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The aim of this review is to summarise the evidence linking vitamin D to bone health outcomes
in older adults. A plethora of scientific evidence globally suggests that large proportions
of people have vitamin D deficiency and are not meeting recommended intakes. Older adults
are at particular risk of the consequences of vitamin D deficiency owing to a combination of
physiological and behavioural factors. Epidemiological studies show that low vitamin D status
is associated with a variety of negative skeletal consequences in older adults including osteo-
malacia, reduced bone mineral density, impaired Ca absorption and secondary hyperpara-
thyroidism. There seems to be inconsistent evidence for a protective role of vitamin D
supplementation alone on bone mass. However, it is generally accepted that vitamin D (17.5mg/
d) in combination with Ca (1200 mg/d) reduces bone loss among older white subjects. Evidence
for a benefit of vitamin D supplementation alone on reducing fracture risk is varied. According
to a recent Agency for Healthcare Research and Quality review in the USA the evidence base
shows mixed results for a beneficial effect of vitamin D on decreasing overall fracture risk.
Limitations such as poor compliance with treatment, incomplete assessment of vitamin D status
and large drop-out rates however, have been highlighted within some studies. In conclusion, it is
generally accepted that vitamin D in combination with Ca reduces the risk of non-vertebral
fractures particularly those in institutional care. The lack of data on vitamin D and bone health
outcomes in certain population groups such as diverse racial groups warrants attention.

25-hydroxyvitamin D: Vitamin D requirements: Older age: Bone mineral density:
Fractures

Osteoporosis is a condition characterised by a low bone
mass and microarchitectural deterioration of bone with a
consequent increase in bone fragility and susceptibility to
fracture. In the UK, it is estimated that 3 million people
are affected with osteoporosis. Furthermore, one in two
British women and one in five British men aged >50 years
will experience an osteoporotic fracture in their lifetime
with the estimated costs in the UK being about £1.7 billion
annually. In the European Union, it has been estimated that
previous and incident fractures accounted for 1 180 000
quality-adjusted life years lost during 2010(1). Further-
more, with an ageing population, the costs associated with

treating osteoporosis in the EU are expected to increase by
25% in 2025(1).

Bone is a dynamic tissue that responds to the external
and internal environments to which it is exposed during
an individual’s lifetime. While a considerable proportion
(up to 70%) of the inter-individual variation in bone mass is
genetically determined, lifestyle factors such as diet and
exercise are well established modifiable factors of bone
mass. Bone turnover is important for the self-repair of skel-
etal tissue(2) as well as maintaining mineral homoeostasis
(e.g. Ca and P) and the balance between the rate of bone
formation and bone resorption (which together constitute
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bone turnover rate) ultimately determines bone mass. In
growing children, bone formation exceeds resorption, bal-
ances resorption in young adults and lags behind resorption
with ageing in both sexes, but particularly after the meno-
pause in women. The rate of bone formation and bone
resorption can be assessed by blood and/or urinary-based
biochemical markers(3). An increased rate of bone turnover
has been suggested as a potential risk factor for osteoporotic
fractures(4,5). The only readily measured surrogate of bone
strength is bone mineral mass, which may be expressed as
bone mineral content and bone mineral density (BMD).
Bone mineral content as well as BMD is measured by dual-
energy X-ray absorptiometry, which is associated with
a low-radiation exposure and relatively high precision and
accuracy. Bone mineral content measures the amount of
bone mineral in g/cm. BMD expresses bone mineral
mass as a function of the bone area scanned area in g/cm2.
Volumetric BMD measures bone mineral content as a func-
tion of true bone volume in g/cm3 but cannot be assessed
using dual-energy X-ray absorptiometry and is best assessed
by quantitative computerised tomography. A decrease in
BMD is associated with an increased risk of osteoporotic
fractures. However, increases in BMD (by dietary modi-
fication or drugs) have not generally been shown to reduce
the risk of osteoporotic fractures in human subjects(6).
Quantitative ultrasound densitometry measurements reflect
not only BMD but also other aspects of bone tissue, such as
elasticity, structure and geometry which are involved in the
occurrence of fractures, and they could be considered as
surrogated for bone quality and, with a great ability to predict
fracture risk(7).

