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Generalisations of Turdn's main theorems on
lower bounds for sums of powers

A. J. van der Poorten

In his book, Eine neue Methode in der Analysis und deren

Andwendungen, P. Turan proved a number of new theorems given lower

bounds for sums of powers. Since it was only his intention to

demonstrate a new type of result, his bounds are by no means best

possible nor are his proofs easily susceptible of improvement.

We generalise Turan's so-called Main Theorems to exponential sums

with polynomial coefficients by a simple method involving only

the evaluation and estimation of certain determinants. This

approach gives in each case a result known to be asymptotically

correct in the various exponents, and when specialised to the

case of constant coefficients it provides in each case best-known

results.

Our method moreover applies in more general circumstances and

provided only that the determinants which arise can be

conveniently estimated serves to provide lower bounds for other

than exponential sums.

Let a.\, a2, ..., a be complex numbers and ax, a2, ..., a

complex constants not all zero, and
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16 A.J. van der Poorten

m
f(z) = I a a? .

*=1

Turan [S] considered lower bounds for the quantity

max \f(v)\
( f) '

where N(\l, f) is a suitable normalising factor so that the lower bound

might be independent of either

(A) the a,-values

or (B) the a,-coefficients.

We generalise Turan's theorems so that the a* become polynomial

expressions in z .

Turin's Second Main Theorem [8; Satz IX, pp. 46-52] was to the effect

that m

T a. a?

~" mi n u i -T . . . "»"u -I

[ y,

2ke2(n+2m)'

was improved by Vera T. Sos and P. Turan [7] who replaced it by

m
m

with 1.321 < A < 2e ' 3 (< 2U) . Subsequently S. Uchiyama
A{m+n)

[9] improved a lower bound 1.1*73 < A found by E. Makai [3] and showed

that e < A < 8e , observing that the new upper bound was contained in the

Sos and Turin paper [7]. E. Makai [4] then showed that 2e/log2 < A and

that we could take

{A(m+n)\

giving the right order of magnitude in n . More recently Makai [6]

constructed an example to show that in any event he 5 A .

We prove a more general result.

THEOREM 1. Let a.\3 a2J ..., a. be complex numbers so arranged that
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Lower bounds for sums of powers 17

IaiI ^ la. | , 1 s j < m , and \a\-a A s la!-a,I for 1 s j s k S m .
3 3 *•

Denote by F a function of the form

m m p(k)
F(z) = I Pk(B)af = I I a z

k=l K K k=l e=l *8

S~

where p(l), •••J p(m) are non-negative integers with sum a , and a,

I S f e S m , I S s s p(?c) , complex constants not all zero. Further write

I
Fz(z) = I , 1 S I S m .

Then if n , r, u are integers such that n 2 - 1 , 1 5 r < a and

u £ n j

\F(y)\

l-ll"
a - r

and

| at! | ^

Be(n+a)

818e fn-u+a,)

a-r
min

Jr-1) (0)

a - l
min

lilsn
Ft(u)

COROLLARY. If a\, a^, •••! a denote complex constants, then in

particular

m
y a n}-

k=l

n+l<y<n+m j ot ^ | l 8
m-1

8e (m+n)

m-1
min
1-Slsn

. ..-rut

Apart from its greater generality our result is non-trivial in

circumstances where Turan's result collapses. In the particular case of

constant coefficients we do obtain the best-known result, of Makai [5].

Further Turan had shown (First Main Theorem) [g; Satz VII, pp. 38-1*1]

that

m

I a
k=l

a
2e(n+m)

m'
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18 A.J. van der Poorten

where \am\ 5 |a.| , 1 5 j 5 m . This result was improved by I. Danes

[/] who replaced the quantity

m-1

2e(n+m) 2e(n+m)

which gave the correct order in n . Subsequently E. Makai [4] used a

combinatorial argument to prove an exact result, showing the best possible

value for Q? to be

The corollary to our Theorem 2 is this best possible result.

