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TIGHT EVENTUALLY DIFFERENT FAMILIES

VERA FISCHER AND COREY BACAL SWITZER

Abstract. Generalizing the notion of a tight almost disjoint family, we introduce the notions of a tight
eventually different family of functions in Baire space and a tight eventually different set of permutations of�.
Such sets strengthen maximality, exist under MA(�– centered) and come with a properness preservation
theorem. The notion of tightness also generalizes earlier work on the forcing indestructibility of maximality
of families of functions. As a result we compute the cardinals ae and ap in many known models by giving
explicit witnesses and therefore obtain the consistency of several constellations of cardinal characteristics
of the continuum including ae = ap = d < aT , ae = ap < d = aT , ae = ap = i < u, and ae = ap =
a < non(N ) = cof(N ). We also show that there are Π1

1 tight eventually different families and tight
eventually different sets of permutations in L thus obtaining the above inequalities alongside Π1

1 witnesses
for ae = ap = ℵ1.

Moreover, we prove that tight eventually different families are Cohen indestructible and are never
analytic.

§1. Introduction. Two infinite subsets of �, A,B ∈ [�]� are almost disjoint if
A ∩ B is finite. A family A ⊆ [�]� is almost disjoint if its elements are pairwise
almost disjoint. Such a family is maximal or MAD if it is almost disjoint but not
properly included in any other almost disjoint family. The least size of an infinite
MAD family is denoted by a and is one of the most studied cardinal invariants of
the continuum (see [2, Section 8] for more on a).

The cardinal a has many relatives that have also been studied in the literature.
These essentially come in two forms: either we can replace “finite” in the definition of
almost disjoint with belonging to another ideal or we can insist that the MAD family
come equipped with additional structure. Some examples of this are as follows:

(1) ae , the least size of a maximal eventually different family of functions in �� .
(2) ap, the least size of a maximal eventually different set of permutations of �.
(3) aT , the least size of a maximal almost disjoint family of finitely branching

trees T ⊆ �<� . This cardinal is equivalent to the least size of an uncountable
partition of any perfect Polish space into compact sets.

(4) ag , the least size of a maximal cofinitary group1.
Here, recall that a set E ⊆ �� is eventually different if for all distinct f, g ∈ E

there is a k < � so that for all n > k f(n) �= g(n). Denote this situation by f �=∗ g.
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fixed points. It’s not hard to see that any cofinitary group consists of eventually different permutations.
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698 VERA FISCHER AND COREY BACAL SWITZER

Dually if f �=∗ g fails then we say that f and g are infinitely often equal, denoted
f =∞ g. An eventually different family is maximal if it is not contained in any
strictly larger such family. The same can be said in the case of ap with the additional
stipulation that every element is a bijection of � with itself. For more examples of
relatives of a, see [13, 16].

In general the relationship between these cardinals remains murky. It’s known
that a can be consistently less than all of them, but it’s not known if the reverse
inequality is consistent for any of them. It remains open if any of ae , ap, and ag can
be different or if ag = ae = ap is provable in ZFC. In every known model these three
cardinals are equal but uncomfortably there are no known ZFC-relations between
them. In this paper we contribute to the project of separating and understanding
these invariants. We provide several models of ae = ap = ℵ1 while allowing other
related cardinals to be ℵ2 in a controlled way. These results are obtained using
new strengthenings of maximality for eventually different families of functions and
permutations respectively.

A fruitful strengthening of maximality for almost disjoint families in [�]� if given
by the notion of a tight MAD family. An almost disjoint family A is tight if given
any countable set {Bn | n < �} of I(A)+ sets there is a single C ∈ I(A) so that
Bn ∩ C is infinite for all n < � where I(A) is the ideal generated by I and I(A)+

are the positive sets of this ideal. See the preliminaries section of this paper for more
details. Tight MAD families exist under b = 2ℵ0 (see [8]), are Cohen indestructible
[8, Corollary 3.2] and, under certain conditions are preserved by countable support
iterations of proper forcing notions (see [13]).

On the other hand, the preservation of the maximality of maximal eventually
different families under forcing iterations are not that well understood. Hrušák
showed in [15] that ae = ap = ℵ1 in the Sacks model. Using the parametrized ♦
principles of [20], Kastermans and Zhang show that ag = ap = ℵ1 in the Miller
model (see [17]). Their construction can be easily modified to establish the analogous
result for maximal families of eventually different functions. A more recent study
in the area is the work of the first author with Schrittesser (see [9]), where they
establish the existence (in the Constructible Universe L) of a co-analytic Sacks-
indestructible maximal eventually different family. Note that the techniques of
[9], [17] are completely different, and moreover completely different than the
techniques developed in the current article.

The results of the current paper improve and generalize the above, as we produce a
uniform framework for the preservation of maximal families of eventually different
functions, a framework, which applies to a long list of partial orders, including Sacks
forcing, Miller rational perfect tree forcing, partition forcing, infinitely often equal
forcing, Shelah’s poset for destroying the maximality of a given maximal ideal, as
well as their countable support iterations.

For an eventually different family E , we denote by IT (E) the family of all trees
T ⊆ �<� so that there is t ∈ T and a finiteX ∈ [E]<� such that

⋃
Tt ⊆

⋃
X , where

Tt = {s ∈ T : s ⊆ t or t ⊆ s}. We refer to this family, as the tree ideal generated by
E (see Definition 2.1, note this is not literally an ideal, see the discussion after
Definition 2.1). Then IT (E)+ is defined as the collection of all trees T ⊆ �<�
with the property that for each t ∈ T ,

⋃
Tt is not almost covered by finitely many

functions from E . Finally, we say that an eventually different family E is tight, if for
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TIGHT EVENTUALLY DIFFERENT FAMILIES 699

every {Tn}n∈� ⊆ I+
T (E) there is a single g ∈ E with the property that ∀n ∈ �∀t ∈ Tn

there is a branch gn,t of Tn such that t ⊆ gn,t and for infinitely many m, gn,t(m) =
g(m) (see Definition 2.2). A similar definition is made for families of permutations
(see Definition 5.2). The anonymous referee notes that an equivalent, and perhaps
easier to swallow definition is that for every {Tn}n∈� ⊆ I+

T (E) there is a g ∈ E such
that for all n < � there is a branch gn of Tn so that for infinitely many m we have
gn(m) = g(m).

Note that the notion of tightness for an eventually different family is a natural
strengthening of maximality for such families (see Proposition 2.3) as well as
a strengthening of �-maximality (see [11]). As shown in Proposition 5.4, tight
eventually different families exist under MA(�-centered) and so in particular under
CH. In Section 4, we introduce strong preservation of a tight mad families and show
that the countable support iteration of proper forcing notions, each iterand of which
strongly preserves a tight mad family, also preserve the tightness of an eventually
different family. Equipped with the above techniques, we establish:

Theorem 1.1. The following inequalities are all consistent and in each case ae =
ap = ℵ1 is witnessed by a tight eventually different family and a tight eventually
different set of permutations respectively:

(1) a = ae = ap < d = u = aT = 2ℵ0 .
(2) a = ae = ap = d < aT = 2ℵ0 .
(3) a = ae = ap = d = u < non(N ) = cof(N ) = 2ℵ0 .
(4) a = ae = ap = i = cof(N ) < u.

Moreover, if we work over the constructible universe, we can provide co-analytic
witnesses of cardinality ℵ1 to each of a, ae , ap, i, u in the above inequalities.

The rest of this paper is organized as follows. In the remaining part of
the introduction we record some preliminaries for later use. In Section 2 we
introduce tight eventually different families, which is of central focus for the entire
paper. In Section 3 we prove that tight eventually different families are Cohen
indestructible and never analytic. Section 4 contain our preservation results for such
families. In Section 5, we observe that the discussion of tight eventually different
families applies mutatis mutandis to its generalization for eventually different sets
of permutations. Next we turn to applications. In Sections 6–9 we prove that
several well-known forcing notions strongly preserve the tightness of eventually
different families of functions and permutations, and conclude the consistency of
the inequalities from the above Theorem. In Section 10 we study the definability
properties of tight families of functions and provide co-analytic witnesses for the
results described in Theorem 1.1. We conclude the paper with open questions for
future research.

1.1. Preliminaries. Our first preliminary involves recalling the ideal associated
with an almost disjoint family. Recall that given an almost disjoint family A the
ideal associated with A is the set I(A) consisting of all B ∈ [�]� for which there is
a finite set {A0, ... , An–1} ⊆ A so that B ⊆∗ ⋃

k<n Ak . This ideal is important when
considering how MAD families persist (or not) to forcing extensions. Often this
takes the following form. If P is some forcing notion and Ẋ is a P-name for an
element of I(A)+ then its outer hull, the set of all m for which some condition forces
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700 VERA FISCHER AND COREY BACAL SWITZER

m̌ ∈ Ẋ is an element of I(A)+ in V. Many arguments involving MAD families
in forcing extensions consider this set at key points. One of the main technical
observations of this paper involves the introduction of a similar ideal-like family
associated with an eventually different family. However, the naive generalization,
thinking of an eventually different family as collection of subsets of P(�2) does not
work and instead we consider an ideal-like family (which is not actually an ideal)
generated by the eventually different family consisting of trees T ⊆ �<� . This is
described in detail in Section 2 (see also Remark 1).

We conclude this introduction by recording some of what was known already
concerning a, ae , ap, aT , b, and d. To start we recall the known provable inequalities
that will be used throughout the paper.

Fact 1.2. The following inequalities are provable in ZFC:

(1) non(M) ≤ ae .
(2) [6, Theorem 2.2] non(M) ≤ ap.
(3) [2, Proposition 8.4] b ≤ a.
(4) [25, Theorem 2.5] d ≤ aT .

Note that each of the inequalities above is consistently strict. The first two hold
in a template model (see [4, Theorem 4.11]), the third is a celebrated theorem of
Shelah [23], and the final appears in [25] building off the work in [18].

Proof. All of these have been proved in the literature (see the citations) with the
exception of non(M) ≤ ae . This inequality however follows from the well-known
fact that non(M) is equal to the bounding number for �=∗, i.e., non(M) is the least
size of a set of reals A ⊆ �� for which there is no f ∈ A which is eventually
different from all g ∈ A (see [1, Theorem 2.4.7]). Indeed, given this, suppose
A ⊆ �� is eventually different and |A| < non(M). Then, there must be a realf ∈ ��
eventually different from every element of A, so A is not maximal. 


