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Abstract

We aim to characterise those transformations on the set of density operators (which are the mathematical
representatives of the states in quantum information theory) that preserve a so-called generalised entropy
of one fixed convex combination of operators. The characterisation strengthens a recent result of Karder
and Petek where the preservation of the same quantity was assumed for all convex combinations.
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1. Introduction and statement of the main result

We begin with a brief survey of results which have led us to the investigation of
the problem treated in this paper. The study of automorphisms, symmetries, or
transformations which preserve certain numerical quantities attached to the underlying
structure is an important task in several branches of mathematics. One of the
most fundamental results in this direction is the celebrated theorem of Wigner on
quantum mechanical symmetry transformations. The theorem asserts that every
transformation of the set of all rank-one projections on a Hilbert space preserving
the transition probability (that is, the trace of the product) is necessarily implemented
by either a unitary or an antiunitary similarity transformation. Wigner’s theorem has a
considerable literature. (See [10, Sections 2.1 and 2.2] and the comprehensive survey
article [7]. For recent elementary proofs, the reader can consult [1, 6].)

In the series of papers [2, 4, 11, 17] motivated by Wigner’s theorem, there are
several Wigner-type results concerning transformations on the set of density matrices
(that is, positive semidefinite matrices with unit trace) which preserve different sorts
of relative entropies and quantum divergences. These quantities are very important in
quantum information theory. In the recent paper [8], Karder and Petek considered a
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problem which is somewhat different in nature. They completely described maps on
density operators preserving certain entropy-like quantities of any convex combination
of operators. More precisely, for a given strictly convex function f : [0, 1]→ R
and density operator A on a finite-dimensional Hilbert space H, they introduced the
numerical quantity

F(A) =

d∑
j=1

f (λ j),

where the numbers λ j are the eigenvalues of A counted with multiplicity. They
described the structure of those transformations of the set formed by all density
operators on H which satisfy

F(αφ(A) + (1 − α)φ(B)) = F(αA + (1 − α)B) for all α ∈]0, 1[.

For further results on preserver problems which are related to convex combinations,
the interested reader is referred to [5, 13, 14].

In the present paper, we consider the more general problem where the preservation
of F(αA + (1 − α)B) is assumed only for one fixed real number α ∈]0, 1[, not for all.
It turns out that the proof of our result is much shorter than that presented in [8]. We
obtain the interesting fact that the corresponding symmetries are exactly the unitary–
antiunitary similarity transformations. Thus, the main result of the current paper can
be viewed as a Wigner type characterisation of such maps. Note that from the quantity
F(A), by particular choices of the function f , one can recover some widely used
entropies in quantum information theory, as demonstrated in the following examples.

Example 1.1. If

f (x) =

x log2 x, x > 0,
0, x = 0,

and A is an operator in S(H), then F(A) is the negative of the usual von Neumann
entropy of A.

Example 1.2. Let p > 0, p , 1, be fixed and take f (x) = (xp − x)/(p − 1) for x ∈ [0, 1].
For an operator A ∈ S(H), the quantity F(A) = (p − 1)−1(Tr Ap − 1) is the negative of
the Tsallis entropy of A.

Example 1.3. Let p > 0, p , 1, be fixed and consider f (x) = sgn (p − 1)xp for x ∈ [0,1].
For an operator A ∈ S(H), the quantity F(A) = sgn (p − 1) Tr Ap is closely related to
the Rényi entropy D(A) = (1 − p)−1 log2 |F(A)|.

For more on entropy in operator algebras and entropy preserver problems, see, for
instance, [3, 9, 12, 15, 16].

In what follows, the symbol H stands for a complex Hilbert space with dimension
2 ≤ d := dim H < ∞ and S(H) denotes the set of density operators acting on H. We
now state our solution to the problem formulated in the preceding paragraphs.
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Theorem 1.4. Let α be a real number in ]0, 1[ and let φ : S(H) → S(H) be a
transformation satisfying

F(αφ(A) + (1 − α)φ(B)) = F(αA + (1 − α)B), A, B ∈ S(H). (1.1)

Then there exists either a unitary or an antiunitary operator U on H such that

φ(A) = UAU∗, A ∈ S(H).

2. Proof of Theorem 1.4

First observe that an affine perturbation of the function f does not have any
influence on the preservation of the quantity F(αA + (1 − α)B). Indeed, defining
g : [0, 1]→ R, g(x) = f (x) + ax + b (x ∈ [0, 1]) with some a, b ∈ R,

d∑
j=1

g(λ j) =

d∑
j=1

f (λ j) + a ·
d∑

j=1

λ j + d · b = F(A) + a + d · b, A ∈ S(H),

which verifies our claim. So assume, as we may, that f (0) = f (1) = 0. In what follows,
rank-one (orthogonal) projections on H will appear several times; their set is denoted
byP1(H). For any self-adjoint operators A,B on H, we write A ≤ B if B− A is positive.
We now derive a formula which will be needed later.