-THEOREM 2. Let al 5 o2, ..., a be complex numbers so arranged

that | a | 5 | a. | j l S j ' S m . Denote by F a function of the form
in j

m
F{z) = I

k=l

s-1 zz ak

z m p{k)

k k=l s=l

where p( l) j ..., p(m) are non-negative integers with sum a , and a, ,

1 5 k 5 W j 1 5 s S p{k) , complex constants not all zero. Then if n, u

are integers such that n > -1 , u 5 n ,

1=1

% (n-u+l-l) l-l < In-u+a) a-l < \2e{n-u+o)}
ltx \ l-l J " [ o - l J - [ a-l j

a-l

where we note that

a

1--

COROLLARY. If a\> ai, •••* am denote oomplex constants, then in

particular

m

A-l (n+l-l)'1*k k

This is a best possible result in the sense that the right hand side

cannot be replaced by a greater quantity for any n or m . It seems
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Lower bounds for sums of powers 19

likely that our general result similarly is exact. Indeed all bounds in

our proof are exact, and in any event an argument we present at the end of

this introduction shows that the general result is in a sense a special

case of the Corollary.

Turan's Main Theorems are type-^1 results in that the lower 'bound is

independent of the a,-values. Our method also easily provides a type-B

result where the lower bound is independent of the a, -coefficients.

Here Danes and Turan [2] had shown that

max

m p

kl sk
m p

I I
K—1 S—1

s-1
= H P )

 2P 57.

where

min max | a,
K

min lot,
> 6 (<

Whilst Coates [0] had proven

s-1 V

< A (> 1) .

max
0Sy<mp-l

m p

I I
k=l s=l

s
"KB*

where in addition A' = max

Our result generalises that of Coates and improves that of Danes and

Turan giving the correct exponents. In the particular case when the

coefficients are constant our result is as good as that of Turan's book

IS; Satz XI, pp. 53-56]. We prove

THEOREM 3. Let <3.\, ci2j ..., a be distinct complex numbers, and

denote by F a function of the form

n m

*•(*)= I p. (a)a? = I I ak
k=l K K k=l e=l ^

where p(l)3 ..., p(m) are non-negative integers with sum a 3 and a
ks
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20 A.J. van der Poorten

1 < k < m j 1 2 s 2 p(k) , complex constants not all zero. Further let

6, = m i n I ct, —ot - j ; A = m a x lot. I ,
« i ri j >

(l >) 6 = min -nj—r ; max p{k) = p .

if n is an integer 2 -1 , for each ht , 1 2 h S m ,

1 2 t 2 p(fr) ,

W

m p(k)

s=l

COROLLARY 1.

s-1
.o-l

m p(fe)
I I

k=l s=l

s-1
sO-l

COROLLARY 2 . J n particular if a^, az, •••, o-m are complex

constants

m

r v
L It T,

n+12u2n+m *ah'

whence if min |ot. j 2 1 3

(1+Af-1

7 1 - 1

max

Finally we illustrate how the expressions we study arise naturally.

It is not difficult to show that, given numbers b , b\, ..., b , the

the solution to the difference equations

bocn*o ••• + ba
cn = ° ' " = «• L 2, ... ,
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Lower bounds for sums of powers 21

is of the form

c = p\ (n)an + p2(w)a2 + ... + p (n)a
n , n = 0, 1, 2, ... ,

where

and pi(t), ..., Pm(*) are polynomials of degree respectively at most

It is of course evident from this description that the functions we

study only represent a confluent case of those originally studied by

Turan.

LEMMA 1. Let F be a function of the form

n
F{z) = £ b,gAz) , b\, ...j b complex constants ,

where g\, ••., g are functions analytic on some domain G of the

complex plane.

Further let Z\, 2 2 j ..., z be points of G ; let S\j s2 j •••, s

be non-negative integers; and let H[yi, ..., y^) be a form linear in

yu ..., y-, (1 5 I 5 n) .

