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ABSTRACT. Some results of nonlinear studies of flux tube oscillations are summarized 
showing that each step made towards the real conditions of the solar atmosphere opens the 
existence of qualitatively new effects which form the basis of strongly nonlinear dynamics. 
Among these effects are, for example: explosive instability in the presence of negative 
energy waves which leads to an efficient and fast energy release; the generation of 
secondary plasma flows and current drive which strongly influence the evolution of 
magnetic flux tubes and their stability conditions; formation of shocks and solitary waves, 
temporal brightening of flux tubes and others. 

1. Introduction 

Here, in Bangalore, we could celebrate the 30th anniversary of the suggestion by Robert 
Howard (1959) that the solar magnetic field can be concentrated in bundles of field lines. 
After the first direct observations by Sheeley (1967) there has been no lack of new 
observational data; there were results of Beckers and Schr5ter (1968), Tanenbaum et al. 
(1969), Livingston and Harvey (1969), Frazier (1971), Grigorjev and Kuklin (1971), 
Gopasyuk and Tsap (1971), Howard and Stenflo (1972) and others (for more details see, 
for example, Stenflo (1989)). Even this very incomplete list of explorers shows the 
exciting and great activity of the observers, which was the beginning of a new period in 
Solar Physics - the physics of structured magnetic fields. For understanding the basic 
processes in the solar atmosphere, which are obviously governed by magnetic fields, die 
properties of separate magnetic flux tubes as well as the properties of their ensembles 
should be analysed. Beside its significance for different astrophysical objects where 
structured magnetic fields are met quite often, such a study is also of interest as a 
fundamental problem of plasma physics due to a rich picture of wave processes and 
instabilities in such structures. For the time being we have a good theoretical experience as 
well due to the essential contribution by P R Wilson, L E Cram, E Parker, W Unno, 
N Weiss, S Syrovatskii, J Uberoi, E R Priest and others (see Priest, 1982 and References 
therein). 

Today there is a rather good understanding of the properties of linear oscillations of a 
single flux tube: eigenmodes, mechanisms of damping, effects of vertical stratification and 
so on. Even in the simplest model of a homogeneous tube the physics of flux tubes is very 
rich. Motions in the convective zone and, as will be shown below, strong shear flows 
excite different kinds of oscillations of a flux tube. Among these the most important are 

longwave oscillations (with kR « 1 , where k = 1A is the wave number and R is the tube 
radius) corresponding to a dipole mode (with an azimuthal wave number m = ±1) that has 
bending or kink oscillations and an axisymmetric sausage mode (m = 0). For both modes 
the frequency scales linearly with wave number. 

The bending mode is an analogue of the Alfven wave with the phase velocity containing 
the density of the ambient plasma which is caused by the effect of «added mass» (Ryutov 
and Ryutova, 1976; Spruit, 1981): 

0 3 a n N cb = v = - = = , (1) 

where T| = pi /p e , p is the plasma density, a = b/47tpj is the Alfven velocity. Here and 
below the subscripts i and e correspond to the regions inside and outside the flux tube. The 
phase velocity (1) is written assuming that there is no magnetic field outside the tube. 
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The sausage mode is the analogue of the slow magnetosonic wave. In these oscillations 
the sum of gas-kinetic and magnetic pressures is almost not perturbed, so mat the plasma 
parameters outside the tube have little influence on their dispersion relation (Defouw, 
1976): 

CO 

4 
asj 

L2 + S? 

(2) 

Here s 2 = yp/p is a sound speed squared (y is a specific heat ratio). As to the oscillations 
with higher azimuthal mode numbers m = ±2, ± 3 , . . . they are weakly coupled with the 
larger-scale motions of the atmosphere (their amplitudes are proportional to (kR )m) and 
are of relatively less interest 

Of course, in a magnetic flux tube as in any oscillating system there is present a standard 
set of nonlinear phenomena like shocks, solitons, collapse etc. Besides that, there are the 
specific effects caused by the peculiarity of the flux tube itself. Before proceeding to some 
results of nonlinear studies of flux tube oscillations we will describe in the next Section 
some features of flux tubes which are important for understanding more complicated 
nonlinear phenomena. 

2. Nondissipative Damping Mechanisms 

In a compressible medium an oscillating magnetic flux tube can be a source of secondary 
acoustic waves (Ryutov and Ryutova, 1976). In general, if outside the tube there is an 
external magnetic field the tube radiates all types of MHD-waves. The radiation takes place 
in the case when the phase velocity of oscillations is larger than the sound speed in the 
ambient plasma, that is when the radial wave number 

is real. In the opposite case the radiated waves are evanescent and their presence leads only 
to a small change of phase velocity. The radiative damping rate caused by this effect for an 
arbitrary mode (except m = 0) is as follows: 

(m) _ TCCO (kR)2lml r 2 jm\ 

ttl* ~lml! ( I m l - 1 ) ! ( 1 + T 1 )
 2

 LY(1+TI) - IJ 

Respectively, for the kink mode we have 

_ ™ _ & R £ f ? i l ( 3 ) a d ) = *<» i k R i l r ? xi 

1 3 4 1 2 LYO +n) J 
Note, that the natural frequencies of tube oscillations are independent of azimuthal mode 
number and are of the same form as expression (1) for all I ml > 1. 

The radiative damping works in the case of sausage oscillations as well. The 
corresponding damping rate is (Ryutova, 1981) 

co s? 

4 - 1 ( ? T T ^ : < 4> «e(*2 + sf)2 

The damping rate contains for all cases the small parameter (kR) 2 and is typically small, 
which means that once excited these oscillations propagate along the flux tube. The 
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situation becomes quite different in the more realistic case of smooth radial profiles of 
density and magnetic field inside the tube. 

In the case of a radially inhomogeneous tube there exists another nondissipative 
mechanism of damping connected with the pumping of the oscillation energy into the 
resonance layer where the phase velocity of oscillations becomes equal to die local Alfven 
velocity. The mathematical form of the corresponding equation is of the Rayleigh equation 
in usual hydrodynamics with the coefficient of the higher derivative approaching zero at the 
singular point. The general features of such a type of equation and, in particular, Alfven 
resonances in laboratory plasmas were studied by many authors (Timofeev, 1970; 
Tataronis and Grossman, 1973; Chen and Hasegawa, 1974; Timofeev, 1989). It was 
explored as well in connection with the physics of coronal loops and heating processes in 
the solar atmosphere (Ionson, 1978; Hollweg, 1979; Heyvaerts and Priest, 1983; Sudan 
and Similon, 1988). 

The resonance damping of bending oscillations of a magnetic flux tube was first studied 
in a model of a tube with diffuse boundaries (Ryutova, 1977). It was assumed that the 
magnetic field is almost constant across the whole tube except in a narrow region of width 
/ « R where it linearly decreases to zero. Respectively, the dependence of pressure and 
plasma density follows the magnetic field in accordance with the equilibrium condition. In 
this approach the resonance damping rate of bending oscillations is as follows: 

vres - 4 P • W 
4 Pi + Pe K 

For the slow (sausage) oscillations resonance absorption does not take place, but the radial 
inhomogeneity plays a crucial role: these oscillations appear to be very sensitive to 
inhomogeneities of plasma and magnetic field across the tube and experience a strong 
radiative damping (Ryutova, 1981). To be more precise, if the relative drop of plasma 
density and/or magnetic field over the tube radius exceeds the magnitude (kR) 2 (which is 
extremely small for longwave oscillations) the sausage oscillations vanish. In the case of a 
really smooth radial dependence of flux tube parameters the weakly damped wave with 
smoothly varying radial eigenfunction does not exist any more. And the question arises of 
whether under such conditions the oscillations of flux tubes can still be the agent 
responsible for energy transfer from the lower to upper layers of the atmosphere. The 
answer is positive (Ryutova and Khijakadze, 1989). This is connected with the fact that 
the resonance damping in a smoothly inhomogeneous tube gives rise to a pecular evolution 
of the radial mode structure of the perturbation: it becomes more and more spiky at higher 
altitudes. The characteristic radial scale length Ar diminishes inversely proportional to z : 

AT ~ aR/coz. 