Note that since b ≤ non(M), d the bounding number is actually a lower bound
on all the relatives of a (see [3] for a discussion of this). It’s also known that both
non(M) and d are independent of a, and that non(M) and aT are independent
(see below). Moreover d and ae/ap are independent. In the case of ap this was
known, though perhaps never written down. Namely, non(M) = 2ℵ0 in the random
model, and therefore ae = ap = 2ℵ0 while d = ℵ1. On the other hand Kastermans
and Zhang proved in [17] that ap = ℵ1 in the Miller model, where it’s well known
that d = ℵ2. Their proof uses the parametrized diamonds of [20], and is completely
different than the proof we give of this result in Section 5. Though it’s not stated
in their paper, Kastermans and Zhang’s proof that ap = ℵ1 in the Miller model
can also be easily augmented to show that ae = ℵ1 in the Miller model as well. In
Section 5 we give a different proof that ae = ℵ1 in the Miller model as well hence
giving a new proof of the independence of d and ae .

We finish this section by noting what is known about consistent inequalities
between ae , ap, aT , and d.

Fact 1.3. The inequality aT = d < ae = ap holds in the random model, in
particular it is consistent.
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Proof. That d = ℵ1 holds in the random model is well known (see, e.g., [1, Model
7.6.8]). Kunen and, independently, Stern showed that aT = ℵ1 in the random model
(see [18, Theorem 5]). Meanwhile since non(M) ≤ ae , ap and non(M) = 2ℵ0 in the
random model, we have that ae = ap = 2ℵ0 . 


It is also not hard to obtain the consistency of d < aT = ae = ap.

Proposition 1.4. It is consistent that d = ℵ1 < aT = ae = ap = ℵ2.

To describe this model we recall the partition forcing introduced in [18] (see also [7]
and [13, Section 1.6]). This forcing will be discussed in more length in Section 7.
Given an uncountable partition of size ℵ1 of 2� into closed sets K = {Cα | α < �1}
let P(K) be the set of all perfect trees p so that for all α [p] ∩ Cα is nowhere dense
in [p]. The order is inclusion. This forcing was first investigated by Miller who showed
that it is proper, has the Laver property and adds a real not in the evaluation of any
Cα in the extension, thus killing the fact that K is a partition of 2� . It follows that,
via an appropriate bookkeeping device, an �2-length countable support iteration of
forcing notions of the form P(K) will force aT = ℵ2. Later Spinas [25, Lemma 2.7]
proved that this forcing notion is ��-bounding. Black-boxing these facts the proof
of Proposition 1.4 is as follows.

Proof. Assume CH in the ground model. Define a countable support iteration
〈Pα, Q̇α | α < �2〉 so that for even α �α“Q̇α is random forcing” and, using some
appropriate bookkeeping device, for odd α �α “Q̇α is partition forcing for some
uncountable partition of 2�”. In the resulting model non(M) = 2ℵ0 because of
the random reals added and hence ae = ap = 2ℵ0 . Similarly aT = 2ℵ0 because of the
partition forcing iterands. Finally note that since all iterands are ��-bounding the
entire iteration is ��-bounding and so d = ℵ1. 


Collectively, Fact 1.3, Proposition 1.4, and Theorems 6.3 and 7.5 show no provable
inequalities exist between ae/ap, d, and aT aside from d ≤ aT . This is stated more
precisely as Corollary 7.6.

§2. Tight eventually different families. In this section we introduce a strong
version of maximality for eventually different families which can be preserved by
countable support iterations of proper forcing notions. Towards this we introduce
some new terminology. Throughout this section fix an eventually different family E .
Recall that a tree on � is a set T ⊆ �<� which is closed downwards in the sense
that if s is an initial segment of t ∈ T then s ∈ T . Throughout we will only restrict
our attention to pruned trees, i.e., trees T in which every finite sequence t ∈ T has
a proper extension. Unless stated otherwise every tree in this article is assumed
to be pruned. Note that if X is a set of functions then

⋃
X ⊆ �2 and similarly if

T ⊆ �<� is a tree then
⋃
T ⊆ �2. Therefore it makes sense to talk about a set of

functions covering a tree, namely we say that a set of functions X covers a tree T
if

⋃
T ⊆

⋃
X and X almost covers T if

⋃
T ⊆∗ ⋃

X . Given a tree T and a node
t ∈ T let Tt = {s ∈ T | s ⊆ t or t ⊆ s}.

Definition 2.1 (The Tree Ideal generated by E). The tree ideal generated by E ,
denoted IT (E), is the set of all trees T ⊆ �<� so that there is a t ∈ T and a finite
set X ∈ [E]<� so that

⋃
Tt ⊆∗ ⋃

X .
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702 VERA FISCHER AND COREY BACAL SWITZER

Dually a tree T ⊆ �<� is in IT (E)+ if for each t ∈ T it’s not the case that
⋃
Tt

can be almost covered by finitely many functions from E .

Remark 1. The use of the word “ideal” here is somewhat misleading as IT (E) is
not an ideal, nor does it generate one. In fact it is not closed under unions nor is it
closed under taking subtrees. The terminology is meant to draw the analogy with
the ideal generated by a MAD family, for which IT (E) serves a similar purpose.

If we have a treeT ⊆ �<� and a real g ∈ �� we say that g densely diagonalizes T if
for each t ∈ T there is an s � t so that s ∈ T and there is a k ∈ dom(s) \ dom(t) so
that s(k) = g(k). In other words, each node of T sits on a branch which is infinitely
often equal to g.

The main definition in this paper is the following.

Definition 2.2. An eventually different family E is tight if given any sequence
of countably many trees {Tn | n < �} so that Tn ∈ IT (E)+ for all n < � there is a
single g ∈ E which densely diagonalizes all the Tn’s.

The point is that this strengthens maximality.

Proposition 2.3. If E is tight then it is maximal.

Proof. Suppose E is tight but not maximal and let h /∈ E be eventually different
from every element of E . Consider now the tree Th = {h � n | n < �}. This tree is in
IT (E)+ since if we could cover it by finitely many functions from E then there would
be an f ∈ E so that for infinitely many n f(n) = (h � n + 1)(n), i.e., f =∞ h. But
then by tightness there is a g ∈ E which densely diagonalizes Th . But this just means
that g =∞ h, contradiction. 


Later we will see that in ZFC, there are maximal eventually different families that
are not tight (see Theorem 3.3).

Remark 2. The intuition behind using trees, as opposed to simply functions is
as follows. Often in preservation arguments involving maximal sets in [�]� (MAD
families, maximal independent families, etc.) one is given a forcing notion P, a
condition p ∈ P and a P-name Ẋ so that p � Ẋ ∈ [�]�ˇand needs to “reflect” Ẋ to
the ground model. This is usually done using the outer hull of Ẋ with respect to p,
namely the set Ẋp := {m | p � m̌ /∈ Ẋ}. The issue in trying to import this idea to a
space of functions is that the outer hull of a function (viewed as a subset of�2) is no
longer necessarily a function. However, if we have a name ḟ for an element of ��

and consider instead the set of {t ∈ �<� | p � ť � ḟ} then this set forms a subtree
of �<� . It is for this reason that we need to work with trees. This idea is central
to the argument used to prove Theorem 4.2 as well as in the applications given in
Sections 3 and 6–9.

We need to show that this definition is consistent, i.e., it is consistent that there
are tight eventually different families. In fact, much more may be true.

Theorem 2.4. Assume MA(�– centered). Every eventually different family E0 of
size <2ℵ0 is contained in a tight eventually different family. In particular CH implies
that tight eventually different families exist.

https://doi.org/10.1017/jsl.2023.9 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.9


TIGHT EVENTUALLY DIFFERENT FAMILIES 703

The theorem makes use of a forcing notion we introduce now. Let E be an
eventually different family (not necessarily maximal). Define the forcing notion
PE to be the set of all pairs (s, E) so that the following hold:

(1) s is a finite partial function from � to �.
(2) E ∈ [E]<� .

The order on PE is defined as follows. We let (s1, E1) ≤ (s0, E0) if and only if:

(1) s1 ⊇ s0 and E1 ⊇ E0.
(2) If k ∈ dom(s1) \ dom(s0) then s1(k) �= f(k) for each f ∈ E0.

This forcing notion is the same as eventually different forcing E from [1], but
with the second coordinate restricted to E . It is clear that this forcing notion is
�-centered since any two conditions (s, E) and (s, F ) with the same first coordinate
are compatible and in fact strengthened by (s, E ∪ F ).

We will show that PE adds a real eventually different from every element of E
and which densely diagonalizes each T ∈ IT (E)+ in the ground model. This follows
from the following lemma.

Lemma 2.5. The following sets are dense in PE :

(1) For each k < � the set of conditions (s, E) so that k ∈ dom(s).
(2) For each T ∈ IT (E)+, and t ∈ T the set of conditions (s, E) so that there is a
t′ ∈ T which extends t and a k ∈ dom(t′) \ dom(t) so that s(k) = t′(k).

(3) For each f ∈ E the set of conditions (s, E) so that f ∈ E.

Note that condition 1 ensures the generic is a total function on �, condition 2
ensures the function densely diagonalizes all the trees from IT (E)+ in the ground
model and condition 3 guarantees that the generic function is eventually different
from every element of E .

Proof. Let (s, E) be a condition. We will kill three birds with one stone and
show that there is a stronger condition in all three dense sets at once. First, by the
explanation of �-centeredness given above, (s, E ∪ {f}) ≤ (s, E) and is in the last
dense set. Now, fix T ∈ IT (E)+ and t ∈ T . By assumption we know that Tt cannot
be almost covered by

⋃
E ∪ {f}. It follows that there is a node t′ � t in T and an

lt ∈ dom(t′) \ dom(t) so that t′(lt) �= f′(lt) for all f′ ∈ E ∪ {f}. Moreover since
dom(s) is finite we can ensure that lt /∈ dom(s). Let s ′ = s ∪ {(lt , t′(lt))}. Now, fix
k ∈ �. If k /∈ dom(s ′) then let s ′′ = s ′ ∪ {(k, lk)} where lk is the minimal element
not in the (finite) set {f(k) | f ∈ E}. Finally we get that (s ′′, E ∪ {f}) ≤ (s, E),
which is what we needed to show. 


