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Abstract

Vacuum asymptotically flat Robinson-Trautman spacetimes are a well known class of
spacetimes exhibiting outgoing gravitational radiation. In this paper we describe a method
of locating the past apparent horizon in these spacetimes and discuss the properties of the
horizon. We show that the past apparent horizon is non-timelike and that its surface area is
a decreasing function of the retarded time. A numerical simulation of the apparent horizon
is also discussed.

1. Introduction

Vacuum asymptotically flat Robinson-Trautman spacetimes have been the subject of
much study since their discovery over thirty years ago [18]. They possess some very
nice features which make them amenable to analysis. They are in some sense the
simplest asymptotically flat solutions which exhibit gravitational radiation, albeit of
a fairly specialised nature. The feature of the spacetime which simplifies analysis is
that the full spacetime can be built up from the solution of a fourth order parabolic
equation on a 2 + 1 dimensional manifold. This is a consequence of the fact that
the coordinate system uses a retarded time coordinate, so that in effect initial data is
prescribed on a null hypersurface.

Early studies of the Robinson-Trautman equation related to the behaviour of solu-
tions of the linearised equation [5,25]. Lukacs et al. [10] studied the behaviour of
solutions of the full nonlinear equation, using the concept of Lyapunov stability to es-
tablish that global solutions, if they existed, would converge to the static Schwarzschild
equilibrium. A number of authors subsequently focused on the existence of such solu-
tions. Schmidt [19] showed local existence of solutions for sufficiently differentiable
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but otherwise arbitrary initial data. Rendall [17] showed global existence for suf-
ficiently small initial data, antipodally symmetric on the sphere, and his proof was
extended by Singleton [21] to remove the requirement of antipodal symmetry. Finally
Chrusciel [2] proved semi-global existence of solutions for arbitrary smooth initial
data. Numerical studies by Perjes [15] and Singleton [20,22] demonstrate vividly the
evolution of an initially perturbed spacetime to the steady state. It is interesting to
note that the evolution equations exhibit exponential divergence from arbitrary initial
data in the "backwards" time direction, and that no solutions exist in this direction [2].
It should be emphasised that these results, and the subsequent discussion, only ap-
ply to asymptotically flat Robinson-Trautman spacetimes with regular topological S2

surfaces: Perjes and Hoenselaers [9] have shown that there exists a class of Robinson-
Trautman spacetimes with cusp singularities which evolve to static C-metrics.

Thus the evolution of the Robinson-Trautman spacetimes would seem to be thor-
oughly understood. We would expect then that the behaviour of physical features of
the spacetimes should not be too difficult to pin down. Near J+, the spacetimes,
because of their algebraically degenerate structure, could reasonably be interpreted
as describing purely outgoing radiation around a black hole source: for example the
decaying tail of the radiation after the black hole has formed (note that there is no ingo-
ing radiation, which means there can be no backscattering or similar self-interaction
of the radiation field). However, in this paper, we will be studying the structure
of past apparent horizons in vacuum Robinson-Trautman spacetimes; thus we will
focus our attention on the behaviour of the "white hole" region of the spacetimes.
Since these spacetimes evolve to the Schwarzschild geometry, the future apparent
horizons coincide with the future event horizons at u = oo (r = 2m, in Schwarzschild
coordinates).

Our study of the apparent horizon structure of these spacetimes was initially moti-
vated by an investigation of the stability of the related class of electrovac spacetimes,
the Robinson-Trautman Einstein-Maxwell spacetimes, discussed elsewhere [11]. The
asymptotically flat vacuum Robinson-Trautman spacetimes turn out to have a par-
ticularly well behaved apparent horizon which illustrates several general theorems
concerning apparent horizons. There are in fact very few well understood exact so-
lutions which can be used to illustrate such theorems - there being few examples
of non-static black hole type solutions. The asymptotically flat Robinson-Trautman
spacetimes, in some sense the simplest asymptotically flat spacetimes admitting grav-
itational radiation, should be a useful example for the study of radiating black hole
spacetimes in general and many of the general theorems relating to non-stationary
spacetimes. The basic equations and features of the spacetimes are outlined in Sec-
tion 2. Section 3 contains the results concerning the past apparent horizon and its
properties. Some numerical demonstration of these results is presented in Section 4.
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2. Robinson-Trautman vacuum spacetimes

