Correspondence

DEAR EDITOR,
Re: Dicing decimal digits (Math. Gaz. July 1997)
The Blest method of producing decimal digits by throwing two dice can be improved by throwing a die and a coin together. We add 4 to the die score if the coin is heads, and -1 if the coin is tails. As before, the die is thrown again if it comes up as 6 .

This removes the problems of distinguishing the two dice or confusing the two rules.

Yours sincerely,
JEREMY KING
Tonbridge School, Tonbridge, Kent TN9 IJP

DEAR EDITOR,

I offer a couple of quick thoughts triggered by the articles in July 1997's excellent issue of the Gazette.

1. There is a surprising connection between Keith Lloyd's article on the Pell equation $x^{2}-3 y^{2}=1$ and H . W. Bitton's quest for nice cubics in Note 81.25 . Let u, v be integers satisfying $u^{2}-3 v^{2}=1$. Then the cubic $f(x)=(u-2 v) x^{3}+2 x^{2}+(u+2 v) x$ is readily shown to have the nice rational roots $\frac{v-1}{u-2 v}, 0, \frac{v+1}{2 v-u}$ and its derivative has the nice rational roots $\frac{u-2}{3(u-2 v v}, \frac{u+2}{3(2 v-u)}$.
2. I heartily agree with J. A. Scott (note 81.33) that convexity arguments deserve all the publicity they can get: as Walter Rudin once observed, "Many of the most common inequalities in analysis have their origin in the notion of convexity". Just as the AM-GM inequality has a neat proof using convexity, so the Cauchy-Schwarz inequality has a similarly succinct one. Let $X=\sum x_{i}^{2}, Y=\Sigma y_{i}^{2}$ where (without loss of generality) none of the x_{i} are 0 . Then

$$
\begin{aligned}
\left(\sum x_{i} y_{i}\right)^{2} & =X^{2}\left(\sum \frac{x_{i}^{2}}{X} \cdot \frac{y_{i}}{x_{i}}\right)^{2} \\
& \leqslant X^{2}\left(\sum \frac{x_{i}^{2}}{X}\left(\frac{y_{i}}{x_{i}}\right)^{2}\right)
\end{aligned}
$$

by convexity if $f(x)=x^{2}$ with weights $\frac{x_{i}{ }^{2}}{X}$.
$=X Y$
Moreover, there is equality if all the points involved, $\frac{y_{i}}{x_{i}}$, are equal.
I also enjoyed the article [1] in the November 1997 Gazette and offer two brief observations:

