and connect this regeneration with differential rotation
only, i.e. consider so-called αω-dynamo. Because the dynamo generated toroidal mag-
netic field is usually much larger then the poloidal one, we neglect in dynamical system
nonlinear terms with a1 and a2 . Replacing variables one can combine dimensionless num-
bers Rα and Rω in so-called dynamo number D = RαRω . Note that the coefficient a1 is
proportional to the magnetic moment of dynamo generated magnetic field.

3. Dynamo regimes
We simulate the dynamical system (2.2-2.5) numerically to isolate the following regimes

of magnetic field evolution.
Let us start with dynamo regimes which occur for a time-independent α-effect pa-

rameterized by dimensionless number Rα . For a very weak dynamo action, i.e. small D

Figure 2. Various regimes of temporal behaviour for dynamo generated magnetic field (coef-
ficient a1 responsible for magnetic moment versus time): a - oscillations, b - vacillations, c -
dynamo bursts.
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magnetic field decays (corresponding range in synoptic map Fig. 1 is marked by 1). For
slightly larger dynamo numbers dynamo dynamo self-excitation occurs, dynamo gener-
ated magnetic field first growths manometrically and then becomes steady due to non-
linear dynamo saturation (domain 2 in Fig. 1). Even larger dynamo number results in a
nonlinear regime with so-called vacillations, i.e. periodic almost harmonic magnetic field
evolution with nonzero mean value (domain 3 in Fig. 1; form of this solution is shown
in Fig. 2a. Further enlargement of D results in a periodic however highly nonharmonic
temporal evolution known as dynamo bursts (domain 4 in Fig. 1). Dynamo generated
magnetic field grows slowly then suddenly and rapidly decay up to zero, changes its
sign and then grows slowly again with the opposite sign until next sign reversal restore
initial magnetic configuration (Fig. 2c). Such temporal behaviour of dynamo generated
magnetic field is known from dynamo experiments, e.g. Berhanu et al. (2007).

If dynamo action becomes even larger it becomes less effective so magnetic field decays
again (domain marked by 1a in Fig. 1) however enlarging D further we obtain almost
harmonic oscillations with zero mean (domain marked 5 in Fig. 1).

We identify domain 5 in Fig. 1 with the dynamo parameter range responsible for the
cyclic solar activity while the parameter range 3 looks similar to the normal behaviour of
dipole geomagnetic field (almost steady component and moderate variations). In partic-
ular, magnetic moment represented in the model by a1 changes its sign each oscillation
(domain 5) however keeps its sign in course of vacillations (domain 3).

4. Grand minima and reversals
Let us consider now what happens if the averaged value of the fluctuating α-coefficient

corresponds to a dynamo regime located in the domain 5 and one need an α-fluctuation
as large as several its standard deviations to move the dynamo regime in the domain 1a
where magnetic field decays. Fluctuations required to shift the dynamo regime in domain
1a being quite large occur rarely so after many normal activity cycles something like a
Grand minima occurs. Moss et al. (2008) and Usoskin, Sokoloff & Moss (2009) investi-

Figure 3. Scenario for magnetic field reversals: a - evolution of the coefficient a1 which represents
magnetic moment; b - evolution of Rα ; mean value of α is shown by a horizontal solid line while
a horizontal dashed line shows Rα which corresponds to transition from domain 3 to the domain
4 in Fig. 1.
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gated (in the framework of Parker migratory dynamo with fluctuating α) corresponding
long-term behaviour of such dynamo to demonstrate that when dynamo governing pa-
rameters correspond to the domain 1a magnetic field mimics what happens during the
Maunder minimum.

A scenario for magnetic field reversals which resembles the geomagnetic field evolution
is slightly more complicated. Let the averaged value of α corresponds to a point in domain
3, i.e. magnetic field has vacillations. A moderate positive fluctuations of α shifts this
point in domain 4 where dynamo bursts occur (Fig. 3b). Further behaviour (Fig. 3a)
depends on the scale of this fluctuations and on the phase of the dynamo burst which
develops during the fluctuation. If the fluctuation is strong and the burst has enough
time during the fluctuation to change sign of dynamo generated magnetic field, then an
inversion occurs. If the fluctuation is weaker and/or the dynamo burst occurred changes

Figure 4. Scenario under discussion gives a geological timescale which is quite similar to that one
known from the palaeomagnetic studies: a - simulated geomagnetic timescale; b - geomagnetic
timescale for the last 150 million years after Gradstein, Ogg & Smith (2004).
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sign too late magnetic moment becomes very weak however keeps its sign and its value
recovers after the end of the fluctuation. Such episodes are known in the palaeomagnetic
studies as excursions. A substantial negative fluctuation of Rα can lead to a long epoch
without reversals as well as without vacillations because the dynamo regime moves in
the domain 2. Such epochs look similar to the long epochs without geomagnetic reversals
known in geological history as superchrones.

The temporal evolution of the solution for Eqs. (2.2-2.5) with the averaged values of
the dynamo governing parameters located nearby the border, between domains 3 and
4, demonstrates a sequence of the dynamo generated field reversals. We illustrate this
sequence by a diagram known in the palaeomagnetology as geomagnetic time scale, i.e. a
column with time as a vertical coordinate where times of one polarity are shown in black
while the times of the opposite polarity are shown in white (Fig. 4a). We compare this
simulated diagram with a corresponding timescale known from palaeomagnetic studies
(Gradstein, Ogg & Smith 2004) as follows. Note that the dynamical system Eqs. (2.2-
2.5) is formulated using a dimensionless time. Of course, palaeomagnetic studies give the
instants of the field reversals in dimensional units. We consider, after Gradstein, Ogg &
Smith (2004) the geomagnetic timescale for the last 150 million years where it is most
elaborated, choose an interval in the simulated timescale which contains the same number
of reversals and presume that the lengthes of both timescales are equal. We present both
timescales in Fig. 4. Of course, the timescales can not be identical because at least one
of them are taken from a realization of a random process. We note however that the
general shapes of both scales are quite similar and conclude that the scenario suggested
reproduces basic feature of geomagnetic reversals.

In general, we conclude that the simple dynamical system Eqs. (2.2-2.5) reproduces
in specific domains of parametric space basic features of cyclic solar activity as well
as evolution of geomagnetic field on geological times including sequence of chaotic field
reversals.
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Discussion

Arnab Choudhuri: What kind of diffusivity do you have in your model?

Dmitry Sokoloff: We assume that turbulent diffusivity is time-independent. In prin-
ciple it is no problem to include diffusivity fluctuations in the model.

Arnab Choudhuri: How strong fluctuations of the parameters do you need in your
model to get a grand minimum?

Dmitry Sokoloff: About 10-20%.
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