Lemma 2.1. If P,Q ∈ P1(H) are projections, then

F(αP + (1 − α)Q) = f
(1 +

√
1 + cα(Tr PQ − 1)

2

)
+ f

(1 −
√

1 + cα(Tr PQ − 1)
2

)
with a real number cα that does not depend on P, Q. Furthermore, the range of
the function gα : [0, 1]→ R, gα(x) =

√
1 + cα(x − 1)/2 for x ∈ [0, 1] is contained in

[0, 1/2].

Proof. Choose an orthonormal basis {e1, . . . , ed} in H such that rng Q = span {e1} and
rng P ⊆ span {e1, e2}. With respect to this basis, we can write P in the matrix form

P =

(
Tr PQ ε

√
Tr PQ(1 − Tr PQ)

ε
√

Tr PQ(1 − Tr PQ) 1 − Tr PQ

)⊕
0d−2

with some complex number ε of modulus one, and henceforth

Q =

(
1 0
0 0

)⊕
0d−2.

Thus,

αP + (1 − α)Q =

(
αTr PQ + (1 − α) αε

√
Tr PQ(1 − Tr PQ)

αε
√

Tr PQ(1 − Tr PQ) α(1 − Tr PQ)

)⊕
0d−2.

It is an elementary task to check that the characteristic polynomial of the matrix of
αP + (1 − α)Q is

ϕ(s) = (−1)d sd−2(s2 − s + α(1 − α)(1 − Tr PQ))
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and thus its nonzero eigenvalues are

1 ±
√

1 + 4α(1 − α)(Tr PQ − 1)
2

.

Now defining cα := 4α(1 − α) yields the first statement of Lemma 2.1, and then the
second follows very easily. �

Lemma 2.2. Keeping the notation in Lemma 2.1, the function

x 7→ f
( 1

2 + gα(x)
)

+ f
( 1

2 − gα(x)
)
, x ∈ [0, 1],

is injective.

Proof. The function h : [0, 1]→ R defined by

h(x) = f
( 1

2 + x
)

+ f
( 1

2 − x
)
, x ∈

[
0, 1

2
]
,

is strictly increasing since f is strictly convex. Since gα is injective, the result
follows. �

The following lemma characterises the rank-one projections in terms of the quantity
F(A).

Lemma 2.3. For any A ∈ S(H), we have F(A) = 0 if and only if A ∈ P1(H).

Proof. Since f (0) = f (1) = 0 and f is strictly convex, f |]0,1[ < 0. For any A ∈ S(H), it
follows that F(A) = 0 exactly when the spectrum of A lies in {0, 1}. But this property
is equivalent to A being a projection, that is, A ∈ P1(H). �

In the remaining part of this section, φ : S(H)→ S(H) denotes a transformation
admitting the property (1.1). Substituting B = A into (1.1) shows that φ satisfies
F(φ(A)) = F(A) for all operators A ∈ S(H). Thus, we have the following immediate
consequence.

Corollary 2.4. The transformation φ maps P1(H) into itself.

By Lemmas 2.1 and 2.2, we infer that F(αP + (1 − α)Q) for P, Q ∈ P1(H) is
an injective function of the transition probability Tr PQ which yields the following
corollary.

Corollary 2.5. The map φ|P1(H) preserves the transition probability, whence it is either
a unitary or an antiunitary similarity transformation, by the nonsurjective version of
Wigner’s theorem (see, for instance, [6]).

Since the quantity F(tA + (1 − t)B) is clearly invariant under such transformations,
composing φ by an appropriate one, we may suppose that φ acts as the identity on
P1(H). The remainder of the section is concerned with verifying that such a φ is the
identity on the whole of S(H).
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Lemma 2.6. Let A be an arbitrary self-adjoint operator on H with spectrum in [0, 1].
Denote by MA the set of rank-one projections on H with range contained in the
eigensubspace of A corresponding to its largest eigenvalue. Then

F(αA + (1 − α)P) ≤ F(αA + (1 − α)PA), P ∈ P1(H), PA ∈ MA,

with equality if and only if P ∈ MA.