Given this we can now prove Theorem 2.4.

Proof of Theorem 2.4. Assume MA(�– centered). Enumerate all �-sequences
of subtrees of�<� as { �Tα | α < 2ℵ0}. For each α < 2ℵ0 and n < � denote by Tα(n)
the nth tree in �Tα . Fix an eventually different family E0 of size <2ℵ0 . We will
recursively build a continuous ⊆-increasing sequence of eventually different families
{Eα | α < 2ℵ0} so that for eachα < 2ℵ0 Eα has cardinality<2ℵ0 and if �Tα ∈ IT (Eα)+

then there is a real in Eα+1 densely diagonalizing Tα(n) for each n < �. If such a
sequence can be constructed then clearly E =

⋃
α<2ℵ0 Eα will be the desired tight

eventually different family.
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We already have E0. Now suppose that we have constructed Eα . If �Tα � IT (Eα)+

then let gα be any function eventually different from every element of Eα . That
such an element exists is guaranteed by MA(�– centered) (using eventually different
forcing). If �Tα ⊆ IT (Eα)+ then, by applying MA(�– centered) to PEα and noting
that we only need to meet |Eα | + ℵ0 dense sets, find a gα eventually different from
each element of Eα and densely diagonalizing every Tα(n) for n < �. In either
case let Eα+1 = Eα ∪ {gα}. Either way it’s clear that we have fulfilled the requisite
conditions. 


Of course a natural question is whether tight eventually different families exist in
ZFC. We do not know the answer to this. However the analogous question for tight
MAD families, namely if there is a tight MAD family in ZFC, remains one of the
most stubbornly open problems in this area so it’s reasonable to expect that finding
a ZFC example of a tight eventually different family, or showing one does not exist
may be difficult as well.

Question 1. Is it consistent with ZFC that there are no tight maximal eventually
different families?

§3. Cohen indestructibility and definability. Let us investigate the analogy between
tight eventually different families and tight MAD families further. As mentioned
in the introduction, in [8, Corollary 3.2] it is shown that tight MAD families are
Cohen indestructible. Here, recall that if P is a forcing notion and A is MAD then
it is said to P-indestructible if �P “Ǎ is MAD”. Here, we show that the same holds
true of tight eventually different families. We then use this to show that there are no
analytic tight eventually different families and, under large cardinals, no definable
such families in a strong sense.

Theorem 3.1. Suppose κ is a cardinal and Cκ = add (�, κ) is the forcing to add
κ-many Cohen reals. If E is tight then �Cκ “Ě is tight”.

Proof. Since every new real in the Cohen extension is added by a single Cohen
real, it suffices to prove the theorem in the case κ = 1. Denote C1 by C. Let E be tight
and let {Ṫn | n < �} be a countable set of C-names for subtrees of �<� . We will
show that for each p ∈ C either there is a q ≤ p, an n < � so that q � Ṫn ∈ IT (E )̌
or there is a g ∈ E so that p � “For each n < �, ǧ densely diagonalizes Ṫn”. Clearly
the theorem will follow from this.

Fix p ∈ C and enumerate the set of conditions below p as {pj | j < �}. For each
n, j < � let Tn,j = {t ∈ �<� | ∃q ≤ pj q � ť ∈ Ṫn}. For each n, j < � the set Tn,j
is a tree since if some t ∈ Tn,j as witnessed by some q then the same q witnesses that
s ∈ Tn,j for each s ⊆ t. There are two cases.

Case 1: There are n, j < � and t ∈ Tn,j so that (Tn,j)t is almost covered by finitely
many functions from E , i.e., Tn,j ∈ IT (E). Fix q ≤ pj so that q witnesses that t ∈
Tn,j and suppose that f0, ... , fn–1 ∈ E are such that

⋃
(Tn,j)t ⊆∗ ⋃

{f0, ... , fn–1}.
Unwinding the definition of Tn,j we get that in this case q forces ∅ �= (Ṫn)ť ⊆ (Tn,j)t
since if t′ is compatible with t and some r ≤ q forces ť′ ∈ Ṫn then r witnesses that
t′ ∈ (Tn,j)t and since q forces that t ∈ Ṫn then q forces in particular that (Ṫn)t is
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non empty. It follows that q forces that
⋃

(Ṫn)t ⊆∗ ⋃
{f̌0, ... , f̌n–1}. In other words,

q must force that Ṫn is in IT (E).

Case 2: Case 1 fails. In other words this means that each Tn,j is not in IT (E).
By the assumption that E is tight, this means that there is a single g ∈ E which
densely diagonalizes all of the Tn,j ’s. We claim that p � “For all n < � g densely
diagonalizes Ṫn”. To see this, fix n < � and let q = pm < p for some m. Suppose ṫ is
a name for an element of Ṫn. By strengthening q if necessary we can assume that ṫ is
decided by q to be some t ∈ Tn,m. Moreover, since g densely diagonalizes Tn,m there
is an s ⊇ t which is in Tn,m as witnessed by some r ≤ q and an l ∈ dom(s) \ dom(t)
and s(l) = g(l). It follows that r forces there to be a node of Ṫn strengthening ṫ
and agreeing with g above the domain of ṫ. Since q was arbitrary it follows that p
actually forces this for each ṫ and n and hence p forces g to densely diagonalize each
Ṫn as needed. 


It follows from this result and Theorem 10.1 that there is a coanalytic Cohen
indestructible maximal eventually different family. This was known (see [10]), but
only by a more complicated construction. We also have the following result.

Corollary 3.2. In the Cohen model there is a tight eventually different family of
size ℵ1.

We can use this theorem to show that not every maximal eventually different
family is tight. In fact something stronger is true.

Theorem 3.3. If E is an analytic maximal eventually different family and P is any
forcing notion adding a real then �P “Ě is no longer maximal”. In particular, tight
eventually different families are never analytic.

Since there are Borel maximal eventually different families (see [14]), these ones
are not tight.

Proof of Theorem 3.3. LetAbe an analytic, maximal eventually different family.
Note that A is uncountable and therefore, by the perfect set property for analytic
sets, it contains a perfect set P ⊆ A. Moreover, since every perfect set contains a
copy of Cantor space, we can find a continuous injectionf : 2� → A. Fix such an f.

Observe that “A is an eventually different family” is Π1
1: namely we have ∀x, y[x /∈

A ∨ y /∈ A ∨ x �=∗ y]. Since A is analytic, and hence its complement is co-analytic
the observation follows. In particular, the interpretation of A remains an eventually
different family in any forcing extension. Now let P be a forcing notion adding a
real, x. Working in V P we consider the real f(x) ∈ AV P

. This real is eventually
different from every element of A ∩ V and hence A ∩ V is no longer maximal. 


Observe the theorem only used the perfect set property for A alongside some
generic absoluteness. As a result the same proof gives the following.

Theorem 3.4. (1) If E is a co-analytic maximal eventually different family which
is indestructible with respect to some forcing adding a real then E does not
contain a perfect set.

(2) In the presence of sufficient large cardinals there are noP-indestructible maximal
eventually different families in L(R) for any forcing notion P adding a real.
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Note also that all of these results apply equally in the case of cofinitary groups and
maximal eventually different sets of permutations. In particular, there is no analytic,
maximal cofinitary group which is indestructible for any forcing notion adding a
real.

§4. Strong preservation of tightness. The purpose of this section is to prove
a preservation theorem for tight, eventually different families, akin to [13,
Corollary 32] which showed the same for tight MAD families. The preservation
theorem we prove concerns the notion of strong preservation.

Definition 4.1. LetP be a proper forcing notion and E a tight eventually different
family. We say that P strongly preserves the tightness of E if for every sufficiently
large �, every condition p and everyM ≺ H� countable with p,P, E ∈M , if g ∈ E
densely diagonalizes every element of M ∩ IT (E)+ then there is an (M,P)-generic
q ≤ p so that q forces that g densely diagonalizes every element ofM [Ġ ] ∩ IT (E)+.
Such a q is called an (M,P, E , g)-generic condition.

Clearly if P strongly preserves the tightness of E then in particular �P“Ě is tight”.
The point of this section is to prove the following.

Theorem 4.2. Suppose that E is a tight eventually different family. If 〈Pα, Q̇α |
α < �〉 is a countable support iteration of proper forcing notions so that for all α we
have �α “Q̇α strongly preserves the tightness of Ě” then P� strongly preserves the
tightness of E .

This theorem follows immediately from the following two lemmas. From now on
fix a tight eventually different family E .

Lemma 4.3. Suppose P strongly preserves the tightness of E and Q̇ is a P-name for
a poset which strongly preserves the tightness of E . Then P ∗ Q̇ strongly preserves the
tightness of E . Moreover if p is (M,P, E , g)-generic and forces q̇ to be (M [Ġ ], Q̇, E , g)-
generic then (p, q̇) is (M,P ∗ Q̇, E , g)-generic.

Proof. Suppose p is (M,P, E , g)-generic and forces q̇ to be (M [Ġ ], Q̇, E , g)-
generic. Then obviously (p, q̇) is (M,P ∗ Q̇)-generic. Moreover, by definition it forces
that for every P-name for a Q̇-name for an element of IT (E)+ in M g densely
diagonalizes it. But therefore (p, q̇) forces that for every P ∗ Q̇-name for an element
of IT (E)+ in M is densely diagonalized by g as needed. 


Lemma 4.4. Let 〈Pα, Q̇α | α < �〉 be a countable support iteration of proper forcing
notions so that for all α we have �α “Q̇α strongly preserves the tightness of Ě”, let �
be sufficiently large,M ≺ H� countable containing P� , �, E . For each α ∈M ∩ � and
every (M,Pα, E , g)-generic condition p ∈ Pα the following holds:

If q̇ is a Pα-name p �α q̇ ∈ P� ∩M and p �α q̇ � α ∈ Ġα then there is an
(M,P� , E , g)-generic condition p̄ ∈ P� so that p̄ � α = p and p̄ �� q̇ ∈ Ġ .

Before proving this lemma, let us fix ahead of time a convention regarding the
enumeration of trees T ⊆ �<� . First fix a computable enumeration of �<� so
that shorter sequences appear first. Now, given a tree T ⊆ �<� we can push that
enumeration forward onto T in the sense that the ith node of T is the ith node in
T relative to the computable enumeration of �<� we fixed. In other words if our

https://doi.org/10.1017/jsl.2023.9 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.9


TIGHT EVENTUALLY DIFFERENT FAMILIES 707

computable enumeration of �<� is, say {tk | k < �} then the 0th node of T is ti so
that i is least with ti ∈ T and so on. In this way we can refer unambiguously to an
enumeration of the nodes of a tree in a forcing extension. This convention will also
be used in the remaining sections of the paper as well.

Proof. The proof is by induction on �. The case where � is a successor ordinal
follows from Lemma 4.3 so we focus on the limit case. Fix α, p,M , etc. as in
the statement of the lemma and let {αn | n < �} be a strictly increasing sequence in
M ∩ � with supremum � so that α0 = α. Fix a bijectionϕ : � → �2 with coordinate
functions ϕ0 and ϕ1. Enumerate the dense open subsets of P� in M as {Dn | n < �}.
Enumerate the P� -names for IT (E)+ trees in M as {Ṫn | n < �}. We will recursively
define sequences {pn | n < �}, {q̇n | n < �}, {ṫn | n < �}, and {k̇n | n < �} as
follows:

(1) p0 = p and q̇0 = q̇.
(2) pn is an (M,Pαn , E , g)-generic condition.
(3) pn+1 � αn = pn.
(4) q̇n is a Pαn name so that pn �αn q̇n ∈ P� ∩M and pn �αn q̇n � αn ∈ Ġαn .
(5) pn+1 �αn+1 q̇n+1 ≤ q̇n and pn+1 �αn+1 q̇n+1 ∈ Dn.
(6) ṫn is a P� name for a node in Ṫϕ0(n) strictly above the ϕ1(n)th node in Ṫϕ0(n).
(7) k̇n is a name for an element of � forced to be in the domain of ṫn above the

domain of the ϕ1(n)th node in Ṫϕ0(n) and pn �αn“q̇n �� ǧ(k̇n) = ṫn(k̇n)”.

Assuming that such a sequence can be constructed we let p̄ =
⋃
n<� pn. Clearly

this condition is as required. Therefore it remains to see that we can construct such a
quadruple of sequences. This is done by induction. The base case is given. Suppose
that we have constructed for some n < � sequences {pm | m < n + 1}, {q̇m | m <
n + 1}, {ṫm | m < n + 1} and {k̇m | m < n + 1} satisfying the above conditions and
we construct pn+1, q̇n+1, ṫn+1, and k̇n+1.

Let pn ∈ Gαn be generic and work in V [Gαn ]. Let qn ∈ P� ∩M be the evaluation
of the name q̇n by Gαn so that qn � αn ∈ Gαn . Since pn is (M,Pαn ) generic there is
an r ∈ Dn ∩M so that r ≤ qn and r � αn ∈ Gαn . Without loss we may assume that
r decides that the ϕ1(n)th node in Ṫϕ0(n) to be some sn ∈ �<� . Now let W be the set
of all t ∈ �<� so that there is an r̄ ≤ r so that r̄ ∈ P� and the following hold:

(1) r̄ � αn ∈ Gαn .
(2) r̄ �� “ť ∈ Ṫϕ0(n) and ť � šn”.

Observe that, by appending sn and its predecessors to W we have a tree with stem
(including) sn. This is because if some r̄ forces t ∈ Ṫϕ0(n) to be strictly above sn and
sn � t′ � t then trivially the same r̄ forces the same of t′ so W is closed downwards
under sequences extending sn. MoreoverW ∈M [Gα] by construction (since Ṫϕ0(n)

and r are) and, cruciallyW ∈ IT (E)+. To see this last point observe that if r ∈ G is
P� generic then, in V [G ] we must have that the evaluation of Ṫϕ0(n) is contained in
W so if W could be covered by finitely many functions from E then so could Ṫϕ0(n)

contradicting the fact that it was forced to be a tree in IT (E)+.
We can therefore apply assumption (2) for pn and conclude that g densely

diagonalizes W. It follows that there is a node t ∈W so that t � sn and there is a
k ∈ dom(t) \ dom(sn) so that g(k) = t(k). Let q̇n+1 be a name for the r̄ witnessing

https://doi.org/10.1017/jsl.2023.9 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.9


708 VERA FISCHER AND COREY BACAL SWITZER

that t ∈W and let ṫn and k̇n be names for t and k back in V. Finally, by our inductive
hypothesis we can find a (M,Pαn+1 , E , g)-generic condition pn+1 ≤ pn as needed. 


Sacks forcing strongly preserves the tightness of any tight eventually different
family. This gives an alternative proof of the fact that ae = ℵ1 in the Sacks model.
The argument for this is very similar to the analogous one we give for Miller forcing
in Section 5 so we leave the details of this to the reader. In Sections 6–8 we also
show that partition forcing, infinitely often equal forcing and Shelah’s QI forcing all
strongly preserves the tightness of any given tight eventually different family. Before
giving these arguments we turn to a slightly different type of eventually different
family.

§5. Tight eventually different permutations. The foregoing discussion of tight
eventually different families works mutatis mutandis for eventually different sets
of permutations of �. Recall that ap is the least size of a maximal eventually
different family of permutations. It remains an intriguing open question if ZFC
proves ae = ap. Let us give the “permutation” version of the above definitions and
state the analogous results. Since the proofs are almost verbatim the same we simply
indicate the necessary changes and leave the details to the reader.

Call a tree T ⊆ �<� injective if each t ∈ T is injective as a finite function. Let P
be a family of eventually different permutations.

Definition 5.1. The tree ideal generated by P , denoted IT (P), is the set of all
injective trees T ⊆ �<� so that there is a t ∈ T and a finite set X ∈ [E]<� so that⋃
Tt ⊆∗ ⋃

X .
Dually an injective tree T ⊆ �<� is in IT (P)+ if for each t ∈ T it’s not the case

that
⋃
Tt can be almost covered by finitely many functions from P .

The definition of tightness for sets of permutations is now identical to that of
functions.

Definition 5.2. An eventually different set of permutations P is tight if given
any sequence of countably many injective trees {Tn | n < �} so that Tn ∈ IT (P)+

for all n < � there is a single g ∈ P which densely diagonalizes all the Tn’s.

The same proof as before shows that:

Proposition 5.3. If P is tight then it is maximal.

We also have the analogue of Theorem 2.4

Theorem 5.4. Assume MA(�– centered). Every eventually different family P0

of permutations of size <2ℵ0 is contained in a tight eventually different set
of permutations. In particular CH implies that tight eventually different sets of
permutations exist.

Proof. The proof is almost the same as that of Theorem 2.4. We just indicate
what the right poset is and the necessary modifications. Let P be an eventually
different set of permutations (not necessarily maximal). Define the forcing notion
QP to be the set of all pairs (s, E) so that the following hold:

(1) s is an injective finite partial function from � to �.
(2) E ∈ [P]<� .
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The order on QP is defined exactly the same as for PE . Mimicking the proof of
Theorem 2.4, it’s enough to show that the following sets are dense:

(1) For each k < � the set of conditions (s, E) so that k ∈ dom(s).
(2) For each k < � the set of conditions (s, E) so that k ∈ range(s).
(3) For each T ∈ IT (P)+, and t ∈ T the set of conditions (s, E) so that there is

an t′ ∈ T which extends t and a k ∈ dom(t′) \ dom(t) so that s(k) = t′(k).
(4) For each f ∈ E the set of conditions (s, E) so that f ∈ E.

This is shown exactly as for eventually different families, the one caveat being that
we need to be able ensure that when we strengthen some (s, E) we can guarantee
that if T ∈ IT (P)+ then we can find an t′ � t so that t′ ∈ T and a k ∈ dom(t′) \
dom(t) ∩ dom(s) so that we can add (k, t′(k)) to s without wrecking injectivity.
This is where we use that fact that T is injective. Namely, we can find a level in T
above which no element of any sequence is in the range of s (since s is finite) and
therefore we can find the needed k. Everything else in the proof is exactly as in the
case of eventually different families of functions. 


We also have the same indestructibility results.

Theorem 5.5. Suppose κ is a cardinal and Cκ = add (�, κ) is the forcing to add
κ-many Cohen reals. If P is a tight eventually different set of permutations then �Cκ

“P̌ is tight”.

Similarly, there is an analogue of Theorem 4.2 for tight sets of permutations. We
give the definition and theorem below.

Definition 5.6. Let P be a proper forcing notion and P a tight eventually
different set of permutations. We say that P strongly preserves the tightness of P if for
every sufficiently large �, every condition p and everyM ≺ H� countable with p,P,
P ∈M , if g ∈ P densely diagonalizes every element of M ∩ IT (P)+ then there is
an (M,P)-generic q ≤ p so that q forces that g densely diagonalizes every element
ofM [Ġ ] ∩ IT (P)+. Such a q is called an (M,P,P , g)-generic condition.

Theorem 5.7. Suppose that P is a tight eventually different family. If 〈Pα, Q̇α |
α < �〉 is a countable support iteration of proper forcing notions so that for all α we
have �α “Q̇α strongly preserves the tightness of P̌” then P� strongly preserves the
tightness of P .

The proof of Theorems 5.5 and 5.7 are identical to those of Theorems 3.1 and
4.2 so we leave the details to the reader. The one point to note is that the Tn,j ’s of
Theorem 3.1 and the W found in the inductive proof of Lemma 4.4 are both injective
since Ṫn (respectively Ṫϕ0(n)) is forced to be injective hence if some r � ť ∈ Ṫn
(respectively Ṫϕ0(n)) then it must be the case that t is injective.

