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Abstract

We obtain some results on approximate solutions of the generalised linear functional equation∑m
i=1 Li f (

∑n
j=1 ai j x j) = 0 for functions mapping a normed space into a normed space. We show that, under

suitable assumptions, the approximate solutions are in fact exact solutions. The theorems correspond to
and complement recent results on the hyperstability of generalised linear functional equations.
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1. Introduction and main results

Studies of the stability of functional equations date back to Hyers [14] and Ulam
[29] or, even earlier, to Pólya and Szegö [19, 20]. This is an active field with
particular interest in the hyperstability of linear functional equations. In this paper,
we concentrate on hyperstability of generalised linear functional equations in several
variables of the form

m∑
i=1

Li f
( n∑

j=1

ai jx j

)
= 0.

Our main theorems correspond to and complement many results in the literature. We
first recall some of these well-known results.

Proposition 1.1. Let X, Y be two normed spaces with Y complete. Take c ≥ 0 and let
p , 1 be a fixed real number. Let f : X → Y be a mapping such that

‖ f (x + y) − f (x) − f (y)‖ ≤ c(‖x‖p + ‖y‖p), x, y ∈ X\{0}.

Then there exists a unique solution T : X → Y of the functional equation T (x + y) =

T (x) + T (y) with ‖ f (x) − T (x)‖ ≤ c‖x‖p/|2p−1 − 1|.
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This result is due to Hyers [14] (p = 0), Aoki [2] (0 < p < 1), Gajda [13] (p > 1)
and Rassias [27] (p < 0). Moreover, Rassias [21, 22] also considered the case where
c(‖x‖p + ‖y‖p) is replaced by c‖x‖p‖y‖q with p + q < 0. The treatment in the proof of
Proposition 1.1 can also be applied to other functional equations. Skof [28], Jun and
Kim [15], Jung [16] and Fechner [12] treated the Hyers–Ulam stability of the quadratic
equation as follows.

Proposition 1.2. Let X, Y be two normed spaces with Y complete. Take c ≥ 0 and let
p , 2 be a fixed real number. Let f : X → Y be a mapping such that

‖ f (x + y) + f (x − y) − 2 f (x) − 2 f (y)‖ ≤ c(‖x‖p + ‖y‖p), x, y ∈ X\{0}.

Then there exists exactly one quadratic mapping Q : X → Y such that

‖ f (x) − Q(x)‖ ≤


2c‖x‖p

|4 − 2p|
p , 0,

c p = 0.

The investigation of hyperstability is a new area of research; see, for example, [11].
Here we only list some typical recent results.

Proposition 1.3 [18, Theorem 2]. Let F,K denote the fields of real or complex
numbers. Let X be a normed space over the field F, Y be a normed space over K,
a, b ∈ F\{0}, A, B ∈ K, c ≥ 0, p < 0 and let f : X → Y satisfy

‖ f (ax + by) − A f (x) − B f (y)‖ ≤ c(‖x‖p + ‖y‖p), x, y ∈ X\{0}.

Then f satisfies the equation

f (ax + by) − A f (x) − B f (y) = 0, x, y ∈ X\{0}.

Remark 1.4. Lemma 4.7 in [9] improves the statement of Proposition 1.3.

Proposition 1.5 [5, Theorem 2]. Let U be a nonempty subset of X\{0} such that there
exists a positive integer n0 with nx ∈ U whenever x ∈ U, n ∈ N, n ≥ n0. Let Y be a
Banach space, c ≥ 0, p, q ∈ R, p + q < 0 and let f : U → Y satisfy∥∥∥∥∥ f

( x + y
2

)
−

f (x) + f (y)
2

∥∥∥∥∥ ≤ c‖x‖p‖y‖p, x, y,
x + y

2
∈ U.

Then f satisfies the Jensen functional equation f ( 1
2 (x + y)) = 1

2 ( f (x) + f (y)) on U.

Now we turn to our main results. We adopt the following basic assumptions
throughout the paper.

(A) F,K denote the fields of real or complex numbers and X, Y denote normed spaces
over F,K, respectively.

(B) n ≥ 2 and m are positive integers; C ≥ 0, ai j ∈ F and Li ∈ K are given parameters
for i = 1, . . . ,m, j = 1, . . . , n.
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(C) There exist i0 ∈ {1, . . . ,m} and two different elements j1, j2 ∈ {1, 2, . . . , n} such
that ai0 j1 , 0, ai0 j2 , 0 and, for any i , i0, γ , 0, there is j ∈ {1, . . . , n} satisfying
ai j , γai0 j.

The last assumption concerns the ‘nondegeneracy’ of the matrix (ai j)m×n and it can be
expressed as follows: there is a row Ai0 := (ai0 j)1×n of the matrix A := (ai j)m×n with at
least two nonzero elements and such that no other row is a multiple of Ai0 .

Theorem 1.6. Assume that all the parameters satisfy the basic assumptions. If there
exists p < 0 such that ∥∥∥∥∥ m∑

i=1

Li f
( n∑

j=1

ai jx j

)∥∥∥∥∥ ≤ C
n∑

j=1

‖x j‖
p (1.1)

for any x1, x2, . . . , xn ∈ X\{0}, then
m∑

i=1

Li f
( n∑

j=1

ai jx j

)
= 0 (1.2)

holds on X\{0}.

Theorem 1.7. Assume that all the parameters satisfy the basic assumptions. If there
exist real numbers p1, p2, . . . , pn such that p1 + p2 + · · · + pn < 0 and∥∥∥∥∥ m∑

i=1

Li f
( n∑

j=1

ai jx j

)∥∥∥∥∥ ≤ C
n∏

j=1

‖x j‖
p j (1.3)

for any x1, x2, . . . , xn ∈ X\{0}, then (1.2) holds on X\{0}.

Remark 1.8. Theorem 1.6 is closely related to [4, Theorem 2.1] and Theorem 1.7
corresponds to [8, Theorem 1.3].

We call the condition (1.1) in Theorem 1.6 the Aoki–Hyers type, and (1.3) in
Theorem 1.7 the Rassias type. As far as we know, almost all the results on the
hyperstability of generalised linear functional equations in the literature can be
obtained immediately from our main theorems. This includes hyperstability results
for the Cauchy equation, Fréchet equation, Jordan–von Neumann functional equation
and the additive, quadratic, cubic, quartic and monomial functional equations. As
examples, we present Proposition 1.3 above and the following results.

Proposition 1.9 [1, main result of Section 2]. Let X be a normed space, Y be a Banach
space, c ≥ 0, p < 0 and f : X → Y satisfy∥∥∥∥∥ n∑

i=0

(−1)n−iCi
n f (ix + y) − n! f (x)

∥∥∥∥∥ ≤ c(‖x‖p + ‖y‖p), x, y ∈ X\{0}.

Then f satisfies the equation
n∑

i=0

(−1)n−iCi
n f (ix + y) − n! f (x) = 0, x, y ∈ X\{0}.
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Proposition 1.10. Let the fields F,K denote the real or complex numbers. Let (X, ‖ · ‖X)
be a normed space over F, (Y, ‖ · ‖Y ) be a Banach space over K, c ≥ 0, p < 0 and let
the mapping f : X → Y satisfy

‖ f (x + y) + f (y + z) + f (x + z) − f (x) − f (y) − f (z) − f (x + y + z)‖Y
≤ c(‖x‖pX + ‖y‖pX + ‖z‖pX)

for all x, y, z ∈ X\{0}. Then f satisfies the equation

f (x + y) + f (y + z) + f (x + z) = f (x) + f (y) + f (z) + f (x + y + z), x, y, z ∈ X.

Remark 1.11. Proposition 1.9 is related to [17, Theorems 2, 3 and 5] and
Proposition 1.10 is a particular case of [3, Theorem 2.1].

Next, we will use Theorem 1.6 to prove Proposition 1.3 (for details we refer, for
example, to [18]) and Proposition 1.9 (see also [1]). In fact, those results can be
obtained immediately.

Proof of Proposition 1.3. By the conditions, the two components of A1 := (a, b) are
nonzero. For any i ∈ {2, 3} and for all γ ∈ F, Ai , γA1, where A2 = (1, 0), A3 = (0, 1).
So, Proposition 1.3 follows from Theorem 1.6. �

Proof of Proposition 1.9. Let A1 := (1, 1). For any i ∈ {2, 3, . . . , n + 1} and for all
γ ∈ F, Ai , γA1, where Ai = (i,1), i = 2,3, . . . ,n and An+1 = (1,0). So, by Theorem 1.6,
we have Proposition 1.9. �

Furthermore, by Theorems 1.6 and 1.7, a cubic equation introduced in [24, 26],

f (x + 2y) + 3 f (x) = 3 f (x + y) + f (x − y) + 6 f (y),

a cubic equation considered in [15],

f (2x + y) + f (2x − y) = 2 f (x + y) + 2 f (x − y) + 12 f (x)

and a quartic equation given in [23, 25],

f (2x + y) + f (2x − y) = 4 f (x + y) + 4 f (x − y) + 24 f (x) − 6 f (y),

have hyperstability in the sense of Aoki–Hyers or Rassias when p < 0 (or p1 + p2 < 0).

2. Proof of theorems

In this section, we will prove the hyperstability of the generalised linear functional
equation of Theorems 1.6 and 1.7. In essence, the method of proof was introduced
in [6] and [7] and next used in [3, 5, 8, 18]. To prove our theorems, we need a useful
result from [10], which we reproduce here for the reader’s convenience. We introduce
the following hypotheses.

(H1) X is a normed space, Y is a Banach space, l1, . . . , lm : X\{0} → X\{0} and
L1, . . . , Lm : X → RX\{0}

+ .
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(H2) T : YX\{0} → YX\{0} satisfies

‖Tξ(x) − Tη(x)‖ ≤
m∑

i=1

Li(x)‖ξ(li(x)) − η(li(x))‖, ξ, η ∈ YX\{0}, x ∈ X\{0}.

(H3) Λ : RX\{0}
+ → RX\{0}

+ is given by

Λδ(x) =

m∑
i=1

Li(x)δ(li(x)), δ ∈ RX\{0}
+ , x ∈ X\{0}.

Lemma 2.1 [10, Theorem 1]. Let (H1)–(H3) hold and let ε : X\{0} → [0, +∞),
f : X\{0} → Y satisfy the conditions

‖T f (x) − f (x)‖ ≤ ε(x) and ε∗(x) =

∞∑
n=0

Λnε(x) < +∞, x ∈ X\{0}.

Then there exists a unique fixed point g of T with

‖ f (x) − g(x)‖ ≤ ε∗(x), x ∈ X\{0}.

Moreover, g is given by g(x) = limn→+∞ T n f (x) for x ∈ X\{0}.

We now give a complete proof of Theorem 1.6 and a brief proof of Theorem 1.7.

Proof of Theorem 1.6. We can assume that Y is complete, because otherwise we can
replace Y by its completion Y .

Without loss of generality, we may assume that (a1 j)1×n is the row satisfying
condition (C). For i = 1, . . . ,m, let πi denote the hyperplane

∑n
j=1 ai jt j = 0 in Fn and,

for k = 1, . . . , n, let πc,k be the coordinate plane tk = 0. By the hypothesis on (a1 j)1×n,
it follows that π1 is different from πi (i = 2, . . . ,m) and πc,k (k = 1, . . . , n) and so the set

π1

∖ n⋃
k=1

πc,k

∖ m⋃
i=2

πi

is not empty. Choose an element (k1, . . . , kn) from this set. Obviously, (k1, . . . , kn)
satisfies 

n∑
j=1

a1 jk j = 0,

k j , 0, j = 1, 2, . . . , n,
n∑

j=1

ai jk j , 0, i = 2, . . . ,m.

Keeping the hypothesis on (a1 j)1×n in mind, it is easy to see that there exist
b1, . . . , bn ∈ F such that

∑n
j=1 a1 jb j = 1. For a given large positive integer t and
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a nonzero number x, we set x j = (k jt + b j)x, j = 1, 2, . . . , n, and write si(t) =∑n
j=1 ai j(k jt + b j), i = 1, 2, . . . ,m. Then∥∥∥∥∥ m∑

i=1

Li f (si(t)x)
∥∥∥∥∥ ≤ C

n∑
j=1

|k jt + b j|
p‖x‖p (2.1)

and s1(t) ≡ s1 = 1.
Due to the homogeneity of degree one of both sides of the inequality (1.1), we can

assume that L1 = −1. Since k1, . . . , kn are all nonzero, we have limt→+∞ |k jt + b j| = +∞,
i = 1, . . . , n. Define

αt := C
n∑

j=1

|k jt + b j|
p < 1,

so that limt→+∞ αt = 0. Therefore, we can suppose that t is sufficiently large so that
0 ≤ αt < 1.

Define operators Tt and Λt by

Ttξ(x) =

m∑
i=2

Liξ(si(t)x),

Λtδ(x) =

m∑
i=2

|Li|δ(si(t)x),

respectively. We can easily check that

‖Ttξ(x) − Ttη(x)‖ =

∥∥∥∥∥∑
i=2

Li(ξ(si(t)x) − η(si(t)x))
∥∥∥∥∥

≤
∑
i=2

|Li| ‖ξ(si(t)x) − η(si(t)x)‖ = Λt(‖ξ(x) − η(x)‖).

The inequality (2.1) can be written as

‖Tt f (x) − f (x)‖ ≤ αt‖x‖p := εt(x).

It follows from the linearity of Λt that

Λtεt(x) = Λt(αt‖x‖p) =

m∑
i=2

|Li| · αt‖si(t)x‖p =

m∑
i=2

|Li| · |si(t)|pαt‖x‖p = βtαt‖x‖p,

where βt =
∑m

i=2 |Li| · |si(t)|p. Since

si(t) =

n∑
j=1

ai j(k jt + b j) =

n∑
j=1

ai jk jt +

n∑
j=1

ai jb j

and
∑n

j=1 ai jk j , 0, i = 2, . . . ,m,

lim
t→+∞

|si(t)| = lim
t→+∞

∣∣∣∣∣ n∑
j=1

ai jk jt +

n∑
j=1

ai jb j

∣∣∣∣∣ = +∞, i = 2, . . . ,m.
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So, we get limt→+∞ βt = 0 and therefore we can assume that 0 ≤ βt < 1.
Analogously, Λn

t εt(x) = Λn
t (αt‖x‖p) = βn

t αt‖x‖p. Therefore,

ε∗t (x) =

+∞∑
n=0

βn
t αt‖x‖p =

αt

1 − βt
‖x‖p

for sufficiently large t. According to Lemma 2.1, there exists a unique solution ft of
Tt ft(x) = ft(x) satisfying ‖ ft(x) − f (x)‖ ≤ ε∗t (x) and ft(x) = limn→+∞ T n

t f (x) for x , 0.
Next, we will prove that ft satisfies the equation

∑m
i=1 Li ft(

∑n
j=1 ai jx j) = 0. To this

end, we show by induction on r that∥∥∥∥∥ m∑
i=1

LiT r
t f

( n∑
j=1

ai jx j

)∥∥∥∥∥ ≤ Cβr
t

n∑
j=1

‖x j‖
p. (2.2)

One can observe that the case r = 0 is indeed the inequality (1.1). We assume that the
inequality (2.2) holds for r := r; then, for r := r + 1,∥∥∥∥∥ m∑

i=1

LiT r+1
t f

( n∑
j=1

ai jx j

)∥∥∥∥∥ =

∥∥∥∥∥ m∑
i=1

Li

m∑
k=2

LkT r
t f

(
sk(t)

n∑
j=1

ai jx j

)∥∥∥∥∥
=

∥∥∥∥∥ m∑
k=2

Lk

m∑
i=1

LiT r
t f

( n∑
j=1

ai jsk(t)x j

)∥∥∥∥∥
≤

m∑
k=2

|Lk|

∥∥∥∥∥ m∑
i=1

LiT r
t f

( n∑
j=1

ai jsk(t)x j

)∥∥∥∥∥
≤

m∑
k=2

|Lk|Cβr
t

n∑
j=1

‖sk(t)x j‖
p

= Cβr
t

m∑
k=2

|Lk| · |sk(t)|p
n∑

j=1

‖x j‖
p

= Cβr+1
t

n∑
j=1

‖x j‖
p.

Since limr→+∞Cβr+1
t

∑n
j=1 ‖x j‖

p = 0 and ft(x) = limr→+∞ T r+1
t f (x),

m∑
i=1

Li ft
( n∑

j=1

ai jx j

)
= lim

r→+∞

m∑
i=1

LiT r+1
t f

( n∑
j=1

ai jx j

)
= 0.

Finally, recall that

‖ ft(x) − f (x)‖ ≤
αt

1 − βt
‖x‖p, lim

t→+∞

αt

1 − βt
= 0

and that ft satisfies (1.2) for sufficiently large t. Thus, by letting t→ +∞, we see that
f also satisfies (1.2). �
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Proof of Theorem 1.7. Set αt =
∏n

j=1 |k jt + b j|
p j . Then αk → 0 as t → +∞ since∑n

j=1 p j < 0. The proof of Theorem 1.7 is now the same as the proof of
Theorem 1.6. �

Remark 2.2. In Theorems 1.6 and 1.7, we can replace X\{0} by a subset X′ ⊂ X\{0}
with the property that x ∈ X′ implies (k jt + b j)x ∈ X′ for sufficiently large t ∈ N,
j = 1, 2, . . . , n. Under the basic assumptions, Theorems 1.6 and 1.7 can be stated
as follows.

If (1.1) or (1.3) holds for x1, . . . , xn ∈ X′ with
∑n

j=1 ai jx j ∈ X′, i = 1, 2, . . . ,m,
then (1.2) holds for x1, . . . , xn ∈ X′ with

∑n
j=1 ai jx j ∈ X′, i = 1, 2, . . . ,m.

Remark 2.3. Theorem 2.2 in [9] allows us to generalise Theorem 1.6 to the following
inhomogeneous version of (1.2):

m∑
i=1

Li f
( n∑

j=1

ai jx j

)
= F(x1, . . . , xn),

where F : Xn → Y is a given function such that the equation has at least one solution
f0 : X\{0} → Y .
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