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Notation and definitions. 

Definition 1. Let (X, p) be a metric space and #: I - ^ I a continuous self-
mapping of X. We shall call <j> and a-contraction on (X, p) if and only if « Ç [0,1) 
and Vx, y É l : p(<j>(%), <t>(y)) S ap(x, y). We shall call <t> an a-homothety on 
(X, p) if and only if « > 0 and Vx, y Ç X: p(<t>(x), (j>(y)) = «p(x, 3/). 

Definition 2. Let X be a metrizable topological space and $: X—»X a 
continuous self-mapping of X. We shall call $ a topological a-contr action on X 
if and only if there exists a metric p on X inducing the given topology and 
such that 0 is an «-contraction on (X, p). Similarly, we introduce a topological 
a-homothety. 

Remark. If </>: X —» X is a homeomorphism and at the same time a topo
logical «-contraction on X, we say that 0 is a topologically «-contractive 
homeomorphism on X. If 4>: X —> X is defined on the metric space (X, p), 
then the statement: 0 is a topological «-contraction on X is to be understood 
without regarding the particular metric, taking into account only the topology 
on X defined by p. 

Our main objective in this paper is to characterize topological «-homotheties 
of compact metrizable spaces by a very simple condition, namely: 

If <j>\ X —-> X is a homeomorphism of a compact metrizable space X into 
itself and « € (0, 1), then $ is a topological «-homothety on X if and only if 
the intersection n^=i0w(X) of all iterated images of X is a singleton. 

LEMMA 1. Let {A, p) be a bounded metric space and x//: A —> A a continuous 
mapping of A into itself. Then, for any « G (0, 1) the expression p*(x, y), 
defined by 

p*(x, y) = s u p > V i T ( x ) , V(y))}, 

is a metric on A, and is topologically equivalent to p, where the supremum is 
taken over the set of all non-negative integers n = 0, 1, 2, . . . and \f/°(x) stands 
for x. 

Proof. To show that p* is a metric it is only necessary to check the triangle 
inequality for p*. Let x, y G A ; then, following the definition of p*, the number 
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p*(x, 3/)isthesupremumof theset{p(x,y),ap(\[/(x), \f/(y)),a2p(\p2(x), \f/2(y)),...}. 
Since p is bounded and a G (0, 1), the supremum is attained on this set, and, 
therefore, for each pair x, y 6 A there exists an integer n such that p*(x, y) = 
anp(\//n(x), \f/n(y)). We now let x, y, z £ A be given points in A, then p*(x, z) = 
akp(\f/k(x), \f/k(z)) for some k and applying the triangle inequality for p on the 
points ^ ( x ) , i/k(y)y and \pk(z), we have that 

«*P (**(*), **(*)) ^ « W ( * ) , **G0) + «*p(**60, **(*)), 
and since a*p(^W> V(y)) = P*(#> y) and akp(ipk(y)y \pk(z)) S P*(y, z), the 
triangle inequality follows. To prove the equivalence of p* with p, we observe 
that p(x, 3/) ^ p*(x, 3;) ; thus, there is only to show that 

p(xn, x) -> 0 => p*(xw, x) —> 0. 

Let us suppose that this is not the case. Then, since p (hence, also, p*) is 
bounded, there exists a sequence {xw} and a point x Ç A such that 

p(xn, x) —> 0 and p*(xw, x) —» a > 0 

for some positive a. Since for each w = 1, 2, . . . there exists a non-negative 
integer &w such that p*(xw, x) = aknp(\pkn(xn), \pkn(x)), we have that 

aknp{\pkn{xn)1 \pkn(x)) —> a > 0. 

If the sequence {&n} were not bounded, this is not possible, since then, 

lim inf aknp(\pkn(xn), \f/kn(x)) — 0. 

If the sequence {kn} is bounded, then at least one of the integers kn, say k, is 

infinitely repeated, and there exists a subsequence {xïn) of \xn] such that 

This, howrever, contradicts the supposition that p(xn, x) —» 0 since ^ is assumed 
to be continuous, and our theorem follows. 

LEMMA 2. Letf (X, p) 6e a bounded metric space and <j>: X —» X an a-contrac
tive homeomorphism of (X, p) into itself, and suppose that there exists a bounded 
metric space (X*, p*) such that 

(i) X C X* awd p(x, y) = p*(x, 3;) 0?z X and 
(ii) //zere exists a continuous mapping \f/, \p\ X* —> X* swcA £to \f/(x) = (j>~1 (x) 

> r x e <t>(x). 
Then </> is a topological a-homothety. 

Proof. Since <j> is an «-contraction with respect to p, we have that p*($(x), 
4>(y)) ^ ap*(x, y) for all x, 3/ Ç X since p* coincides with p on X. Following 
Lemma 1, the metric p**, defined by 

p**(x, 3O = sup^aVGPK*), ^ ( y ) ) } , 

defines a metric on X*, equivalent to p*. Let now x, y £ X ; then, the number 
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p** (x, y) is the maximum of the set 

{p*(x, y), ap*GK*), *(y)), « W (*), ^2(y)), • • •} 

and similarly, the number p**(<l>(x), <l>(y)) is (taking into account that 
\//(<t>(x)) = x on X) the maximum of the set 

{p*(0(x), 0 0 0 ) , ap*(x, y), aVGK*) , *(?)) , • • •}. 

But since p*(x, y) = p(x, y) and p*(0(x), </>(y)) = p(c/>(x), </>(y)) (x, y G X) , 
we have that p*(4>(x), <f)(y)) ^ ap*(x, y), therefore the maximum is equal to 
the maximum of the set {ap*(x, y), a2p*(r^(x), i£(y)), • • •}> a n d we have the 
equality p**(#(x), <t>(y)) = ap**(x, y) for x, y G X. 

Now we have prepared our way to prove the crucial lemma. 

LEMMA 3. Let X be a compact metrizable space and <j>: X —» X a topologically 
a-contractive homeomorphism on X. Then <f> is a topological a-homothety on X. 

Proof. There exists a topological embedding p.: X —» Hoi X into the Hilbert 
cube H, and identifying X with p(X) we can consider X to be a closed subset 
of H. Since 4> {X) is compact in X and <jrl is continuous on <j> (X), the theorem 
of Tietze ensures that the function 4>~l can be extended over H, i.e., there 
exists $: H-+H such that r//(x) = ^(x) for x £ <t>(X) C X C iJ. 

Since <£ is a topological «-contraction on X, there exists a metric p on X 
such that <j> is an «-contraction on (X, p). Since X is closed in H, the metric p 
defined on X can be extended over H (see 1). Denoting this extension of p by 
p*, we have a metric space (H, p*), homeomorphic to the Hilbert cube, and 
therefore bounded, and we see that the metric space (H, p*), together with 
the mapping \p: H —> H, satisfies the conditions imposed on (X*, p*) in Lemma 
2, which proves our assertion. The consequence of this lemma is our main 
theorem. 

THEOREM. Let X be a compact metrizable space, <£ a homeomorphism of X 
into itself, and a £ (0, 1). Then <j> is a topological a-homothety on X if and only if 
the intersection of all iterated images <j>n{X) of X is a one-point set, i.e., if and 
only if there exists an a £ X such that 

OO 

n *"(*) = {a}. 
7 1 = 1 

Proof. In view of (2), the last condition implies that <j> is a topological 
a-contraction and, therefore, a topological a-homothety because of our Lemma 3. 
If, on the other hand, 4> is a topological a-homothety, then <j>n(X) shrinks, 
evidently, to the fixed point a. 
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