As in this section every further one the proofs involving tight eventually different
families and tight eventually different permutations are almost identical and, largely
we prove the case of tight eventually different families in detail and leave the the case
of tight eventually different permutations to the reader. This situation adds fuel to
the idea that perhaps ZFC proves that ae = ap and in any case shows how difficult it
could be to separate these two invariants even if this ends up being possible.
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§6. Miller forcing and the consistency of ae = ap < d = aT . In this section we
show that Miller forcing strongly preserves the tightness of any tight eventually
different family of functions and any tight eventually different set of permutations.
As a result we obtain the consistency of ae = ap < d = aT . Recall that Miller forcing,
also called rational perfect set forcing and denoted PT consists of all trees T ⊆ �<�
so that for every node t ∈ T there is an s ∈ T extending t with infinitely many
immediate successors. The order is inclusion. As is often done we work with the
dense subset of trees in which every node has either one or infinitely many immediate
successors. It’s well known that this forcing is proper and, when iterated �2-many
times with countable support produces a model of non(M) = cov(M) = ℵ1 <
d = ℵ2 (and aT = ℵ2 as well). More information about Miller forcing can be found
in [1] (see, in particular, Definition 7.3.43).

Theorem 6.1. Let E be a tight eventually different family. Miller forcingPT strongly
preserves the tightness of E .

Before proving this theorem we recall some basic terminology. Recall that if
p ∈ PT is a Miller tree and n < � then a node t ∈ p is an nth-splitting node if it
has infinitely many immediate successors and it has the n – 1 predecessors with this
property. Denote by Splitn(p) the set of n-splitting nodes. We say that for two Miller
trees p, q ∈ PT that q ≤n p if q ≤ p and Splitn(p) = Splitn(q).

Proof. Let p ∈ PT be a condition, let M ≺ H� countable with � sufficiently
large, p,PT, E ∈M . Let g ∈ E densely diagonalize every T ∈M ∩ IT (E)+. Let
{Tn | n < �} be an enumeration of all PT names in M for trees in IT (E)+. Let
{Dn | n < �} enumerate all dense open subsets of PT in M. Let ϕ : � → �2 be a
bijection with coordinate maps ϕ0 and ϕ1. Inductively we will construct sequences
{pn | n < �}, {ṫn | n < �}, {k̇n | n < �} so that the following hold:

(1) p0 = p.
(2) {pn | n < �} ⊆M and for all n < �, pn+1 ≤n+1 pn.
(3) For each n < �, ṫn is a PT name in M for a node in Ṫϕ0(n) extending the
ϕ1(n)th-node in Ṫϕ0(n).

(4) For each n < �, k̇n is a name for an element of � in M.
(5) For each n + 1st-splitting node t ofpn+1 we have that (pn+1)t ∈ Dn, and forces

for some sn ∈ �<� that the ϕ1(n)th-node in Ṫϕ0(n) is šn and (pn+1)t � k̇n ∈
dom(ṫn) \ dom(šn) ∧ ṫn(k̇n) = ǧ(k).

Suppose first that we can construct such a sequence. Let q =
⋂
n<� pn. It follows

almost immediately that q is (M,PT, E , g)-generic as needed.
Therefore it remains to construct the requisite sequence. This is done by induction.

Let p0 = p. Now assume that {pj | j < n + 1}, {ṫj | j < n} and {k̇j | j < n} have
been defined. We will define pn+1, ṫn and k̇n. For each n + 1st-splitting node t
of pn, let qt ≤ (pn)t be an element of M ∩Dn which forces for some sn ∈ �<�
that the ϕ1(n)th-node in Ṫϕ0(n) is šn. Let Wt = {u � sn | qt � u /∈ Ṫϕ0(n)}. As
in the proof of Lemma 4.2 Wt alongside sn and its predecessors is a tree in
IT (E)+ ∩M hence it is densely diagonalized by g. Therefore we can find a
ut ∈Wt and a kt ∈ dom(ut) \ dom(sn) so that ut(kt) = g(kt). Let rt ≤ qt force that
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ǔt ∈ Ṫϕ0(n). Now let pn+1 =
⋃
t∈Splitn+1(pn) rt . Let ṫn = {(ǔt , rt) | t ∈ Splitn+1(pn)}

and k̇n = {(ǩt , rt) | t ∈ Splitn+1(pn)}. Clearly these suffice. 

Essentially the same proof gives the analogous result for tight eventually different

families of permutations. We state the theorem below and leave the (primarily
cosmetic) modifications of the above proof to the reader.

Theorem 6.2. Let P be a tight eventually different family of permutations. Miller
forcing strongly preserves the tightness of P .

As a result we get the following.

Theorem 6.3. In the iterated Miller model the inequality ae = ap < d = aT holds.

Note that this inequality also holds in the Cohen model, however unlike the Cohen
model, this model cov(M) = ℵ1 so we can in fact also gain freedom over cov(M).
Also, as mentioned in the introduction, ap = ℵ1 in the Miller model was originally
shown by Kastermans and Zhang using parametrized diamonds in [17].

§7. Partition forcing and the consistency of ae = ap = d < aT . In this section we
show that Miller’s partition forcing strongly preserves the tightness of any tight
eventually different family of functions and any tight eventually different family of
permutations. As a result we obtain the consistency of ae = ap = d < aT . The proof
of the preservation result mirrors the analogous one for tight MAD families given
in [13, Proposition 38]. We recall some terminology used there.

Recall from the introduction that if K is an uncountable partition of 2� into
closed sets then P(K), the partition forcing, is the set of perfect trees p so that for all
C ∈ K we have [p] ∩ C is nowhere dense in [p]. This forcing was introduced in [18]
to increase aT . In order to ensure that a perfect tree is in P(K) we need the definition
of a nice set of reals.

Definition 7.1 (Definition 36 of [13]). Fix a partition of 2� into closed sets
K = {Cα | α < �1}. We say that X = {xs | s ∈ �<�} ⊆ 2� is nice (for K) if the
following conditions hold:

(1) For every s ∈ �<� the sequence 〈xs	n〉n<� converges to xs and Δ(xs , xs	n) <
Δ(xs , xs	n+1) for all n < �2 .

(2) For all s, t, z ∈ �<� if s � t � z then Δ(xs , xt) < Δ(xt, xz).
(3) For every s ∈ �<� let αs < �1 so that xs ∈ Cαs . If s � t then αs �= αt .
The point is the following Lemma.

Lemma 7.2 (Lemma 37 of [13]). Let p be a Sacks tree and let K be an uncountable
partition of 2� into closed sets. If there is an X = {xs | s ∈ �<�} which is nice for K
and dense in [p] then p ∈ P(K).

Armed with these facts we can prove the main theorem of this section. Our
proof is extremely similar to the analogous proof for tight MAD families (see [13,
Proposition 38]). The modifications follow those of Theorem 6.1.

2Recall that if x �= y ∈ 2� then Δ(x, y) is the least k ∈ � so that x(k) �= y(k).
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Theorem 7.3. LetK ⊆ P(2�) be an uncountable partition of 2� into closed sets and
let E be a tight eventually different family. The forcing notion P(K) strongly preserves
the tightness of E .

Proof. Let p ∈ P(K) be a condition, let M ≺ H� countable with � sufficiently
large, p,P(K),K, E ∈M . Let g ∈ E densely diagonalize every T ∈M ∩ IT (E)+.
Let {Tn | n < �} be an enumeration of all P(K) names in M for trees in IT (E)+. Let
{Dn | n < �} enumerate all dense open subsets of P(K) in M. Let ϕ : � → �2 be a
bijection with coordinate maps ϕ0 and ϕ1. Inductively we will construct sequences
{pn | n < �}, {ṫn | n < �}, {k̇n | n < �} and a set X = {xs | s ∈ �<�} so that the
following hold:

(1) p0 = p.
(2) {pn | n < �} ⊆M ∩ P(K) and for all n < � pn+1 ≤ pn.
(3) X ⊆ 2� ∩M is nice for K.
(4) X ⊆ [pn] for every n < �.
(5) For each n ṫn is a P(K) name for a node in Ṫϕ0(n) extending the ϕ1(n)th-node

in Ṫϕ0(n).
(6) For each n < � k̇n is a name for an element of � in M.
(7) For each s ∈ �n and i, m ∈ � if m = Δ(xs , xs	i) and t = (xs	i) � m then

(pn+1)t ∈ Dn, forces for some sn ∈ �<� that the ϕ1(n)th-node in Ṫϕ0(n) is šn
and (pn+1)t � k̇n ∈ dom(ṫn) \ dom(šn) ∧ ṫn(k̇n) = ǧ(k).

Suppose first that we can construct such a sequence. Let q =
⋂
n<� pn. Clearly q

is a condition since it’s a perfect tree in which X is dense. From this it follows almost
immediately that it is (M,P(K), E , g)-generic as needed.

Therefore it remains to construct the sequence described above. This is done
by induction. Let p0 = p, x∅ be any element of [p0] ∩M . Now assume that
{pj | j < n + 1}, {xs | s ∈ �≤n}, {ṫj | j < n}, and {k̇j | j < n} have been defined.
We will define pn+1, {xs | s ∈ �n+1}, ṫn, and k̇n. For each s ∈ �n let l ∈ � be so that
l > Δ(xs , xs′) for all s ′ � s . DefineYs to be the set of allm > l so that xs � m ∈ pn is
a splitting node. For eachm ∈ Ys let tm = (xs � m)	(1 – xs(m)) (which is a node of
pn since xs � m is splitting). Let psm = (pn)tm . Note that psm ∈M . By strengthening
if necessary we may also assume that there is an usm ∈ �� so that psm �“ǔsm is the
ϕ1(n)th node in Tϕ0(n)”. Now let Ws

m = {t ∈ �<� | t � usm and psm � t /∈ Ṫϕ0(n)}.
As in the proof of Theorem 4.2, Ws

m, alongside usm and its predecessors is
a tree in IT (E)+ (in M) so g densely diagonalizes it. Let rsm ≤ psm so that
rsm ∈ Dn, [rsm] ∩ Cαz = ∅ for every z ⊆ s and there is a tsm ∈Ws

m and a ksm < � so
that ksm ∈ dom(t) \ dom(usm) and rsm � ťsm ∈ Ṫϕ0(n) and tsm(ksm) = g(ksm). Enumerate
Ys as {msi | i < �}. For each i < � choose xs	i to be any branch in rs

msi
and let

pn+1 =
⋃
{rs
msi

| s ∈ �n ∧ i ∈ �}. Finally let ṫn = {(ťs
msi
, rs
msi

) | s ∈ �n ∧ i ∈ �} and

k̇n = {(ǩs
msi
, rs
msi

) | s ∈ �n ∧ i ∈ �}. Clearly these suffice. 


As before essentially the same proof gives the analogous result for tight eventually
different families of permutations. We state the theorem below and leave the
(primarily cosmetic) modifications of the above proof to the reader.
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Theorem 7.4. Let K ⊆ P(2�) be an uncountable partition of 2� into closed sets
and let P be a tight eventually different family of permutations. The forcing notion
P(K) strongly preserves the tightness of P .

As a result of these theorems we have the following.

Theorem 7.5. In the iterated partition forcing model the inequality ae = ap =
d < aT holds.

Proof. Using a bookkeeping device to keep track with the partitions, let P be the
�2 length countable support of partition forcing. LetG ⊆ P be generic. In V [G ] we
have ae = ℵ1 by Theorem 7.3 and ap = ℵ1 by Theorem 7.5. Moreover this forcing is
known to be ��-bounding (see [25]) so d = ℵ1. Finally that aT = ℵ2 in this model
is by [18, Theorem 6] (indeed this is what it was designed to do). 


Remark 3. In [7] it was shown that in the iterated partition forcing model that
a = i = u = ℵ1. Alongside Theorem 7.5 this result gives credence to the idea that
the iterated partition forcing model is a model where every relative of a other than
aT is ℵ1. It remains open what happens in this model to ag .

Putting together the results of this section, the previous one, Fact 1.3 and
Proposition 1.4 we get the following which encapsulates one of the main results
of this paper.

Corollary 7.6. Any {ℵ1,ℵ2}-valued assignment of {ae , ap, d, aT } respecting
d ≤ aT and ae = ap is consistent. In particular, ap and ae are both independent of
both d and aT .

§8. h-Perfect trees and the consistency of ae = ap = u = d < non(N ) = cof(N ).
Recall that for a function h : � → � with 1 < h(n) for all n < �, the forcing notion
PTh , sometimes called h-perfect tree forcing, consists of trees p ⊆ �<� so that the
following hold:

(1) For all t ∈ p and all l ∈ dom(t) we have t(l) < h(l).
(2) Every t ∈ p has either one or h(l(t))-many immediate successors in T.
(3) For every t ∈ p there is a t′ ⊇ t with t′ ∈ p and there are h(l(t′)) many

immediate successors of t′ in p where l(t′) is the length of t′.
This forcing notion was first considered in [12]. For simplicity here we will restrict

our attention to the case h(n) = 2n for all n < �. Obviously much more can be said
but for our purposes this is not necessary. In [12] the following is shown.

Fact 8.1 [12]. Denote by PT2n the forcing notion PTh for h(n) = 2n for all n < �.
The following hold:

(1) PT2n is proper, and in fact satisfies Axiom A.
(2) PT2n is ��-bounding.
(3) PT2n preserves P-points.
(4) PT2n makes the ground model reals measure zero.

It follows from this that a countable support iteration of PT2n over a model of
CH will force ℵ1 = u = d < non(N ) = cof(N ) = 2ℵ0 = ℵ2. We will show that PT2n

strongly preserves the tightness of all tight eventually different families and tight
eventually different families of permutations.
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Theorem 8.2. Let E be a tight eventually different family. The forcing notion PT2n

strongly preserves the tightness of E .

Remark 4. In fact there is nothing special here about n �→ 2n and the same proof
below will work for any h ∈ �� . Indeed thinking this way the constant function at
2 subsumes the case of Sacks forcing. However, n �→ 2n is an important case since
this one forces facts listed above in Fact 8.1.

The proof of this theorem is nearly verbatim to the analogous result for Miller
forcing, Theorem 6.1. We include it below for completeness. First we adapt some
terminology from other arboreal forcings. If p ∈ PT2n and n < � then a node t ∈ p
is an nth-splitting node if it has 2l(t) many immediate successors and it has the n – 1
predecessors with this property. Denote by Splitn(p) the set of n-splitting nodes.
We say that for two 2n-perfect trees p, q ∈ PT2n that q ≤n p if q ≤ p and for all
i < n + 1 Spliti(p) = Spliti(q).

Proof. Let p ∈ PT2n be a condition, let M ≺ H� countable with � sufficiently
large, p,PT2n , E ∈M . Let g ∈ E densely diagonalize every T ∈M ∩ IT (E)+. Let
{Tn | n < �} be an enumeration of all PT2n names in M for trees in IT (E)+. Let
{Dn | n < �} enumerate all dense open subsets of PT2n in M. Let ϕ : � → �2 be a
bijection with coordinate maps ϕ0 and ϕ1. Inductively we will construct sequences
{pn | n < �}, {ṫn | n < �}, {k̇n | n < �} so that the following hold:

(1) p0 = p.
(2) {pn | n < �} ⊆M and for all n < � pn+1 ≤n+1 pn.
(3) For each n ṫn is a PT2n name in M for a node in Ṫϕ0(n) extending the ϕ1(n)th-

node in Ṫϕ0(n).
(4) For each n < � k̇n is a name for an element of � in M.
(5) For each n + 1st-splitting node t ofpn+1 we have that (pn+1)t ∈ Dn, and forces

for some sn ∈ �<� that the ϕ1(n)th-node in Ṫϕ0(n) is šn and (pn+1)t � k̇n ∈
dom(ṫn) \ dom(šn) ∧ ṫn(k̇n) = ǧ(k).

Obviously if such a family of sequences can be constructed then, letting
q =

⋂
n<� pn, it is clear that q is (M,PT, E , g)-generic as needed.

Therefore it remains to construct the requisite sequence. This is done by induction.
Let p0 = p. Now assume that {pj | j < n + 1}, {ṫj | j < n} and {k̇j | j < n} have
been defined. We will define pn+1, ṫn and k̇n. For each n + 1st-splitting node t
of pn, let qt ≤ (pn)t be an element of M ∩Dn which forces for some sn ∈ �<�
that the ϕ1(n)th-node in Ṫϕ0(n) is šn. Let Wt = {u � sn | qt � u /∈ Ṫϕ0(n)}. As
in the proof of Lemma 4.2 Wt alongside sn and its predecessors is a tree in
IT (E)+ ∩M hence it is densely diagonalized by g. Therefore we can find a
ut ∈Wt and a kt ∈ dom(ut) \ dom(sn) so that ut(kt) = g(kt). Let rt ≤ qt force that
ǔt ∈ Ṫϕ0(n). Now let pn+1 =

⋃
t∈Splitn+1(pn) rt . Let ṫn = {(ǔt , rt) | t ∈ Splitn+1(pn)}

and k̇n = {(ǩt , rt) | t ∈ Splitn+1(pn)}. Clearly these suffice. 

As always the analogous result for permutations is proved in an almost

identical way.

Theorem 8.3. Let P be a tight eventually different family of permutations. The
forcing notion PT2n strongly preserves the tightness of P .
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Remark 5. Theorems 8.2 and 8.3 hold regardless of which h is chosen. It
follows that an iteration of PTh forcing notions where many different h’s are
chosen, including the case of Miller forcing (h(n) = � for all n < �), as is done
in [12, Theorem 3.9], will strongly preserve tight eventually different families and
tight eventually different families of permutations. In particular the existence of
tight eventually different families of functions and permutations of size ℵ1 are
consistent with the additivity of the strong measure zero ideal being ℵ2 = 2ℵ0 , even
when no Cohen reals are added.

Now we can conclude from Theorems 8.2 and 8.3 the following.

Theorem 8.4. Let P be the �2-length countable support iteration of PT2n and
let G ⊆ P be generic over V. In V [G ] we have ae = ap = a = d = u < non(N ) =
cof(N ).

§9. Shelah’s forcing QI and the consistency of ae = ap = i < u. In this section we
show that Shelah’s forcing QI for proving the consistency of i < u strongly preserves
tight eventually different families and tight eventually different sets of permutations.
As a result we obtain the consistency of a = ae = ap = d = i = cof(N ) < u. First
we recall the poset QI from [24] and some of its properties. The exposition in this
section strongly mirrors that of [7, Section 5], where it is shown that QI strongly
preserves tight MAD families.

We start by recalling some terminology from [24] (see also [7]). If E is an
equivalence relation on a set X and x ∈ X we will always denote by [x]E the
equivalence class of x. Given an ideal I on �, we say that an equivalence relation
E on a subset of � is an I-equivalence relation if dom(E) ∈ I∗ (the dual filter)
and each E-equivalence class is in I. For I-equivalence relations E1 and E2, we
defineE1 ≤I E2 if dom(E1) ⊆ dom(E2) and everyE1 equivalence class is the union
of a set of E2 equivalence classes. Moreover, we will make use of the notion of
a A-n-determined function. More precisely: Given a subset A of �, we say that
a function g : 2A → 2 is A-n-determined if there is a set a ⊆ A ∩ n + 1 such that
whenever 
 � a = � � a for 
, � in A�, we have g(
) = g(�). For each i ∈ A, gi
is the function mapping 
 ∈ A2 to 
(i). The following claim appears in [24]: If g
is a A-n-determined function, then g = ϕ(g0, ... , gn), where ϕ(g0, ... , gn) which is
obtained as a maximum, minimum, and complement (e.g., 1 – gi) of g0, ... , gn and
the constant functions on 0 and 1. Again following [24], given an I-equivalence
relation E, we denote by A = A(E) = {x | x ∈ dom(E) and x = min[x]E}.

Definition 9.1 (The conditions of QI). Let I be an ideal on �. Define QI to be
the set of p = (Hp,Ep) where:

(1) Ep is an I-equivalence relation.
(2) Hp is a function with domain� so that for each nH (n) isA(E)-n-determined.
(3) if n ∈ A(Ep) then Hp(n) = gn.
(4) if n ∈ dom(Ep) \ A(Ep) and nEi for an i ∈ A(Ep) then Hp(n) is either gi

or 1 – gi .

For a condition p ∈ QI letAp = A(Ep). Before we can define the order on QI we
need one more definition, again appearing in [7]: For p, q ∈ QI with Ap ⊆ Aq , we
writeHp(n) =∗∗ Hq(n) if for each 
 ∈ 2A

p
we have Hp(n)(
) = Hq(n)(
′) where,
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′(j) =

{

(j), j ∈ Ap,
Hp(j)(
), j ∈ Aq \ Ap.

Now we can define the order on QI .

Definition 9.2. Let p, q ∈ QI . We let p ≤ q if:

(1) Ep ≤I E
q .