Finally denote by A. . (l 5 i , j 2 n) the cofaotor of g. \z.)

in the determinant

A = \q . [z•

Then there is an integer y such that 1 2 y 5 n and

, 1 < ,7(1) 5 ... 5 j{l) < n

Proof. Appropriately differentiating at z\, z^, ..., z^ we obtain
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22 A.J. van der Poorten

a system of n linear equations in b\ , .. . , b >

n

I
K—1

{s.) {s.)
k (zj - F * (2.) < i < n

which we may solve by Cramer's rule to obtain for 1 5 k 5 n

n (s.)

Thus

A =
is,)

whence

x max F V (z )

and the assertion follows. We note that the result remains meaningful

though trivial even if the denominator on the right-hand side of the

result should vanish,-provided we then interpret the lower bound to be

zero (this is the natural interpretation, in our examples, by continuity).

The Lemma reduces the problem of determining lower bounds like those

of Turan to that of finding upper bounds for quotients of the form

n

i=l

One useful technique runs as follows: writing

we find a polynomial Q such that

Q{z) = qx + q2z + q3z
2 + ... + q^z1 .

LEMMA 2. If Q{z) is given as a sum of terms of the form

say
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Lower bounds for sums of powers 23

then

Proof.

coefficients of Q

is the sum of the absolute values of the

But

is obviously as large as the sum of the absolute values of the

coefficients of the polynomial

6(*-ei) ... (*-ig

whence the given inequality follows from the triangle inequality for the

absolute value of complex numbers.

Henceforth p(l), ..., p(ffl) denote non-negative integers with sum

m

I p(fc) = a
fe=l

and a. , 1 < J; < m , I S s S p(k) , denote o complex numbers not all
Ks

zero. Further p l 5 ..., p denote the polynomials

of respective degree at most p(l)-l, ..., p(m)-l (and the convention

that a polynomial of degree < 0 is identically zero).

We will consider functions F of the form

m m p(k) ,
F{z) = I pAz)fAz) = I I a, z fAz)

k=l k=l s=l

so that we will be applying the main lemma (Lemma l) to 0 functions
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24 A.J. van der Poorten

and evaluating cofactors of 0*0 determinants of the form

A = \ z T \ % K ) \ h t , i - x - i ~ ° ; 1-t-pih)' x-h-m •
Here h, t index rows and i indexes columns; the above ht, i index

indicating that we are displaying the ht, i element of the determinant.

We always denote the cofactor, i.e. the determinant of the minor together

with the appropriate sign, of the ht, i element A. , , .

On occasion it will be appropriate to note explicitly that-j say, the

ht row is strictly the p(l) + ... + p(7z-l) + t row; we then write

p(l) + ... + p(/z-l) + t = a(ht) for convenience.

Turan's Main Theorems concern lower bounds for sums of powers of

complex numbers. We shall more generally consider such sums with

polynomial coefficients, and thus define

tOj3 0) 3

fl(z) = e = « ? . ...,fm(z)-e
m -azm

where Uj, (02, . . . , CJ are arbitrary complex numbers (in the extended

sense, so that a, may be zero) and a\, a2, ..., a are well defined if

s takes only rational integer values; we use the a's only in that

context.

Since the essence of our method is the evaluation or estimation of

certain determinants and their cofactors, we describe precisely those cases

for which this may be conveniently done.

To begin with we will find the lower bounds for

m
max F(\i) = I p, (u)an .

u = r c + l , . . . , n + a k=l I

By the main lemma we must then consider the determinant

fc-1 n+i
A = (n+i)"" a:lh ht,i

. , 1 < h < m , 1 5 t £ p(fr) ; 1 £ i £ a

and various linear forms in its cofactors. Different such linear forms

will provide us with lower bounds appropriate in different circumstances.