2.1. Basic equations and notation The line element for the Robinson-Trautman
class of spacetimes is given by:

(1)

where// = — r(\n P),U+^K — ™ and K = A(lnP). The vacuum Robinson-Trautman
spacetimes are foliated by a two parameter family of 2-surfaces Su,r which, for the
asymptotically flat case, have spherical topology. The operator A = 2P2d^ is the
Laplacian on these 2-surfaces. For the vacuum spacetimes, m = m(u) and we can
use a coordinate transformation on u to make m constant. We are interested in the
m > 0 case, as this gives rise to a spacetime with positive Bondi mass. The spacetime
is then determined by the evolution of P = P(u, f, f) on a background two-sphere.
The evolution equation is often written as

(2)

This equation, the Robinson-Trautman equation, is also known in the literature as the
two-dimensional Calabi equation [24].

The steady state, corresponding to the Schwarzschild solution, is given by P =
Po = -Wa + bt, + b\ + c££), where ac — bb = 1. Note that the equilibrium
value of P is not unique but includes a freedom corresponding to conformal motions
on the sphere. This freedom was a contributing factor to the difficulty of proving
the existence of solutions of the Robinson-Trautman equation [2]. The condition
ac — bb = 1 normalises the Gaussian curvature of S2 to K = 1.

The function P determines the induced 2-metric on each «Sur, which is given by

2A=e go,

where g0 is the metric of S2 and e~A = P/Po. It is possible to "factor out" the
background S2 geometry and write the Robinson-Trautman equation as

e2AA.u = -J-AoAT, (3)
12

where Ao is the Laplacian on S2. We thus solve the evolution equation on a background
sphere, say at r = 1.
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2.2. Conserved quantities and Lyapunov functionals Several conserved integrals
are implied by the evolution equations. First, we have the conservation of surface area
of <Sur and the conservation of the "irreducible mass". As a consequence of this

e2Aco0 = An,

If m f
M, = — / meat = — e

4TT Jsn 4 ^ Js*

The Gaussian curvature, in terms of A, takes the form K = e 2A(1 — A0A) which,
making use of Stokes' theorem, immediately gives the conservation of the Euler
number for Suy.

1 r

In Js2

Singleton [20,22] gave an expression for the Bondi-Sachs mass of the spacetime

MB = — I eiAco0, (A)
An Jgi

which is manifestly positive and in fact is bounded below by the irreducible mass,
since by the Holder inequality

' 2 / 3 - / / 2 yw
That the Bondi mass is monotonically decreasing can be shown by differentiating (4)
and using the Robinson-Trautman equation:

These characteristics enabled Singleton [20,22] to show that the Bondi Mass is a
Lyapunov functional for the Robinson-Trautman evolution, complementing the earlier
work of Lukacs et al. [10] who showed that the integral f^ K2e2Aco0 is a Lyapunov
functional for the Robinson-Trautman evolution. These Lyapunov functionals played
a key role in Chrusciel's semi-global existence proof [2].

3. The past apparent horizon

3.1. General remarks Apparent horizons in black hole spacetimes have been the
subject of much study in recent times. The motivation for the study of the future or
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past apparent horizons is that they provide a locally characterisable indication of the
presence of an event horizon (future) or particle horizon (past). Indeed, in cases where
the event horizon or particle horizon cannot be properly defined, the apparent horizon
may be the only useful definition of the "surface" of the black hole or white hole [8].
This arguably is the case in the Robinson-Trautman spacetimes, where J~ cannot
be properly defined due to the instability of the Robinson-Trautman equation in the
negative u direction [2]. Apparent horizons have been widely used in numerically
generated spacetimes as an indicator of the presence of a black hole [4,12] in lieu of
being able to detect the event horizon in a local way.2 It is believed that the presence of
an apparent horizon indicates the presence of a nearby event horizon (where it exists),
and it has been shown that for all stationary black hole spacetimes the apparent and
event horizons coincide [7]. Recent work has shown that the apparent horizon of a
black hole has "thermodynamic" properties: in particular it has been shown that a
future apparent horizon can only increase in area, while a past apparent horizon can
only decrease in area, obeying a law like that of the first law of thermodynamics [3,8].