(2) If Hq(n) = gi for n ∈ dom(Eq) thenHp(n) = Hp(i).
(3) If Hq(n) = 1 – gi for n ∈ dom(Eq) then Hp(n) =∗∗ Hq(n).
(4) If n ∈ � \ dom(Eq) thenHp(n) =∗∗ Hq(n).

Finally let p ≤n q if p ≤ q and Ap contains the first n elements of Aq .

If I is a maximal ideal then the forcing notion QI is proper [24, Claim 1.13].
Moreover it has the Sacks property [24, Claim 1.12] and hence is ��-bounding.
Forcing with QI kills the maximality of I [24, Claim 1.5]. As a result, using a
bookkeeping device to ensure we cover all possible I’s, iteratively forcing with QI
makes u = ℵ2.

Lemma 9.3. Let p ∈ QI . For an initial segment u of Ap and h : u → 2 let p[h] be
the pair q = (Hq,Eq) defined as follows. Let Hp(n) = ϕ(g0, ... , gn) and let for each
n ∈ � Hq(n) be the result of replacing gi for h(i) for each i ∈ u inHp(n) (and leaving
the other gi ’s the same) and Eq = Ep �

⋃
{[i ]Ep | i ∈ Ap \ u}.

(1) [24, Claim 1.7(2)] p[h] is a condition in QI extending p and the set of {p[h] |
h ∈ 2u} is predense below p.

(2) [24, Claim 1.8] If u is a the set of the first n elements of Ap and D is a dense
subset of QI then there is a q ∈ QI so that q ≤n p and q[h] ∈ D for any h ∈ 2u .

Finally we will need the following game to analyze fusions of conditions from QI .

Definition 9.4 (The Game GMI(E)). The game GMI(E) is played as follows.
On the nth-move, the first player chooses an I-equivalence relation E1

n ≤I E
2
n–1

(E1
0 = E), and the second played chooses an I-equivalence relationE2

n ≤I E
1
n . After

�many moves the second player wins if and only if
⋃
n>0 dom(E2

n–1) \ dom(E1
n) ∈ I.

Remark 6. Note that if some play of the game GMI(E) is given where player II
wins playing {E2

n}n<� then player II also wins the play where for each n < � they
play instead some {E2,∗

n }n<� with E1
n+1 ≤I E

2,∗
n ≤I E

2
n .

Lemma 9.5 (Claim 1.10(1) of [24]). If I is a maximal ideal then player I has no
winning strategy in the game GMI(E).

Putting all of this together we can now show the following.

Theorem 9.6. For any maximal ideal I and any tight eventually different family E
the forcing notion QI strongly preserves the tightness of E .

Proof. Let p ∈ QI , M a countable elementary submodel of H� for � suf-
ficiently large such that I, E , p ∈M and let g ∈ E densely diagonalize every
T ∈ IT (E)+ ∩M . We fix an enumeration {Dn | n ∈ �} of all open dense subsets of
QI that are in M, and an enumeration {Ṫn | n ∈ �} of all QI-names for elements
of IT (E)+ that are in M. Let ϕ : � → �2 with coordinate functions ϕ0 and ϕ1.
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We define a strategy for the first player in the game GMI(E), which cannot be
winning in all rounds.

We set p0 = q0 = p and u0 = ∅. We assume that the first player has chosen E1
n ,

qn, pn, un, and the second one an E2
n . We give instructions to choose E1

n+1, qn+1,
pn+1, un+1. We begin with qn+1:

(1) dom(Eqn+1 ) = dom(Epn ).
(2) xEqn+1y if and only if one of the following holds:

(a) xE2
ny.

(b) There is k ∈ un with x, y ∈ [k]Epn and x, y �∈ dom(E2
n).

(c) There are k0, k1 �∈
⋃
{[i ]Epn | i ∈ un} with x ∈ [k0]Epn , y ∈ [k1]Epn , and

k0, k1 �∈ dom(E2
n).

(3) Hqn+1 is chosen such that:
(a) If l ∈ � \ domEpn thenHqn+1 (l) =∗∗ Hpn (l).
(b) If l ∈ dom(Epn ) \ Aqn+1 ,Hpn (l) = gi thenHqn+1 (l) = Hqn+1 (i).
(c) If l ∈ dom(Epn ) \ Aqn+1 ,Hpn (l) = 1 – gi then Hqn+1(l) = 1 – Hqn+1 (i).
(d) If l ∈ Apn \ Aqn+1 thenHqn+1 (l) =∗∗ Hpn (min[l ]Eqn+1 ).

Note that for the already defined condition qn+1 we have qn+1 ≤n pn. Take un+1 =
un ∪ {min(Aqn+1 \ un)}. Let D′

n be the set of all r ≤ p so that:

(1) r decides the ϕ1(n)th-node of Ṫϕ0(n) to be some šn.
(2) There is ak < � and a t ⊇ sn so thatk ∈ dom(t) \ dom(sn) and r � ť ∈ Ṫϕ0(n)

and g(k) = t(k).

As in the previous proofs, the set D′
n is open dense below p (and also below

qn+1). Then D′
n ∩Dn is dense below qn+1. Therefore we can apply Lemma 9.3

to obtain pn+1 ≤n+1 qn+1 such that for each h ∈ un+1{0, 1}, the condition p[h]
n+1 ∈

D′
n ∩Dn ∩M . In particular, if h ∈ 2un+1 thenp[h]

n+1 decides theϕ1(n)th node of Ṫϕ0(n)

to be some sn, forces that there is a k < � and a t ⊇ sn so that k ∈ dom(t) \ dom(sn)
and g(k) = t(k) and p[h]

n+1 ∈ Dn ∩M . It follows that pn+1 �“there is a t in Ṫϕ0(n)

extending theϕ1(n)th node and a k ∈ dom(t) above the domain of theϕ1(n)th node
of Ṫϕ0(n) so that t(k) = g(k)”. Finally, we set

E1
n+1 = Epn+1 � (dom(Epn+1) \

⋃
{[i ]Epn+1 | i ∈ un+1}).

We define a fusion q of a sequence 〈pn | n ∈ �〉. Relation Eq has dom(Eq) =⋂
{dom(Epn ) | n ∈ �}, and xEqy if for every n large enough, xEpny. Function
Hq is equal to Hpn for large enough n. If q ∈ QI then clearly q is an (M,QI)-
generic condition and q ≤n pn for all n < � so q forces that g densely diagonalizes
every Ṫn as needed. However it’s not obvious that q is a condition, specifically it’s
not immediate that dom(Eq) ∈ I∗. Indeed this does not necessarily happen but it
does if player II wins. Since GMI(E) is not determined for player I let us choose a
play of the game where the first player uses the described strategy above, but still
looses. Thus the second player wins. To complete the proof we need to show in
this case that dom(Eq) ∈ I∗ and hence q is a condition. This will follow from the
following sequence of claims. To be clear, since player II won the game we have⋃
n>0 dom(E2

n–1) \ dom(E1
n) ∈ I.

Claim 9.7. We can assume that min(dom(E2
n)) > max un+1.
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Proof. By Remark 6 if the un+1’s were known at the stage where player II played
E2
n then this would be fine however there is an apparent issue of primacy here: un+1

is chosen after E2
n . However, note that un+1 is read off from Eqn+1 which is read off

from Epn and E2
n so player 2 can choose E2

n so as to affect un+1.
It remains to show that some choice of E2

n will result in max un+1 <
min(dom(E2

n)). This is argued as follows. In words, the first step of player I’s
strategy at stage n + 1, when qn+1 is built, is to build an equivalence relation on
dom(Epn ) so that x and y are related just in case either:

(1) they are E2
n related (note that dom(E2

n) ⊆ dom(E1
n) ⊆ (Epn )),

(2) they are Epn related and in one of the first n equivalence classes of Epn , or
(3) they fall into neither of these categories, i.e., everything else is put together.

In other words, qn+1 forgets everything in Epn outside of E2
n except for the first

n equivalence classes. Note that E2
n will not contain anything from those first n

equivalence classes since they were thrown out of E1
n whose domain is a super set

of E2
n ’s domain. Therefore the n + 1st equivalence class of qn+1 will either be an

equivalence class from E2
n or this “everything else” class. By thinning out enough

player 2 can ensure that it is the “everything else” class by simply making the
minimum of dom(E2

n) greater than the first thing in dom(Epn ) not in
⋃
{[k]Epn | k ∈

un} (which must exist since dom(Epn ) /∈ I but
⋃
{[k]Epn | k ∈ un} is the union of

finitely many elements of I and hence in I). 

Claim 9.8. If min(dom(E2

n)) > max un+1 then dom(Epn ) \ dom(E2
n) ⊆⋃

{[k]Eqn+1 | k ∈ un+1}.

Proof. By what we said in the last proof, if min(dom(E2
n)) > max un+1 then the

new equivalence class in un+1 is the “everything else” class so the only thing that is
left in dom(Epn ) after throwing this out, alongside its first n equivalence classes is
whatever was in dom(E2

n). 

Claim 9.9. If dom(Epn ) \ dom(E2

n) ⊆
⋃
{[k]Eqn+1 | k ∈ un+1}, then

⋂
{dom(Epn ) | n < �} ∈ I∗.

Proof. Recall that our assumption is that
⋃
n>0 dom(E2

n–1) \ dom(E1
n) ∈ I. It

follows that it is enough to show that dom(E0) \ (
⋃
n>0(dom(E2

n–1) \ dom(E1
n))) is

contained in
⋂
{dom(Epn ) | n < �} where E0 is the equivalence relation for the

condition p0.
For readability let us label A := dom(E0) \ (

⋃
n>0(dom(E2

n–1) \ dom(E1
n))). For

all x ∈ dom(E0) we have x ∈ A if and only if for each 0 < n < � (either x ∈
dom(E1

n) or else x /∈ dom(E2
n–1)) (recall that dom(E1

n) ⊆ dom(E2
n–1)).

Note that if x /∈ dom(E2
n–1) for some n then for all k ≥ n we have x /∈ dom(E1

k)
so the above becomes: x ∈ A if and only if for all 0 < n < � x ∈ dom(E1

n) or else
for all but finitely many n we have x /∈ dom(E2

n–1) with these two options mutually
exclusive.