Ca and vitamin D are major nutritional determinants
of bone health throughout the life-course and both nutri-
ents have an interdependent role in bone metabolism.
The present review will examine the role of vitamin D
in maintaining bone health in older (generally 60+years)
adults with particular emphasis on outcomes such as
BMD and fracture. Vitamin D status and particularly
dietary intake in older adults, as well as the effect of
ageing on vitamin D metabolism will be explored.
Finally, dietary vitamin D requirements will also be dis-
cussed in the context of the recent comprehensive Insti-
tute of Medicine (IOM) Dietary Reference Intake report
on vitamin D(8).

Vitamin D metabolism and function

The term ‘vitamin D’ was given during the early 1920s
to a group of closely-related secosteroids with antirachitic
properties. Two of the most important nutritional forms
of vitamin D are cholecalciferol (vitamin D3, derived from
animal origin) and ergocalciferol (vitamin D2, derived from
plant origin). However, natural dietary sources of vitamin
D are limited with oily fish, egg yolk and meat contributing
up to 90% of vitamin D intake from non-fortified
food sources(9). Vitamins D3 and D2 can also be derived by
photoirradiation from their precursors 7-dehydrocholesterol
and ergosterol, respectively. In vertebrates, the cholesterol-
like precursor, 7-dehydrocholesterol, present in the
skin epidermis, undergoes photolysis when exposed to

UV-B-light of wavelengths 290–315 nm to yield a variety
of photoirradiation products including tachysterol, lumi-
sterol and previtamin D3. Previtamin D3 then undergoes
spontaneous thermal rearrangement to vitamin D3. Because
of the skin’s ability to synthesise the vitamin upon expo-
sure to appropriate sunlight, vitamin D is only an essential
nutrient when sunlight is limited.

Vitamin D3 (obtained from dermal synthesis or from
dietary sources), which is biologically inactive, is trans-
ported via vitamin-D-binding protein to the liver where it
is hydroxylated at the C25 position by the 25-hydroxylase
enzyme (CYP2R1) to yield 25-hydroxyvitamin D3

(25(OH)D or calcidiol) which is the most commonly used
index of vitamin D status(8). The CYP2R1 enzyme reg-
ulates 25-hydroxylation of vitamin D3 to produce
25(OH)D3, which is dependent on the concentrations of
vitamin D3 in serum/plasma. From the liver, 25(OH)D3 is
returned to the circulation, bound to vitamin-D-binding
protein, and transported to the kidney where the enzyme
1-a-hydroxylase (CYP27B1) converts it to 1,25-dihydroxy-
cholecalciferol (1,25(OH)2D3 or calcitriol), which is the
major active metabolite of vitamin D. When 1,25(OH)2D3

is in excess, the enzyme 24-hydroxylase (CYP24) in
the kidney converts 25(OH)D3 to 24,25-dihydroxychole-
calciferol, which is believed to be biologically inactive.
Furthermore, 25(OH)D3 can be converted to other inactive
metabolites such as 23,25-dihydroxycholecalciferol, 25,26-
dihydroxycholecalciferol and 1,24,25-trihydroxychole-
calciferol and excreted mainly in faeces, but the biological
roles of these metabolites are not well understood (for
reviews, see(10,11)).

The major biological role of 1,25(OH)2D3 is to promote
intestinal Ca absorption. In addition, 1,25(OH)2D3 increa-
ses the absorption of other essential minerals across the
intestine, such as P, Mg, Zn and Mn(12,13), and enhances
the net renal reabsorption of Ca and P(14). Thus,
1,25(OH)2D3 is a major regulator of Ca homoeostasis. The
classical target organs for 1,25(OH)2D3 are the intestine,
bone, the kidneys and the parathyroid glands; however,
1,25(OH)2D3 also acts at several sites in the body in an
intracrine or paracrine manner(15). Normal physiological
concentrations of Ca are required for proper neuromuscular
and cellular functions. Low serum Ca (hypocalcaemia)
stimulates the secretion of parathyroid hormone (PTH)
from the parathyroid gland, which, in turn, enhances the
conversion of 25(OH)D3 to 1,25(OH)2D3. 1,25(OH)2D3

acts on the intestine, kidneys and bone to restore normal
serum Ca concentrations. In addition to PTH, it is also well
recognised that other hormones, such as calcitonin, gluco-
corticoids, growth hormones and sex steroids regulate the
production of 1,25(OH)2D3