Proof. The proof parallels the proof of [8, Proposition 2.4] and is omitted. �

From now on, we shall use the argument in the proof of [17, Claim 8]. Fix an
operator A ∈ S(H) and set B := φ(A). Suppose that the spectral decompositions of A
and B are

A =

m∑
i=1

λiPi, B =

n∑
j=1

µ jQ j,

where λ1 > λ2 > · · · > λm and µ1 > µ2 > · · · > µn. Using (1.1) and the assumption that
φ is the identity on P1(H),

F(αA + (1 − α)P) = F(αB + (1 − α)P), P ∈ P1(H).

By Lemma 2.6, for any projection R ∈ P1(H),

F(αA + (1 − α)R) = max
X∈P1(H)

F(αA + (1 − α)X)

if and only if R ≤ P1, and in this case

F(αA + (1 − α)R) = f (αλ1 + 1 − α) − f (αλ1) +

m∑
i=1

rank(Pi) f (αλi).

Similarly, for each operator R ∈ P1(H),

F(αB + (1 − α)R) = max
X∈P1(H)

F(αB + (1 − α)X)

exactly when R ≤ Q1, and then

F(αB + (1 − α)R) = f (αµ1 + 1 − α) − f (αµ1) +

n∑
j=1

rank(Q j) f (αµ j).

Notice that for any projection R ∈ P1(H), the quantity F(αA + (1 − α)R) is maximal
if and only if F(αB + (1 − α)R) is so. Equivalently, if R ∈ P1(H) is an operator, then
R ≤ P1 ⇔ R ≤ Q1, hence P1 = Q1.

Now set S := P1 = Q1. Then for each projection R ∈ P1(H) with RS = 0, the
equality

F(αA + (1 − α)R) = max
X∈P1(H):XS =0

F(αA + (1 − α)X)

holds exactly when R ≤ P2, and in this case

F(αA + (1 − α)R) = f (αλ2 + 1 − α) − f (αλ2) +

m∑
i=1

rank(Pi) f (αλi).

https://doi.org/10.1017/S0004972718000254 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000254


[6] Density operators preserving generalised entropy 107

Analogously, for each operator R ∈ P1(H) with RS = 0,

F(αB + (1 − α)R) = max
X∈P1(H): XS =0

F(αB + (1 − α)X)

if and only if R ≤ Q2, and then

F(αB + (1 − α)R) = f (αµ2 + 1 − α) − f (αµ2) +

n∑
j=1

rank(Q j) f (αµ j).

Using the conditions on A and B, we infer that for any projection R ∈ P1(H) with
RS = 0, the quantity F(αA + (1 − α)R) is maximal if and only if F(αB + (1 − α)R) is
so. This means that for each such operator R, the equivalence R ≤ P2 ⇔ R ≤ Q2 holds.
Thus P2 = Q2. We can continue this argument and arrive at the conclusion that m = n
and Pi = Qi for each integer i with 1 ≤ i ≤ m.

Now we define the function g on [0, 1] by

g(x) := f (αx + 1 − α) − f (αx), x ∈ [0, 1].

We infer that g is strictly increasing. The variational formulas above yield

max
R∈P1(H):R≤Pl+···+Pm

F(αA + (1 − α)R) − max
R∈P1(H):R≤Pl+1+···+Pm

F(αA + (1 − α)R)

= g(λl) − g(λl+1)

and

max
R∈P1(H):R≤Pl+···+Pm

F(αB + (1 − α)R) − max
R∈P1(H):R≤Pl+1+···+Pm

F(αB + (1 − α)R)

= g(µl) − g(µl+1)

for l = 1, 2, . . . ,m − 1. Using the conditions on A and B, we deduce that

g(λl) − g(λl+1) = g(µl) − g(µl+1) for l = 1, 2, . . . ,m − 1.

We will now show that λi = µi for all integers 1 ≤ i ≤ m. Suppose to the contrary
that λk > µk for a certain natural number k with 1 ≤ k ≤ m. Since

∑m
i=1 λi =

∑m
i=1 µi = 1,

it follows that λs < µs for some integer s with 1 ≤ s ≤ m. There is no loss of generality
in supposing that s > k. In this case, there is a number t ∈ {k, k + 1, . . . , s − 1} for which

[λt+1, λt] ) [µt+1, µt]

and this gives, for the strictly increasing function g, the relation

g(λt) − g(λt+1) > g(µt) − g(µt+1),

which is a contradiction. By what we have proved so far, the equality A = B(:= φ(A))
is valid and, since A ∈ S(H) was an arbitrary density operator, it follows that φ is the
identity. Having in mind the reduction we made so that φ was the identity on P1(H),
we conclude that φ is of the desired form, and this completes the proof of Theorem 1.4.
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