Fix x ∈ A we will show that x ∈ dom(Epn ) for every n < �. There are two cases
to consider.

Case 1: x ∈ dom(E1
n) for all n < �. Note that in this case x ∈ dom(Epn ) as needed

since for all n < � we have dom(E1
n) ⊆ dom(Epn ) by the way the strategy was

defined.
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Case 2: x /∈ dom(E2
n–1) for all but finitely many n. We prove by induction on n that

x ∈ dom(Epn ) for all n < �. By above, plus the fact that dom(E2
n) ⊆ dom(E1

n),
there’s no problem with the induction up to the least k withx /∈ dom(E2

k). Thus let us
suppose that x /∈ dom(E2

n+1) and show that this implies that x ∈ dom(Epn+1) under
the inductive assumption that x ∈ dom(Epn ). Since x ∈ dom(Epn ) we have that x ∈
dom(Eqn+1 ) since these two domains are the same. Moreover, since x /∈ dom(E2

n)
we have that the Eqn+1 class that x falls into is one of the {[k]Eqn+1 | k ∈ un+1} since
dom(Epn ) \ dom(E2

n) ⊆
⋃
{[k]Eqn+1 | k ∈ un+1}. But now by construction we have

pn+1 ≤n+1 qn+1 so the first n + 1 Eqn+1 classes are the same as the first n + 1 Epn+1

classes and hence x ∈ dom(Epn+1 ) as needed. This induction completes the proof
of the claim. 


With the proof of these three claims we are done with the proof of the theorem. 

As always we have the same result for families of permutations.

Theorem 9.10. For any maximal ideal I and any tight eventually different set of
permutations P the forcing notion QI strongly preserves the tightness of P .

Putting all of this together with the fact that QI has the Sacks property and
iterating QI with countable support �2 many times alongside some bookkeeping
device to handle the ideals I forces i = a < u we get the following.

Theorem 9.11. In the iterated QI model we have a = ae = ap = i = cof(N ) < u.

§10. Definability. In this section we show that if V = L there is a Π1
1 tight

eventually different family and a Π1
1 tight eventually set of permutations. The

construction is extremely similar to Miller’s seminal proof that there is a Π1
1 MAD

family in L (see [19, Theorem 8.23]). From our construction we are able to conclude
that in all of the models considered above if the ground model is L then there is
are Π1

1 tight witnesses to ae = ℵ1 and ap = ℵ1. This strengthens the main result of
[9] where it is shown that if V = L then there is a Π1

1 Sacks indestructible maximal
eventually different family.

Theorem 10.1. If V = L then there is a Π1
1 tight eventually different family.

As noted above the proof of this theorem is extremely similar to [19, Theorem
8.23]. In our opinion this highlights part of the appeal of tightness for sets of
functions: it provides a uniform, relatively simple construction of a Π1

1 maximal
eventually different family which remains maximal (and Π1

1) in an extension of L
by a large number of posets.

As in [19, Lemma 8.24] the proof relies on the following coding lemma. For this
section for each n < � let cn ∈ �� be the function with constant value n.

Lemma 10.2. Let E0 be a countable, eventually different family which contains
each cn. Let {Tn | n < �} be a countable collection of trees in IT (E0)+. Let z ∈ [�]�

be arbitrary. There is a functionf ∈ �� which is eventually different from each g ∈ E0,
densely diagonalizes Tn for each n and computes z. Moreover such an f can be found
computably from E0, {Tn | n < �} and z.

Proof. Fix E0, {Tn | n < �} and z ∈ [�]� as in the statement of the lemma.
Enumerate E0 = {gk | k < �}. Fix a bijectionϕ : � → �2 with coordinate functions
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ϕ0 and ϕ1. We define f in stages. Namely we define a ⊆-increasing sequence
〈fi | i < �} (so i < j implies fi ⊆ fj) so that the following hold:

(1) For all i < � fi is a finite partial function from � to � so that i ∈ dom(fi).
(2) For all i < � there is an s ∈ Tϕ0(i) extending the ϕ1(i)th node of Tϕ0(i), call

it ti and a k ∈ dom(s) \ dom(ti) so that fi+1(k) = s(k) (and in particular is
defined).

(3) If i < j < � then fi ⊇ fj ∩ gi .
(4) For every n < � for all k > n n /∈ range(fk \ fn) and n ∈ z if and only if

|cn ∩ fn| is even.

Assuming we can define such a sequence, we let f =
⋃
i<� fi . This f is as needed

since, by 1 it is a function, by 2 it densely diagonalizes every Tn, by 3 it is eventually
different from every element of E0, and by 4 it computes z.

We define {fi | i < �} by recursion as follows. At stage 0, let f0 = {(0, 0)}
if 0 /∈ z and let f0 = {(0, 0), (1, 0)} if 0 ∈ z. Now suppose we have defined
fn. Let k be the least number not in the set {g0(n + 1), ... , gn(n + 1), 0, ... , n}.
First, if n + 1 /∈ dom(fn) let f′

n = fn ∪ {(n + 1, k)}. Now, let tn be the ϕ1(n)st
node of Tϕ0(n). Let sn be least in the lexicographic ordering extending tn in
Tϕ0(n) so that there is a j ∈ dom(sn) \ dom(tn) so that j /∈ dom(f′

n), and sn(j) /∈
{g0(j), ... , gn(j), 0, ... , n}. That such an sn and j exists follows by the fact that
Tϕ0(n) ∈ IT (E0)+. Letf′′

n = f′
n ∪ {(j, sn(j))}. If n + 1 ∈ z and |cn+1 ∩ f′′

n | is even or
n + 1 /∈ z and |cn+1 ∩ f′′

n | is odd then we let fn+1 = f′′
n . Otherwise, let l be the least

element so that l /∈ dom(f′′
n ) and gi(l) �= n + 1 for all i < n + 1. That such an l exists

follow from the fact thatE0 is an eventually different family containing every constant
function. Now let fn+1 = f′′

n ∪ {(l, n + 1)}. This completes the construction and
hence the lemma. 


The proof of Theorem 10.1 follows along the lines described in [19, p. 194] given
this coding lemma. We give the details below for completeness.

Proof of Theorem 10.1. Assume V = L. We will build a tight eventually
different family E = {fα | α < �1} recursively. For each finite n < � let fn = cn.
Now suppose we have constructed Eα := {f� | � < α} for some α < �1. Let �Tα
be the ≤L-least countable sequence of trees in IT (Eα)+. We construct fα+1 as in
the coding lemma with Eα our countable eventually different family, �Tα our sequence
of trees and z a real coding an extensional, wellfounded relation E ⊆ � × � and α
so that (�,E) ∼= Lα . This completes the construction. It just remains to check that
it works.

It’s not hard to show that the family E is tight. To see this, suppose E were not
tight and let �T be the ≤L-least countable sequence of trees in IT (E)+ which are not
densely diagonalized by any element of E . LetM ≺ L�2 be a countable elementary
submodel containing E and �T . Let L be its transitive collapse. It follows that
L |=“ �T is the ≤L-least counter example to tightness of E” which means that at
stage (�1)L we added a real to E densely diagonalizing �T , contradiction.

What is less clear is that E is Π1
1. To see this observe that X ∈ E if and only

if X codes an extensional, wellfounded relation E ⊆ � × � and a ordinal α so
that (�,E) ∼= Lα in the way described in the coding lemma and Lα+� |= X ∈ E
where the expression “X ∈ E” is shorthand for the definition of E given recursively
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above (relativized toLα+�). For more details on this argument the reader is referred
to [19]. 


Note that in contrast to the case of MAD families this is not the best possible
complexity for a maximal eventually different family since ZF proves that there is
a Borel maximal eventually different family [14] and in fact even a closed one [22].
However, we will apply this result to obtain models where the continuum hypothesis
fails and there is still a Π1

1 maximal eventually different family of sizeℵ1, which will be
the best possible complexity for that cardinality. Moreover, in light of Theorem 3.3,
this is the best possible complexity for a tight maximal eventually different family
(of functions or permutations).

The same argument works in the case of tight eventually different sets of
permutations and tight MAD families. The only point that is different is that in
place of the cn’s we need a computable set of disjoint permutations covering �2 (in
the case of permutations) or an infinite computable partition of � into infinite sets.

Theorem 10.3. If V = L there are a Π1
1 tight eventually different set of

permutations and a tight MAD family.

As a result of Theorems 10.1 and 10.3 we have the following.

Theorem 10.4. The following constellations of cardinal characteristics are compat-
ible with the existence of a Π1

1 tight maximal eventually different family of functions,
a Π1

1 tight eventually different family of permutations and a Π1
1 tight MAD family.

(1) a = ae = ap = d = aT = u < 2ℵ0 . In this case we can also arrange that the
witness to u is Π1

1.
(2) a = ae = ap = u < d = aT = 2ℵ0 . In this case we can also arrange that the

witness to u is Π1
1.

(3) a = ae = ap = d < aT = 2ℵ0 .
(4) a = ae = ap = d = u < non(N ) = cof(N ) = 2ℵ0 . In this case we can also

arrange that the witness to u is Π1
1.

(5) a = ae = ap = i = cof(N ) < u. In this case we can also arrange that the
witness to i = ℵ1.

Proof. For each case we simply add�2 many reals over L with countable support
of a given type. For item 1 we use Sacks forcing, for item 2 we use Miller forcing, for
item 3 we use partition forcing, for item 4 we use PT2n , and for item 5 we use QI .
For the second to final model note that there is a Π1

1 basis for a P-point in L [21].
For the final model note that there is a Π1

1 maximal independent family in L which
is preserved by countable support iterations of the form P(K), see [5]. 


§11. Concluding remarks. The results of the previous sections show that tightness
for eventually different family and an eventually different set of permutations is a
robust notion and can provide a lot of inside into studying these types of maximal
sets of reals in much the same way as tight MAD families provide insight into
questions about a.

A natural line of inquiry is whether we can define natural notions of tightness for
other relatives of a. An obvious question in this respect is the following.

Question 2. Is there an analogy of tightness for aT or for ag?

https://doi.org/10.1017/jsl.2023.9 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.9


722 VERA FISCHER AND COREY BACAL SWITZER

A positive answer to this problem for ag would presumably strengthen the main
result of [10] in much the same way that Theorem 10.1 strengthens the main result
of [9].
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