(16). In addition to its classical
role in the skeleton, a number of key hydroxylase enzymes
together with vitamin D receptors have been identified
in over thirty different extra-skeletal tissues suggesting
an important regulatory role of vitamin D in these target
tissues(16). Furthermore, although not the subject of this
review, data from epidemiological and (some) intervention
studies have provided fascinating and really exciting
hypotheses about relationships between vitamin D status
and risk of several chronic conditions (including
multiple sclerosis, tuberculosis, rheumatoid arthritis, CVD,
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hypertension, cognitive decline, lung conditions and
certain cancers; for reviews see(8,17)).

The biological actions of 1,25(OH)2D3 in target tissues
are mediated either through: (i) a nuclear vitamin D
receptor, which, once complexed with 1,25(OH)2D3 and
retinoic acid receptors, can regulate gene expression
(genomic effects); (ii) intra-cellular signalling pathways
activated through putative plasma membrane receptors
(non-genomic effects)(16).

It is well established that 1,25(OH)2D3 is essential
for the normal growth and development of bone. In bone
cells, 1,25(OH)2D3 acts on osteoblasts to increase osteo-
clastogenesis and bone resorption, which contribute to
mineral homoeostasis(18). The discovery of the molecular
triad of receptor activator of NF-kb (RANK), RANK
ligand (RANKL) and osteoprotegerin (RANK/RANKL/
osteoprotegerin) in the 1990s represented a significant
breakthrough in the understanding of the pathophysiology
of bone remodelling (for review see(19)). RANK, on the
surface of osteoclasts binds to its ligand (RANKL) present
on the surface of osteoblasts following their stimulation
by 1,25(OH)2D3. Binding of RANK to RANKL
initiates the maturation of osteoclasts and is enhanced
by the antagonistic effect of 1,25(OH)2D on the protein
osteoprotegerin. As osteoprotegerin normally binds
RANKL, it prevents binding to RANK therefore
inhibiting osteoclast maturation. It should be noted that
1,25(OH)2D3 also regulates the transcription of a number
of key osteoblastic genes such as those coding for the
bone proteins osteocalcin, osteopontin, osteonectin and
proteoglycan(20).

Assessment of vitamin D status

Circulating 1,25(OH)2D3 concentrations are under homo-
eostatic control, which limits its value as a nutritional
marker of vitamin D status(8). However, serum or plasma
total 25(OH)D (i.e. that derived from adding 25(OH)D2

and 25(OH)D3) concentration is widely accepted as a good
biomarker of vitamin D status, because the concentration
of this metabolite closely reflects the amount of vitamin D
synthesised in the skin and ingested in the diet(8). During
winter, in countries of latitudes greater than 40� North or
South the skin is incapable of synthesising vitamin D for
4–5 months of the year as sunlight must pass a much
longer distance through the atmosphere and most UV-B-
light is absorbed by the atmosphere, preventing any effec-
tive UV irradiation of the skin(21). Therefore, it is assumed
that during winter the circulating 25(OH)D concentration
is directly related to late-summer concentrations, oral
intake and body stores of its precursor vitamin D3.
Although circulating 25(OH)D is generally regarded as
a good biomarker of exposure (i.e. that derived from sun
and diet), its use as a biomarker of function and outcome
is less clear owing to the multitude of factors influencing
this prohormone(22). Notwithstanding such difficulties, the
concentration of 25(OH)D is widely used to diagnose
vitamin D deficiency in both the clinical and non-clinical
settings.