The Robinson-Trautman spacetimes, as they settle down to the Schwarzschild
solution as u —> oo, would be expected to have a well behaved future apparent
horizon coinciding with the event horizon. Due to the presence of outgoing radiation,
we would expect the past apparent horizon to be more complex. As a general (and non
rigorous) consideration, it can be seen quite clearly from the line element (1) that the
curvature singularity at r = 0 is a spacelike singularity, that is, that if the spacetime
were complete in the past null direction (if J~ were complete) then there would exist a
particle horizon - the past counterpart of the event horizon (see Figure 1). Effectively,
the past singularity being spacelike indicates that no null geodesies from J~ can
reach the singularity, if the spacetime is to be causally well-behaved. Because the
particle horizon is a globally defined object, it does not exist in Robinson-Trautman
spacetimes. However, the spacelike nature of the past singularity suggests that there
should always be a past apparent horizon in these spacetimes, which we believe to be
causally well-behaved.

3.2. Apparent horizon equations The concept of an apparent horizon rests on
the definition of a marginally trapped surface. We define an outer past marginally
trapped surface, X~, to be a spacelike 2-surface on which the ingoing future directed
congruence of orthogonal null geodesies has vanishing divergence, while the outgoing
future directed congruence of orthogonal null geodesies is diverging. We define the
outer past apparent horizon, 'H~ , to be a hypersurface r = 91 (M, £, £) such that its
intersection with each u = u0 slice is an outer marginally past trapped 2-surface I~,
that is, %' is foliated by the surfaces I~ . The past apparent horizon is illustrated in

2In recent work, Anninos el al. [1] have been able to locate the event horizon in numerically generated
spacetimes by integrating backwards from the stationary final state of the black hole.
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FIGURE 1. Penrose diagram for the Robinson-Trautman spacetime.

Figure 1.
The equations describing the apparent horizon are constructed as follows. Consider

a null tetrad (/", na, m", ma) for the spacetime with /" tangent to a congruence of
outgoing shearfree diverging null geodesies, and m" and m" lying on a family of
2-surfacesX~:

I" = dr.

p
ma = —dp -\

r r
-a P P m

ma = -dK +
r r

(-dr,

(6)

where H is as in (1) and r = 91(M, ^, ^) defines the surfaces Xa. The nonvanishing
Newman-Penrose quantities are then given by

pm.? P.;

= ~h [K - \
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m

2r2 r4

[P2(lnP).a,].f ,
1

2r2 r3 r5

From (6) and (7) it can be seen that the null vector /" is future directed, outward
pointing, geodetic (K = 0), diverging (p = — 1/r), null and orthogonal to the 2-surface
I~. That is, I" is tangent to the outgoing congruence of null geodesies normal to X~.
The tetrad vector na will be tangent at X~ to the ingoing congruence of null geodesies
normal to X~. The divergence of n" is given by Re (/x) (= fi in this case). Thus the
divergence of the ingoing congruence of null geodesies is given on X~ by jx, where
the tilde is used here and subsequently to denote the restriction of an r-dependent
quantity to the hypersurface r = di(u, £, £). If jx = 0, X~ are marginally past-trapped
2-surfaces X~ and the hypersurface r = dl(u, £, £) is the past apparent horizon %~.
This condition gives us the first horizon equation:

A T - ^ - A ( l n 3 t ) = 0. (8)

This equation is attributed to Penrose [13]. Tod [24] examined it in more detail,
proving that (8) has a unique C°° solution, given a C°° background Su,r, and also that
the surface X~ defined by the solution is in fact the outer boundary of past-trapped
surfaces on u = w0.

The other equations are found by examining the embedding of the past apparent
horizon in the spacetime; in particular by considering the normal vector to the apparent
horizon.

Let Na be a one-form on W defined by No = -SR.U du + dr - 5R.{ dt, - 9t.̂  d\.
Hence W := g"bNb is a vector orthogonal to W~ and is given by

(9)

Since the complex null vectors m" and rh" are tangent to the 2-surfaces X~ which
foliate the hypersurface H~, the null vectors I" and n" are orthogonal to X~. It can be
seen that the vector
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is orthogonal to Na and therefore is tangent to the hypersurface %~. The "magnitude"
of Na and Z", from (9) and (10), is given by

Since from (8) /Z = 0 on each I~, the directional derivative of /I along the vector
Z" tangent to 7i~ must vanish. Equations (10) and (11) then imply

ZaVafi = haVail-
l-(NbN

l')laVaix = O. (12)

Substituting (7) into the Newman-Penrose equations [14] gives

h"VafL — maVav + v(-f + a + 3/3) + nv - XX - ^

l'Vaji = m"Van + it (n - a + /?) + 4>2

In (13) we have used v. = -JL(NaN
a).t and X = ( ^ - ) . Combine (12), (13) and

(14) to give

k'ffl
To summarise, then, the apparent horizon in asymptotically flat Robinson-Trautman

spacetimes can be described by the following equations:

^ (15)
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The Re (p,) — 0 equation, (15) is the primary equation required to locate the horizon.
Tod's proof of existence and uniqueness of solutions for this equation indicates that
there must be a marginally trapped 2-surface on each slice u = u0. However, in order
for tl~, the union of these surfaces, to be considered an apparent horizon, we require
that %~ be a non-timelike hypersurface, that is, that N"Na is always non-negative. As
shown by Collins [3] and Hay ward [8], this is equivalent to the assumption that the
directional derivative of the divergence of the ingoing null geodesies in the direction
of future pointing outgoing null geodesies is negative. In fact, Hayward makes this
assumption a part of the definition of an outer apparent horizon, and thus does not
require a spacetime to be asymptotically flat in order for the outer apparent horizon
to be selected. In the Robinson-Trautman spacetime, which is asymptotically flat, we
prove that this assumption is not necessary; using the maximum principle and (16) it is
straightforward to show that NaNa > 0 (details of the proof will be given elsewhere).

3.3. Properties of the horizon Equation (15) can be written in the form

2me3A = e*(l - A0<J>), (18)

where e* = SHeA. This gives a useful expression for the Gaussian curvature of the
apparent horizon, KT = e~2*(l — Ao^). It is then straightforward to show that the
marginally trapped surfaces have the topology of S2:

= ^~ f KTe2*co0 = - L /" [1 - Ao<3>]a>o = 2.
In JS2 2n Js2

(19)

Furthermore, because Kje3* = 2me3A, KT must be positive everywhere. Also, this
relationship gives rise to some additional interesting integral quantities:

/ me2Aco0 = 4nm <& j KTe3<t"Acoo = Snm,
Js2 Js2

f m« ! A -% = 2TT O f KTe2*co0 = An,
J& Js2

[ me3Acoo > 0 o f Kje^ajo > 0,
Js2 Js2

— / me3Aa)o < 0 <3> — / KTe^a)0 < 0. (20)
du Jgi du Jp

This is suggestive of the fact that the Robinson-Trautman equation can be rewritten
entirely in terms of "horizon quantities". From (18), we have

e2A = . - * { l _ A o < t ) )

N2/3

)

https://doi.org/10.1017/S0334270000011176 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011176


226 E. W. M. Chow and A. W.-C. Lun [10]

and

A0A = -A o (<& + ln(l - A04>)).

Using the Robinson-Trautman equation in the form

we can construct an equation in <f> alone. While rather messy, this formulation of the
Robinson-Trautman equation is physically interesting as it describes in some sense
the "evolution" of the apparent horizon of the white hole. The term "evolution" is
used loosely here, since we expect the past apparent horizon to be non-timelike.

The properties of the area of the apparent horizon, A% = f^ e1(t>co0, can also
be derived from the horizon equations, Equations (15) to (17). Tod proved the
isoperimetric inequality, l6nM\ > Ax, for the area of the horizon [23]. In fact,

> Ax > I6nm2, since, from the Holder Inequality and (20),

2/3

I6nm2. (21)

Since (16) implies that the apparent horizon must be a non-timelike hypersurface,
that is, that N"Na > 0 always, we can show quite easily that the Ax must always
decrease. From (15) and (17), we have

(e2*) ,u + Ao (e*~A) = -e*+A(NaNa). (22)

Thus

^-Ax = 4 - [ <?*<*> = ~ f e*+A(NaNa)co0 < 0. (23)
du du JS2 Jsi

Thus we have shown that the past apparent horizon %~ is a non-timelike hypersurface
foliated by past marginally trapped surfaces I~ whose surface area is a monotonically
decreasing function of u.