Respectively, due to the presence of the small-scale structure the usual dissipative 
processes (viscosity, thermal conductivity, ets.) become important at larger z. The 
longitudinal dependence of the energy flux of oscillations becomes nonexponential. For 
example, the volume density of power Q released by viscous dissipation is of the order of 

(v is a kinematic viscosity coefficient and ^ is the tube's displacement). As Ar diminishes 
with height Q is growing with z. At some altitude z \ Q reaches a maximum, and then 
rapidly decreases. Thus, the heating power has a pronounced maximum at some altitude 
z*, which can estimated as 

2 . „ a & p ? j 1 / 3 . 
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In the observational data this effect can manifest itself by a temporal brightening of the flux 
tube region at a definite height. 

3. Effects of Sheared Flows 

According to the observational data there are plasma flows along magnetic structures with 
different velocities inside and outside them. 
The presence of shear flows along the magnetic fields leads to the appearance of 

qualitatively new effects. First of all, to the existence of negative energy waves, and thus 
to a widening of the classes of instability. And second, to a linear hydrodynamic instability 
which is similar to a tangential discontinuity and which can be responsible for the excitation 
of flux tube oscillations in regions far from the convective zone. 
The specific features of negative energy waves are that the energy of a system with these 

waves is lower than without them and losing the energy of negative energy waves due to 
dissipative effects (say, the interaction with the waves of positive energy, with particles and 
so on) leads to a growth of their amplitudes (Kadomtsev et al., 1964; Dikasov et al., 1965; 
Coppi et al., 1969; Weiland and Wilhelmson, 1977). 
In a cylindrical coordinate system with the z-axis directed along the flux tube the 

linearized MHD-equations in the presence of shear flow with a velocity u(r) are as follows 
(Ryutova, 1988): 

Here 8P = 8p + bzB/4rc is the total pressure perturbation (all perturbed quantities are 

assumed to be proportional to exp(-icot + ikz + imq>)), and 

Q(r) = co-ku(r). 

The set (6) describes all the types of linear oscillations of magnetic flux tubes in the 
presence of arbitrary shear flows along the magnetic field. 
As an example we present here the results for a kink mode in the simplest model of shear 

flow without a radial profile (taking into account a radial profile of flows near the tube 
boundary leads to very interesting physics and will be presented elsewhere). In this case 

—> 
the set (6) is reduced to the following equation for the tube's displacement vector %: 

i5P = p(r> 
Q2(r) (s2 + a2) - k V a 2 [" 1 d 

Q2 _ k2 s2 [r ^ 

(6) 

(7) 

The dispersion relation corresponding to (7) has a form: 

co2 +-(co- ku)2 - k2a2 = 0. (8) 

From (8) we have 
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V^T^— {u± Vil [a 2(l+Ti)-u2]} . (9) 

One can see from (9) that if the velocity of the shear flow exceeds the threshold 

u > a*V 1 + T| 

the system becomes unstable: this is a linear hydrodynamic instability similar to the 
instability of a tangential discontinuity. This instability may play an essential role in the 
excitation of oscillations in magnetic structures in the chromosphere and corona: if 
somewhere the magnetic flux tube is «blown over» by the upstream flow, the oscillations 
excited there will subsequently propagate upstream. The frequency of these oscillations is 
of course unrelated to time scales in the convection zone and may be much greater than the 
reciprocal of the time for granulation. 

In the region u < aV 1 + r\ where the system is stable with respect to TD-instability the 
instability of negative energy waves can still develop. The direct calculations for the energy 
density of waves corresponding to the lower branch («minus» sign) of the dispersion 
relation (9) give: 

W = 7cR2k2p e£
2Cna2-u2) 

x + u ' 

where x = V-q [a2(l +r\)-u2]. So, at flow velocities exceeding the threshold 

u >a"\/^ 

the system becomes unstable with respect to negative energy waves. The interval 

a?Ir[ < u < aV 1 + r\ where the instability of negative energy waves can exist can be written 
in terms of p = 8rcp/B2: 

a A / — £ — < u < a A / 1 + 2 f . (10) 

For the development of the instability the dissipative processes must turn on. In other 
words, incorporating dissipative effects results in a transfer of energy away from the 
negative-energy waves and an increase in their amplitude. A remarkable property which a 
magnetic tube exhibits is that even in the absence of the usual dissipative processes this 
instability can develop due to the collisionless dissipation mechanisms described in Sec. 2, 
namely, due to the radiation of secondary acoustic waves and due to resonance damping. 
In the case of radiative damping there are two possibilities: the amplitude of oscillation of 

a flux tube will grow if the energy of these oscillations and the energy of radiated waves 
have opposite signs, that is if tube oscillation has a positive energy, and the radiated sound 
wave has negative energy and vice versa. For example, the conditions for bending 
oscillations with positive energy to radiate a negative-energy sound wave have die form: 

a > Se/Vri, u > se + a 2 - ŝ /q 

and the corresponding growth rate is as follows (Ryutova, 1988): 

v^ (cb-u)2r(cb-u)
2-S2] 

— J: i . 
co 2s* cb 1(1 + Tl) Cb - uj 
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In the case of sausage oscillations the instability occurs under the following condition: 

u > CT+ Se . 

The corresponding growth rate has the form: 

Recently, similar results were obtained by Hollweg et al., 1989, who studied the effects of 
velocity shear on resonance absorption of incompressible MHD surface waves and 
indicated the importance of this effect for the development of turbulence in regions of 
strong velocity shear. 

4. Explosive Instability of Negative Energy Waves 

A specific nonlinear instability, an explosive instability, occurs in a system which contains 
waves with energies of different signs. A distinctive feature of an explosive instability is 
that the amplitudes of the interacting waves reach infinitely large values in a finite time. As 
an example, we present results for three wave interaction under the assumption that only 
one wave, say the sausage one is excited in the system at the origin, and the time scale and 
amplitudes of the two other waves (kink modes with m = -1 and m = 1) are determined by 
the thermal noise. The conditions for explosive instability for this three-wave process are 
the following matching conditions: 

cor + G ^ + cOb = 0 , kx + k ^ + kb = 0 , I m j l ± l m b + l ± l m b I = 0. (11) 

The - and + with the subscript b correspond to waves which are travelling downstream and 
upstream. The third condition in set (11) corresponding to the conservation of the angular 
momentum of the waves can be easily satisfied since for the sausage mode m j = 0. The 
kink mode can be either linearly polarized, that is it can be a mixture of waves with m = + 1 
and m = - 1, or circularly polarized in opposite directions. To satisfy the first condition in 
set (11) which corresponds to energy conservation it is obvious that at least one of the 
waves has to be the negative energy wave. As was mentioned above, the sausage mode is 
always a positive energy wave. Of the two kink modes the wave travelling downstream 
has a negative energy and negative wave number. Note, that in analyzing nonlinear 
processes the sign of die frequency is assumed to correspond to the sign of the energy, so 

c% < 0. When this approach is taken, it is simple to verify that the matching conditions 

(11) are compatible if the following inequality holds: 

The value of uexpl lies below the limit of hydrodynamic instability and just gets into the 
interval (10) corresponding to the existence of negative energy waves. Thus, under the 
condition 

the three wave interaction (note that two of them might be at the level of noise) can be 
explosive; in the initial stage of evolution of the explosive instability amplitudes of 

interacting waves grow exponentially, and the typical growth rate is KTVT- in order of 
magnitude, where VT~ is the velocity amplitude of the tube's boundary for sausage 

V | a c I rck2R2 C T ^ C T " u ^ 2 

0) 4r[ a 4 
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oscillations. After a time of the order of several times the reciprocal of the growth rate, at 
which the amplitudes of all three waves have become equal in order of magnitude, the 
amplitudes begin a power-law growth in accordance with 

where to is the «explosion» time, which is also of the order of (ICTVT-)"1. So, formally, in 
a time to the amplitudes of all three waves achieve infinitely large values. At this strongly 
nonlinear stage higher-order nonlinear processes are, of course, involved. These processes 
can limit the growth of amplitudes at a finite level. The further development of explosive 
instability depends on the character of these nonlinear processes as well as the dispersive 
properties of the system (see, for example, Weiland and Wilhelmsson, 1977). The earliest 
noninear effect which turns on is the nonlinear phase shift which leads to a breaking of the 
synchrony in time. Note, that the inhomogeneities of the medium lead to a breaking of 
«synchrony» in space. The stabilization of the explosive instability by the nonlinear phase 
shift can result in the formation of a solitary wave. Very important is the influence of the 
second dispersive effects, which lead to rapid oscillations (ripplings) superimposed on the 
main nonlinear solution. The interaction between new oscillations can again give rise to 
explosive growth of their amplitudes. This can happen of the nonlinear frequency shift 
counteracts the stabilization by second-order dispersive effects. Thus, in this case an 
«explosion» or fast and efficient energy release takes place. 