Dietary vitamin D requirements and vitamin D intakes

Using the risk-assessment framework commonly used
to set upper levels for nutrients, the IOM in their recent
Dietary Reference Intake report(8) set a 25(OH)D con-
centration of 30 nmol/l as indicative of vitamin D defi-
ciency based on integrating a number of key bone health
outcomes, including rickets, osteomalacia, impaired Ca
absorption and lower BMD. The nature of the relationship
between 25(OH)D concentration and bone health outcomes
will be discussed in detail later in this review. It is note-
worthy that the IOM committee concluded that there was
insufficient evidence to define vitamin D deficiency based
on non-skeletal outcomes. Based on the relationship
between 25(OH)D status and those aforementioned bone
health outcomes, and using data from both epidemiological
and intervention studies, the IOM established a population
25(OH)D concentration of 40 and 50 nmol/l as the basis for
setting an estimated average requirement of 10mg/d and a
recommended daily allowance of 15mg/d, respectively in
people aged 1–70 years. The IOM set a recommended daily
allowance of 20mg/d for individuals aged >70 years, while
it could only establish an adequate intake of 5mg/d for
infants aged <1 year(8). The estimated average requirement
is the amount of a nutrient which meets the needs of half
(50%) the population, whereas the recommended daily
allowance is the amount of a nutrient which will meet the
needs of practically all (97.5%) healthy persons in a
population. The adequate intake is an estimation of the
observed dietary intake of an asymptomatic population.
The approach and conclusions of the recent IOM report(8)

was a significant deviation from those of the previous IOM
Dietary Reference Intake report of 1997(21) in that for the
first time an estimated average requirement and recom-
mended daily allowance was established for children and
adults. In the past(23) only an adequate intake of 5mg/d
could be derived for persons aged up to 70 years. Two
of the caveats of the IOM report are that the vitamin D
recommendations (1) assume an adequate dietary Ca intake
and (2) assume a negligible contribution from sunlight to
25(OH)D concentrations. It is also noteworthy that in
terms of adverse effects, the tolerable upper intake level
for vitamin D, which is the highest level of daily con-
sumption that current data have shown to cause no side
effects is 100mg/d(8), whereas in the older Dietary Refer-
ence Intake report(23) it was set at 50mg/d. In 1998, the UK
Committee on Medical Aspects of Food and Nutrition
Policy concluded that a prudent public health approach to
safeguard against vitamin D deficiency and its adverse
effect on bone health would be to retain the Reference
Nutrient Intake set in 1991 (10mg/d for those aged
>65 years). However, vitamin D requirements are currently
under review in the UK by the Scientific Advisory
Committee for Nutrition and a report is due in 2014.

There can be no doubt (and ample evidence exists) that
dietary vitamin D intakes are a concern in large propor-
tions of the European population (for review see(24)). For
example, mean vitamin D intakes are between 4 and 5mg/d
among adults from National Diet and Nutrition Surveys in
the UK(25), mostly from meat, fish and eggs, fortified foods
and supplements. Therefore, current vitamin D intakes are
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considerably lower than recommendations and urgent
dietary-based strategies are needed to bridge the gap. Indeed,
this area of research has gained attention at European level
recently with the release of a major EU-wide Framework
7 funded project investigating food-based strategies to
eradicate vitamin D deficiency across Europe.

Circulating 25(OH)D concentrations in older age

An extensive array of studies including a mix of both
representative and convenience sampling frames have
reported 25(OH)D concentrations among older adults all
over the globe(8,26–28). Without doubt, the region with the
most available data on 25(OH)D concentrations is Europe,
followed by North America and Asia. Limited data exist
for South America and Africa with very few studies
in children and adolescents in these regions(26). Cross-
sectional data predominate and year-round 25(OH)D con-
centrations are only available in some studies. In addition,
comparisons of the prevalence of hypovitaminosis D
between studies is compounded by the heterogeneity with
regard to circulating 25(OH)D concentrations used to
define vitamin D status. Furthermore, the very low Ca
intakes seen in some communities complicate the inter-
pretation and subsequent treatment of vitamin D deficiency
in these population groups.

Data from three multi-centred, standardised studies
show that between 17 and 58% of older Europeans are
vitamin D deficient (defined as serum 25(OH)D)
<30 nmol/l(29–31)). National representative data on
25(OH)D concentrations from the National Diet and
Nutrition Surveys in UK adults aged over 64 years show
that up to 10% of free-living and 40% of institutionalised
adults have plasma 25(OH)D concentrations <25 nmol/l
throughout the year (reviewed in(32)). Moreover, if the
higher IOM cut point of 40 nmol/l is applied (defining an
estimated average requirement) the proportion of adults
with inadequate 25(OH)D concentrations rises con-
siderably. While older adults are well-established as an ‘at
risk’ group for vitamin D deficiency, it should be noted
that ethnic populations residing in less sunnier climates
are also particularly at risk of vitamin D deficiency. For
example, in a large study of vitamin D status among South
Asian (n 1105) and Black African and Caribbean adults
(n 748) >45 years living in the West-Midlands region of
the UK(33) plasma 25(OH)D concentrations <30 nmol/l
were found in 76% of South Asians and 55% of Black
African and Caribbean adults throughout the year. Another
study involving thirty-five South Asians living in Surrey(34)