Our technique for evaluating A and expressions in its cofactors runs
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Lower bounds for sums of powers 25

as follows: we introduce formal quantities

aM , 1 £ h 2 m ; 1 < t < p(h) ,

and the Vandermonde determinant

| ht ht,i

D is of course easily evaluated, and we obtain

rn p(fe)m p(fe) c

D-Tiu k;1 TT Ka-«
fe=l s= l <• * s jr<fes *S °

(where of course jr < ks means a(jr) < o{ks) i.e. either j < k or

j = k and r < s) , whence more conveniently

m p{k) ( (8-l i k-1 p(k)

TfT k:1 TT ( ) rrrr Ks-̂-D = TTfT k : 1 TT (-te-Ofci) r r
k=l e=l * fcs ^ to ^^ J

But it is easily seen that exactly

A = lim

k=l 8=1

The reader may be able to see that the differentiation gives the

above result; to describe the situation more clearly we however

explicitly indicate how and why we obtain a tidy result in this and

slightly more general circumstances.

LEMMA 3. Denote by P the product

m p(k) s-1

fe=l s=l 1=1

and let R\, R2 be functions in the a, ,, 1 5 h < m ; l £ t s p(h) ,

which are divisible by P , i.e. so that

lim Ri/p (i = l f 2,
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26 A.J. van der Poorten

exists (in effect every factor in P occurs in an appropriate

factorisation of R) . Then

{rrffK,;
r m p(k) r

U=l 8=1 ^ '

)aks) J^1

3a J P 2

lim

all ks

lim

all .fee

Proof. Write R = PQ . Then

'PQ

lim

all ks

1/P

{fjfj) fa
W s=l I

lim

all ks

+ terms which vanish when limits are taken

k=l 8=1
lim

a, -nx,

all ks

and the result of the lemma follows immediately.

With the aid of Lemma 3 it is now easy to give explicit expressions

for such combinations of the cofactors of A as are, in the sense of the

lemma, divisible by P . In other cases we unfortunately obtain an

annoyingly untidy expression.

We denote by D- ,. and respectively A. , . the cofactor of a, .

and respectively (.n+i) " a , in D and respectively A . In just

the same way as we derived A from D it is clear that

is-li
lim

<.=! s=l
kstyt

'ks da
ks

1,

\Di,ht

But the D.

all ks

are determined by the equations

-l
1ST 6ks,ht
aht

Di,ht

(where is the well-known Kronecker 6) , which assert that D- y
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Lower bounds for sums of powers 27

is exactly the coefficient of zV~ in the polynomial

orht =1 s=l aht~aks
ks^ht

Unfortunately this expression is not, in the sense of Lemma 3,

divisible by the product P so that we must obtain an unpleasant

expression for the cofactors A. ,, . We return to that expression later;

for the moment we list various linear forms in the A. , , for which we

can obtain a relatively tidy exact expression.

Thus for any y we have by the above expressions

3(fe) r o is-li p{h) „
+ ,

aks k =l e=l
aks I

t=l
all ks

and by Lemma 3 and the above expressions

(1)

= the coefficient of z

P

in the polynomial

lim A
t=l a l-w

•ht
all ks

k=l s=l
kstyt

s-a.•ks

ht~aks-

Similarly for r a positive integer and a fixed branch of the log

function

P(h)
(r-l)l

= lim

all ks

which by Lemma 3 becomes
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28 A.J. van der Poorten

(2) = the coefficient of z' in the polynomial

lim A
t=l a

.W+l
ht

TTTT
K~X o—X

3 - 0

a l l fes

We consider the following linear form in the A .

Li,ht (1 5 r < a)

where 1 S Z S m ; the corresponding linear form in the coefficients a

is then

.

h=l t = l v •L;-

For convenience writing

I p(h)
1 5 I < m ,

(so that F (s) = ^(s)) . the above linear form is Fl*"'1'(0) •

We have observed above that q . is exactly the coefficient of z

in the polynomial

I P(h)
1 ^ I I

z-aks

all ks

Neglecting the limit for a moment,

of degree a - 1 such that

k=l s=l
kstyt

) is exactly that polynomial

S p(h) ;

= 0 l+l S h S m ; 1 < t <

Taking the quantities a. as formally distinct these conditions
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Lower bounds for sums of powers 29

determine Q~ .

Suppose now that

max | a . | = 1

and rearrange cij, 02, ..., a such that oil = 1 and

(5) 0 = |i-ai| < ... s |l-az| < R < |l-aj+1| < ... < |l-aj

where R and the integer I , 1 5 Z « m , are to be fixed later. We

suppose that the distinct quantities a,, lie arbitrarily close to the

a, 1 5 h 5 m .
n

Still neglecting the limit in Qj(z) we write it as an interpolation

series

(6)
Qz(z) = bll+bi2(z-all)+b13(2-a.11){z-al2) + ...+bmpM(z-all)...(z-am^M_1}.

By the conditions {h) defining Q-, we obtain the interpolation

coefficients b, as contour integrals

where the contour includes all of the points a\, ..., a~ but excludes

the points a-7.-, » .. . , a and the origin. The integrals remain well

defined when the relevant limit is taken and indeed we can drop any

implicit assumption that the a, be distinct. For our contour we will

take the circle \l-z\ = R assuming then that R is chosen < 1 .

We sketch the procedure we now follow. In order to determine a lower

bound for

max
, ,n+cr

m

k=i

we require by Lemma 1 to find an upper bound for the sum
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I '"'
and by Lemma 2 we know that

m

is such an upper bound. To determine this bound we require the following

lemma of Makai [5; pp. 180-181] , an analogue of a well known theorem of

Chebychev. We quote the lemma without proof.

LEMMA (Makai). If 0 < 6 < 1 a and P(z) is a monio polynomial of

degree n then there exists a circle |l-z| = R with 0 < R < 6 such

that everywhere on the circle

\P(z)\ 2 2(6A)n .

We thus choose 6 (we determine a specific optimal choice later) and

thus R and I such that

|l-or| <R < 6 < |l-«l+1l •

Then everywhere on the contour 11—s| = R we have

(log z)
r-1

M+l
(1-6)

and by Makai's lemma on the contour

whence a fortiori, certainly

2 2(6A)C

( 6/1-6^

u-6 r r

2 2(6A)° ,

5 h £ m ;

.r-1

Hence we see that

Jht

,2a-l
5 ^ • 2,6 .

(l-6)n+r 6°-r(l-6)n+r

Recalling that |a, | 5 1 (1 5 h 5 m) we obtain that
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m p{h)

h=l t=l
'ht

.20-1

(l+|on la^.-J) (where

. 2

We are still free to choose 6 optimally (thus determining I). It is

easy to see that the best choice is

6 = a-r
n+a

(recalling 1 5-r 5 o)

and then

a-r

a-r

whence collecting our results we have shown that

0 I p(h) (^-jj,

hL til {r-t)[
(8) mln

\r-t

o-r

0-r

provided only that al 5 a2, ..., a are as in (5), and r < a .

Taking r = 1 and comparing the expressions (2) and (l) observing

that the latter is simply the former with r = 1 and n replaced by

n - u we can read off the following result:

(9)
a I p(h) , . A. , .

i=l h=l t=l n A o-l

0-1

when aj , ot2, ..., a are as in (5) and u < n+1 (this condition is

required to preserve our estimates which, perhaps implicitly, are based

on the premiss that n , or in this case n - u , is large relative to the

other constants).