In the opposite case, where the nonlinear phase shift enhances the stabilization due to 
dispersive effects there appear new solitons. There are situations (for example, due to a 
weak imbalance between the two stabilizing effects) when solitons with explosively 
growing amplitudes appear. 

A soliton solution in flux tubes (in the absence of shear flows) was found earlier by 
Roberts and Mangeney (1982) by the traditional way of using the dispersion relation of 
tube oscillations keeping higher-order terms with respect to (kR) 2 . Today the problem of 
solitons in flux tubes is a current interest of many explorers. 

5. «Magnetosonic Flows* 

A specific nonlinear effect which can play an essential role in the dynamics of magnetic 
structures and in their evolution in time consists of the generation of secondary plasma 
flows by oscillating flux tubes (Ryutova, 1986). This effect is similar to the effect of 
«acoustic flows» or «quartz wind» (Eckart's flows) in usual gasdynamics (see, for 
example, Nyborg, 1965), but its picture in magnetohydrodynamics appears to be much 
richer. These effects are caused by the presence of the boundary between the plasma and 
magnetic field due to the appearance of additional tangential tensions at the boundary. 
There are mainly two reasons leading to the generation of «magnetosonic flows». First is 
the action of the ponderomotive force on a plasma. This mechanism is not connected with 
the absorption of oscillation or with any dissipative effect. The second mechanism is just 
connected with the absorption of momentum and angular momentum of oscillations 
propagating along the flux tube. The absorption of longitudinal momentum (nonzero 
angular momentum can be transferred by circularly polarized bending oscillations) causes 
stationary convection across the flux tube (rotational mass flows inside and outside the 
tube). Moreover, the action of this mechanism leads also to current drive. The geometry 
of currents corresponds to the geometry of secondary flows. 

The equation for the stationary velocity field of generated secondary flows u has the 
form: 

v . ~ l/(t-to), 

(13) 

where v is the kinematic viscosity and f is the ponderomotive force acting on unit volume: 
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f =-<p ,^T> + J<[jtB']>. (14) 

Here a prime denotes perturbed quantities in linear oscillations and is defined from the 
linearized MHD-equations corresponding to one of the modes (kink or sausage). 
One can see from Eq. (13) that convective motions can arise only if 

rot 7 * 0. 

Otherwise, the ponderomotive force leads only to an insignificant redistribution of plasma 
parameters inside the flux tube. The magnitude of/ becomes especially large in the Alfven 
resonance layer where quite strong convective motions can arise. 
The most essential consequence of the effect of secondary flows is that it affects the 

evolution of flux tubes and actually determines their lifetime. There are two different 
regimes of the evolution of a flux tube. During the action of the ponderomotive force a 
levelling of density and magnetic field along the field lines of this force takes place. The 
field of forces as well as the character of secondary flows and hence the further evolution 
of the flux tube depend on the relation between the duration T of the primary wavetrain and 

the time of establishing a viscous flow xv ~ R
2/v. 

In the case of a long coherent wavetrain when T > xv the equalization of density and 
magnetic fields leads to the «splitting» of the flux tube into four independent flux tubes. 
Gravity affects in this process (in the regions of small pressure scale height) can cause the 
separation of new flux tubes from each other and thus the formation of a «magnetic tree». 
In the opposite case of a sequence of mutually incoherent short wavetrains with T < xv, a 

kind of stochastic motion is induced which results in a diffusive broadening of the tube and 
ends up in a complete «dissolving» of the flux tube in the ambient plasma. 
As was mentioned above the second mechanism of the generation of plasma flows and 