found that 81% and 79% of the participants had serum
25(OH)D concentrations <25 nmol/l during winter and
autumn, respectively. These studies suggest an extremely
high prevalence of vitamin D deficiency in these popula-
tion groups which require urgent attention.

Changes in vitamin D metabolism with ageing

Calcium absorption

Ca is absorbed from the bowel by an active vitamin-D-
dependent transport mechanism and by passive diffusion.

The active transport mechanism plays an important role in
Ca homoeostasis, as the amount absorbed is inversely
related to dietary Ca intake(35). Fractional Ca absorption
therefore increases when dietary Ca intake is reduced(36).
Ca absorption decreases with advancing age(37), which has
been attributed to a number of mechanisms, including the
reduction in serum 25(OH)D with age(38), impaired
hydroxylation of 25(OH)D to 1,25(OH)2D with declining
renal function(39), resistance to the action of vitamin D
metabolites on the bowel mucosa(40) and low circulating
oestrogen concentrations in women after the meno-
pause(41). Increasing serum 25(OH)D concentrations by
oral vitamin D supplementation improves Ca absorption in
older women, but this is attenuated by renal impair-
ment(42), suggesting that lower levels of substrate serum
25(OH)D) and impaired hydroxylation of 25(OH)D to
1,25(OH)2D both contribute to the decrease in Ca absorp-
tion with age. Despite the inverse relationship between
dietary Ca intake and Ca absorption, the increase in Ca
absorption when dietary Ca is reduced is less marked in
older people than younger adults(35). This may be due to
reduced production of 1,25(OH)2D, but it may also reflect
resistance to the actions of vitamin D metabolites on the
bowel, as some studies have shown an attenuated response
in Ca absorption to increases in 1,25(OH)2D in older
women(40).

Although the decline in Ca absorption with advancing
age is multifactorial in origin, the improvement in absorp-
tion with vitamin D supplementation suggests that vitamin
D deficiency is the major cause of malabsorption of Ca in
older people(42). The positive relationship between serum
25(OH)D and fractional absorption extends to 25(OH)D
concentrations above 100 nmol/l(42,43), leading some ex-
perts to advocate that these concentrations are necessary
for optimal bone health. Nevertheless, although a recent
randomised controlled trial (RCT) comparing the effect of
different doses of vitamin D showed higher Ca absorption
in subjects with a serum 25(OH)D of 75 nmol/l than those
with 50 nmol/l, the magnitude of the difference was
small(43).

Renal 1-a-hydroxylase

Renal function declines with advancing age and this is
accompanied by a decrease in serum 1,25(OH)2D con-
centration(44). As mentioned earlier, the effect of vitamin D
supplementation on Ca absorption is attenuated by renal
impairment(42). An early study showed that as glomerular
filtration rate falls below 50 ml/min, there is a reduction in
serum 1,25(OH)2D and lower fractional absorption of
Ca(39), together with increased serum PTH. Other studies
show an inverse relationship between serum 25(OH)D and
PTH across all adult age groups, but that PTH is higher
in older people than young adults for any given serum
25(OH)D concentration(45), possibly due to reduced renal
1-a-hydroxylation.

Dermal vitamin D production

The dermal capacity to produce vitamin D in persons aged
65 years has been estimated to be about 25% of that in
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persons aged 20–30 years exposed to the same amount of
sunlight(46,47). This reduction cannot be explained by the
decrease in mass of the epidermis with ageing, but rather
seems to be related to the reduction in the concentration
of skin 7-dehydrocholesterol. Other indirect factors that
affect exposure to sunlight in older adults include the
wearing of more concealing clothing(48), an increased use
of sunscreen(49) and reduced sun exposure, arising from
less physical activity and time outdoors compared with the
younger age groups(50).