4. Numerical modelling

We are currently undertaking to solve the apparent horizon equations in conjunction
with the Robinson-Trautman equation numerically, and to use the numerical model

https://doi.org/10.1017/S0334270000011176 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011176


[11] Apparent horizons in vacuum Robinson-Trautman spacetimes 227

to investigate further some of the properties of the apparent horizon. Our results at
this stage demonstrate the nice properties of the horizon equations. We are initially
solving the axisymmetric equations: thus the system is 1 + 1 dimensional only. A
full discussion of the numerical results will be presented elsewhere, but we give here
a brief introduction to the work.

0.05 0.1

FIGURE 2. Numerical evolution of axisymmetric Robinson-Trautman spacetime and apparent horizon,
(a) / (x ,y) =

In order to find the apparent horizon, we first solve the Robinson-Trautman equation
to find the "background spacetime". For this, we follow the work of Singleton [20,22]
and Prager and Lun [16], using exactly the Crank-Nicolson algorithm described by
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the latter. Next, on each 'time' slice u = u0, we solve (15) using a Newton-Raphson
iteration. That is, for the values of P (or A) determined by the Robinson-Trautman
equation, (15) is solved to find the function 9t which describes the position of the
marginally trapped surface. Because the convergence of the Newton-Raphson method
is entirely dependent on making a good initial guess, we actually begin with the last
timestep of the evolution, where the marginally trapped surface is known to be close
to r = 2m, and solve for each time slice in turn, going backwards to u — 0, taking as
an initial guess for each slice the solution on the previous slice.

The example shown has the initial condition/ = y = 1. — 0.1 J^o — O.2y2,o —
0.3 y3,o, where K/o are spherical harmonics restricted to the axisymmetric case (that is,
Legendre polynomials). For convenience we set 12m = 1. Figure 2(a) shows a plot
of/ against x = cos 6 evolving through u. It can be seen that the system settles down
to equilibrium (P = Po) very quickly. Note that the equilibrium solution includes a
component of the first harmonic in this case, so / is of the form / = a + bx. The
function SK, representing the position of the marginally trapped surface I~, is plotted
in Figure 2(b), also showing very smooth behaviour. 91 is not subject to this ambiguity
in the final state, and settles down as it should to r = 2m, which corresponds to the
Schwarzschild equilibrium.

0.086

0.0855

0.085

0.0845

0.084

0.0835

0.083

Bond] mass
Horizon mas* '

IrroduclMs Mass

0.05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45
u

FIGURE 3. Monotonic decay of mass quantities in the numerical evolution of the Robinson-Trautman
spacetime.

In Figure 3 the "horizon mass", defined as MT = y/Az/(l6n), is plotted as
a function of u with the Bondi mass and the irreducible mass, demonstrating the
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monotonicity of the horizon area, and the inequalities described above (21).

5. Concluding remarks

In this paper we have demonstrated the existence of the past apparent horizon in
the vacuum asymptotically flat Robinson-Trautman spacetimes, and described some
of its properties. Tod's proof of the existence of marginally past trapped surfaces
[24], together with our result that they foliate a non-timelike hypersurface, allow us
to call ti~ a past apparent horizon. It is pleasing to find that the Robinson-Trautman
spacetimes, which are the simplest asymptotically flat radiating spacetimes, exhibit
a well behaved apparent horizon structure. In more general radiating spacetimes,
we would not expect the existence of apparent horizons to be guaranteed. This is
demonstrated by examples such as the electrovac Robinson-Trautman [11] or the
vacuum Bondi-Sachs spacetimes.

We have also shown that the surface area of the past apparent horizon decreases
monotonically with the retarded time u. This result is a particular example of more
general theorems about apparent horizon dynamics [3,8]. However, we have not
required all the assumptions used in the proof of those theorems.

We have illustrated a method for describing apparent horizons analytically based
on the construction of a suitable null tetrad for the spacetime — this method could be
easily applied to other cases. In a future paper we will discuss further the numerical
solution of the horizon equations, as means of investigating the physics of these
spacetimes.
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