We note that the relevant linear form to this last result is

(10) pAu)au = FAu) .
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Finally the above upper bounds for the relevant linear forms and

Lemma 1 immediately give the results quoted as Theorem 1, for by the Lemma

we immediately have that there is a u such that 1 £ y 5 a and

min

\P(n+\i)\ >

n(r-l)(0)

I P(h) (r-l)l

ISZST? i=i h=x t=i Kr t}- h

r-t Li,ht
A

the numerator and denominator being respectively the same linear form in

respectively the coefficients a, and the cofactors A. , by (3)

whilst similarly by (10) we see that there is a p such that 1 £ u £ O

and

min \FI{U)

\F(n+\i)\ i
a I p(h) , . A. ,
v v r M t-i t. ,/?t
L L L ^t, " A

Fvirther we may, since F(2) is homogeneous in the af* , make the relevant

changes to the condition (5) that we make in our statement of the theorem.

If in contrast to the condition (5) on the ou we have

min |a . | = 1 »
3

say a = 1 , we obtain a quite different result. We consider the linear

form

which we have seen by (2, 3) is tantamount to considering

with w replaced by n - u . We thus follow the same chain of argument

as before to obtain
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a m p(h)

i=l h=l

A.

t=l

m p(h)

where

(12)

a, . = a,

contain

Jht

1 •S h S m ;

, 0(2,

dz

, and the contour is such as to

but exclude the origin. We suppose that u is

an integer and < n+1 . Then the only singularity outside the contour in

the above integrands is a multiple pole of the origin, and to be explicit

we may take as contour C a small circle (radius < 1) about the origin

in the negative direction. In order to evaluate the residue of the

integrand as 3 = 0 we note that on the contour always \z\ < |a,

whence
-1

a, |

(where a(ht) = p(l) + ... + p(h-l) + t)

and

'V,ht

p=o

-X(ll) -X(l2) n~Uht)
*il a12 ••• % t

where the sum is taken over all non-negative integers X(ll) \{ht)

with sum y .

Since in any event Icul 2.1 , all ks , a is maximal when

al = a2 = ••• = am • Then a is the coefficient of z in the power

series expansion of (1-3)~ and it follows that

V,ht ~ [ a{ht)-l j ~ (a(/zt)-l)!y! '

Finally applying the residue theorem to the integral (12) we obtain

(ail •• -<»fcj~Xht\ *ht> 'n-\i,ht\
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whence

But then

{ o{ht)-l

-i •••(k«
Thus by (11)

? mr Pih) U t-l
h=l t=l

y
" r=l

o{ht)-l

n-u+r-lI2r-l

a{ht)-l
2

By just those observations we made at the end of the proof of Theorem 1,

Theorem 2 now follows.

luran's Main Theorems, which our Theorems 1 and 2 generalise, are

4-type inequalities in the sense of our introduction; we now turn to a

corresponding S-type inequality.

By Lemma 1 we only require an upper bound for
A.'i,ht

But

max
15U5O

> laht h,ht

Ai ht i-1= the coefficient of z in the polynomial

1_
A

Ct7 " ^ 7

all ks

' m p(k) r r, i s - l i _ m p(k) r 3-oc, i-i

•i=l s=l ^ ks' * a, , A:=l s=l ^ /it fes''''
ksjht kstyt

± the coefficient of z in the polynomial
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(13)

FT
p(fc) fc-1

m

where the sum is taken over all non-negative integers X(r) with sum

p{h)-t such that X(p(7i)) > 1 and X(r) < r-t , t+1 5 r «

Put

6, = min Idj.-c •

and recall that "by Lemma 2 we find the upper bound for the sum of the

absolute value of the coefficients of the polynomial by finding upper

bounds for the absolute value of the coefficients of products of terms of

the form [z-o.-, J , whilst terms of the form (2-<*r.) are replaced by

We study the rather ugly sum in the expression (13), observing that

fr-l-X(r)]!

Inside the product sign we have, apart from the factorials, when

X(r) = 1 , exactly

n+r-1 m p.

which corresponds to a contribution to the upper bound of at most

For X(r) > 1 we can then see that
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(n+a)X{r)(l+A)

is an appropriate contribution. Hence applying Lemma 2 to (13) we have

a A. ,

A
•Z. = X lU?jl ^h 1.UlJ.il ̂  |U.^ | , ̂

Theorem 3 now follows.
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