Changes in vitamin D receptors numbers

Vitamin D deficiency is associated with muscle weakness
which potentially increases the risk of falls and fractures,
possibly mediated through effects on 1,25(OH)2D re-
ceptors, which have been discovered in muscle(51,52).
Bischoff-Ferrari et al.(53) demonstrated a strong negative
correlation between age and vitamin D receptors expres-
sion in muscle as measured by the number of vitamin D
receptor-positive nuclei per 500 counted nuclei. This
association was independent of biopsy location and circu-
lating 25(OH)D concentrations. This finding may have
significant clinical ramifications in older age owing to
the importance of 1,25(OH)D3 in regulating transcription
of muscle-related genes. It is worth noting that the role of
vitamin D in muscle atrophy in older adults has been the
subject of a recent review within this journal(54) and
therefore will not be discussed here.

Circulating 25(OH)D concentrations and bone health
outcomes in older age

As mentioned previously, vitamin D requirements together
with the definition of vitamin D deficiency is currently
under review by the Scientific Advisory Committee on
Nutrition in the UK, which is scheduled to present its
recommendations in 2014. Previous Scientific Advisory
Committee on Nutrition recommendations (which cur-
rently apply to the UK) define vitamin D deficiency as a
serum 25(OH)D <25 nmol/l, which corresponds to the
upper end of the range at which vitamin D deficiency
osteomalacia and rickets has been observed(22). However,
higher levels of serum 25(OH)D have been associated with
secondary hyperparathyroidism, increased bone resorption,
bone loss, impaired muscle function and an increased risk
of falls and fragility fracture(55–59), and there remains
contention about the thresholds applied.

Osteomalacia

Recommended circulating levels of 25(OH)D in adult
life are commonly set against the clinical risk of develop-
ing osteomalacia, although falls and fracture risk are
important considerations. The gold standard diagnostic test
for mineralisation disorder associated with vitamin D
deficiency (vitamin D deficiency osteomalacia) is the
identification of mineralisation defect with increased
osteoid thickness and reduced calcification fronts, which
are identified by bone histomorphometry after tetracycline

labelling. However, population-based studies, using this
invasive technique, are impractical. One recent study
used bone histomorphometry in post-mortem specimens
in Germany, apparently finding that abnormal bone
mineralisation was only seen in a proportion of subjects
whose circulating 25(OH)D was less than 75 nmol/l(60).
The study has been criticised because it uses post-mortem
bone histomorphometry without tetracycline labelling, so
both generalisability is compromised and causes other than
vitamin D deficiency may explain histomorphometric
changes seen, while the use of such post-mortem data to
make dietary recommendations seems bizarre(61). This
theme has been addressed comprehensively in the IOM
report(8) where, even ignoring the technical limitations in
Priemel’s study, osteomalacia is sometimes reported at
serum 25(OH)D levels <30 nmol/l, but rarely observed at
25(OH)D levels >50 nmol/l.

Secondary hyperparthyroidism

The circulating concentration of 25(OH)D below which
PTH increases outside the normal range may be used to
establish a threshold value for vitamin D insufficiency and
this is of particular importance for bone metabolism,
because elevated PTH is associated with increased
bone loss(55–59). The relationship of circulating blood
levels of 25(OH)D to PTH is contentious. Some studies
suggest that PTH reaches a plateau with increasing serum
25(OH)D concentration(62,63), while others demonstrate an
inverse relationship throughout the physiological range
of 25(OH)D concentrations(45,64–67). It is important to
consider that the relationship between 25(OH)D and
PTH may be influenced by the effects of many other
factor including co-morbidities. advancing age, dietary Ca
and phosphate intake, renal function, plasma vitamin-D-
binding protein, Mg concentration, IGF-1, testosterone,
smoking and physical inactivity which may all have
important roles in the development of secondary hyper-
parathyroidism(45,64,66–68). Moreover, comparisons between
studies may be hampered by the use of different assays for
25(OH)D and PTH(69,70).

Bone mineral density

The National Health and Nutrition Examination Survey III
examined the relationship between serum 25(OH)D and
BMD at the hip in 4958 women and 5003 men aged
20 years and above(71). This showed a positive association
between serum 25(OH)D and BMD in both sexes, with the
highest BMD found in subjects with a serum 25(OH)D
>75 nmol/l. Although these results were adjusted for
potential confounding variables, the authors acknowledged
that one cannot infer a causal relationship between serum
25(OH)D and BMD from a cross-sectional study. The
evidence-based reviews performed for the IOM report also
examined the relationship between vitamin D and BMD(8).
Among the observational studies reviewed, there was
fair evidence to support an association between serum
25(OH)D levels and BMD or changes in BMD at the
femoral neck.
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Fracture risk

The IOM report also examined the relationship between
serum 25(OH)D and fracture risk(8). Only one of the three
prospective cohort studies reviewed found an inverse re-
lationship between serum 25(OH)D and fractures, but in
contrast nine of the twelve case–control studies observed
lower 25(OH)D levels in patients with fractures than in the
control subjects. The apparent inconsistency between the
results of prospective cohort and case–control studies may
reflect a failure to fully adjust for confounding variables in
the latter, not least the effect of the fracture, any hospital
admission, surgical procedure and associated inflammation
on vitamin D production and metabolism(72).

Intervention effects of vitamin D supplementation on
bone mineral density and fractures

Vitamin D and bone mineral density

The largest RCT of the effects of vitamin D sup-
plementation on bone health was the Women’s Health
Initiative study, where 36 282 postmenopausal women
aged 50–79 years were randomised to receive Ca
(1000 mg) and vitamin D (10mg) or placebo daily(73). In a
sub-set of 2431 women who underwent bone density
measurements, there was greater preservation of BMD at
the hip with supplementation than with placebo, which
consisted 0.59%, 0.86% and 1.06% after 3, 6 and 9 years,
respectively. The IOM report highlighted that the com-
bined results of RCT comparing Ca and vitamin D sup-
plementation with placebo were consistent with a small
effect on lumbar spine, femoral neck and total body
BMD(8). In contrast, in trials comparing combined Ca and
vitamin D supplementation with Ca alone, no significant
difference in change in BMD was seen, suggesting that
vitamin D supplementation may be less beneficial in Ca
replete subjects.

Vitamin D and fractures

One of the earliest RCT investigating the anti-fracture
efficacy of vitamin D supplementation compared the effect
of combined Ca (1200 mg daily) and vitamin D (20mg
daily) and placebo in 3270 women with an average age of
84 years living in French nursing homes or apartment
blocks for the elderly(74). In a small sub-set of subjects
undergoing venipuncture and BMD measurement, there
was correction of vitamin D deficiency and secondary
hyperparathyroidism with supplementation, together with a
small increase in BMD. Intervention also reduced the risk
of hip and other non-vertebral fractures. It was unclear
from this study if both Ca and vitamin D was required for
the beneficial effect of supplementation or if this would
be effective in community-dwelling older people. The
RECORD study sought to address this question, by com-
paring the effect of placebo or Ca (1000 mg daily) and
vitamin D (20mg daily), either alone or in combination,
in 5292 community-dwelling older women or men with a
low-trauma fracture(75). Over the 24–62 month follow-up
period there was no difference in the incidence of all

clinical fractures or hip fractures. Compliance with sup-
plementation in the RECORD study was relatively poor,
especially when this included Ca. Nevertheless, pre-
planned analysis showed no difference in outcome in
subjects with good compliance with supplementation
compared with participants who were less compliant.

Although the Women’s Health Initiative study showed
a small improvement in BMD with Ca (1000 mg) and
vitamin D (10mg) supplementation, there was no overall
effect on fracture incidence(73). Among the subjects who
remained compliant with supplementation there was a
significant reduction in the risk of hip fractures. The results
of other RCT of vitamin D supplementation, with or
without additional Ca, on the risk of fracture have yielded
inconsistent results. Meta-analyses indicate that combined
Ca and vitamin D supplementation reduces the incidence
of hip fractures in older people, but vitamin D alone
is ineffective(76–79). Nevertheless, much of the beneficial
effect of combined supplementation in these meta-analyses
is driven by the results of the study in institutionalised
French women, where vitamin D deficiency is common.

A meta-analysis by Bischoff-Ferrari, which adjusted the
dose of vitamin D for compliance, suggested that vitamin
D decreased the incidence of non-vertebral fractures inde-
pendent of additional Ca supplementation(80). The reduc-
tion in fracture risk was more marked in studies where the
received vitamin D dose exceeded 10mg daily, whereas
there was no decrease in fractures in studies where the
subjects received 10mg daily or less. An individual patient
data meta-analysis by Bischoff-Ferrari, which also adjusted
the dose of vitamin D for compliance, showed a trend for
reduction in the risk of hip fractures but a small reduction
in non-vertebral fractures(81).

The inconsistency of the results of the anti-fracture
trials of vitamin D is likely to reflect heterogeneity in the
populations studied, their baseline vitamin D status, dose
of vitamin D, frequency and route of administration,
compliance with supplementation and the use of additional
Ca supplementation. Nevertheless, it would appear that
vitamin D supplementation is most likely to be beneficial
in older people with vitamin D deficiency, such as those
who are housebound or living in residential or nursing
homes. Although the study in institutionalised French
women(74) and several meta-analyses(76–79) suggest that
additional Ca supplementation is required, it is unclear if a
high dietary Ca intake is sufficient to obtain the benefit of
vitamin D supplementation. Although the concept of the
annual administration of high-dose vitamin D is potentially
attractive, either by the intramuscular or oral route, this
may be associated with an increase in fracture risk(82,83).
For example, a recent study of high-dose vitamin D sup-
plementation (12 500mg once yearly) reported an increased
rate of falls and fractures, particularly in the first
3 months(82). Similar findings have been reported in
another study which, gave 7500mg to older people, with a
relative risk of hip fracture of 1.49 (95% CI 1.02–2.18) in
older people treated in their own homes for 3 years(83) and
a non-significant 1% increase in non-vertebal fractures
over 10 months in care-home residents(84). These studies
offer a concern with regard to what could be perceived as
toxicological doses of vitamin D (i.e. 125 times the IOM
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upper intake level) and its potential risks. Unfortunately,
25(OH)D and PTH were only measured in a small minority
of participants in all of these interventional studies(85),
limiting the ability to explore the relationship between the
serum 25(OH)D achieved and fracture prevention.

Concluding remarks and future direction

The last two decades have seen major advances in our
understanding of the role of vitamin D in bone health.
Although the focus of this review was on the public health
significance of the role of vitamin D in bone health in older
age, the caveat of the interdependence between vitamin D
and Ca intake on bone health although complex, cannot be
ignored. The upward shift in the target 25(OH)D threshold
set by authoritative bodies to define better bone health has
been a significant step in recent years and much of the
world’s population have a vitamin D status below what is
considered optimal for bone health. The debate surround-
ing the optimal circulating 25(OH)D concentration for both
skeletal and non-skeletal health will continue until sig-
nificant progress has been made in two important areas.
The first area centres around assay variability for 25(OH)D
measurements, which has been addressed somewhat by the
recent introduction of the Standard Reference Material for
vitamin D by the National Institute of Standards and
Technology in the USA. The second area centres around
gaining a better understanding of the production, storage
and utilisation of 25(OH)D as a biomarker of effect(23). A
number of potential reasons have been highlighted in this
review as to why there is inconsistent evidence for a role
of vitamin D supplementation on fracture risk. It should
also be pointed out that there is now recognised evidence
that genetic variants in key vitamin D regulated genes can
influence the response to vitamin D exposure to impact the
metabolism and actions of vitamin D. Therefore, future
studies investigating the effect of vitamin D supplementa-
tion on both musculoskeletal outcomes and health out-
comes in general should take advantage of emerging
technology which makes genome-wide analysis possible.
Appreciably, genotyping studies will need to be large in
study design or analysis, because of the very large sample
sizes required to adequately account for genotype effects.
The dearth of information in many population sub-groups
including diverse racial and ethnic groups of older age
should be prioritised in future studies on vitamin D status
and bone health. In conclusion and in light of the wide-
spread prevalence of dietary and biochemical vitamin D
inadequacy in many populations and its negative con-
sequences for bone health, strategies to increase oral vita-
min D intake at a population level would benefit bone
health and should be a priority.
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