current drive is connected with the absorption of oscillations. Formally, the expression of 
the force has the same form as Eq. (14), but now the terms directly connected with the 
absorption are taken into account. Note, that besides the absorption due to the usual 
dissipative effects nondissipative mechanisms peculiar to flux tubes (and described above) 
are very efficient. For example, in the case of resonance damping when the energy of 
bending oscillations is pumping into the resonance layer where the dissipation occurs, the 
whole momentum of oscillations is transferred to the plasma in a narrow layer, causing a 
strong upward mass flow along the magnetic field. The same holds in the case of 
absorption of angular momentum when strong convection across the flux tube takes place. 
The corresponding force can be estimated as follows: 

f B 2 Iv'l2 
f z ~ V r e s

4 7 i a 2 R -

As was mentioned above, unlike the usual gasdynamics, in magnetic flux tubes the 
generation of plasma flows is accompanied by current drive. The quantitative solution of 
the problem is based on the two-fluid approach, where the current density is 

j = en(vi - ve). 

Here vj and vc are the ion and electron velocities and n is the plasma concentration. Two-
fluid MHD leads to the following equation for the current density: 

-* —> -> 
3j__ mcfj - mjfe _e

2n mj + m e ~? 
3t ~ e mime G mime J' 1 
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Here all the definitions are standard and fj and fe are the forces acting on ions and 
electrons, respectively. Note that the main contribution to the effect of current drive (as is 

—> 
clear from Eq. (15)) comes from the force fe acting on the electrons. In the stationary case 
we have simply 

T = o ( E - f e / e ) . (16) 

The detailed calculation of the force fe needs a kinetic approach and is too complicated, but 
in the problem under consideration there are circumstances which make the problem easy. 
The point is that in the longwave limit the particle mean free path (in a highly collisional 

solar plasma) 1 is much less than the wavelength of flux tube oscillations X: 1« XVnvAnj. 
This means that the perturbations of ion and electron temperatures as well as perturbations 
of ion and electron pressures in fluxtube oscillations are equal: 

Pi = Pe-

So, from the momentum conservation law it is clear that half of the wave momentum is 
transferred to electrons and half to ions (Ryutov and Ryutova, 1989). 

Therefore, for the mean force acting on the electron gas we can write: 

Here P is the longitudinal momentum of tube oscillations: 

where y, v<p and W are the damping rate, phase velocity and energy density of the 
oscillations which causes the corresponding current drive. For example, an estimate of the 
current which can be generated due to the absorption of bending oscillations in the 
resonance layer is 

eW R 

We used here the model of a flux tube with a diffuse boundary of width 1; vq> = c b is 

determined by Eq. (1) and y = v r e s by Eq. (5). 
The same considerations hold for the oscillations with circular polarization. In this case 

besides momentum the wave carries angular momentum. Now, the absorption of angular 
momentum leads to the generation of azimuthal currents. 

6. Summary 

In the present paper an attempt is made to describe some basic plasma effects which can be 
responsible for particular active processes in the Sun. There is a scheme of these effects 
and the links between them. Many links in this picture have yet not been found. And, of 
course, the picture itself is far from complete. But the most important next step is to find 
the quantitative relevance of these effects to particular observational data. 
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D i s c u s s i o n 

UBEROI: What are the time scales involved in the nonlinear effects? How do these 
compare with the resonant and radiative damping time scales? 

RYUTOVA: Several inverse damping rates, but to be more strict we have to specify 
which of the nonlinear effects we are dealing with. For example, in a case of secondary 
flows the duration of the incident wave train and the time of establishing viscous flows are 
involved as well. 

PRIEST: (i) Do you think nonlinear effects are more important in the photosphere than the 
corona, where the Alfven Mach number is larger? (ii) Because the observed turbulent or 
wave flows are so small compared with the Alfven speed, do you think that coronal heating 
by waves is essentially a linear process? (iii) What effects do you expect to saturate your 
explosive instability in practice? 

RYUTOVA: (i) No, and I mean no for all the different effects which I've considered 
today. Almost for all of them there is not only the question of the Alfven Mach number. 
For generation of secondary plasma flows and current drive the most important parameters 
are the duration of the incident wave train and the viscosity of the ambient plasma. The 
phenomena of splitting of magnetic structures (I do not mean the photospheric flux tubes 
only) and their diffusive vanishing must be common phenomena for different regions 
where the appropriate conditions are fulfilled. There is, of course, the coalescence effect, 
but it is out of the frame of this talk. For negative energy waves the region of their 

existence can be characterized by plasma P as follows: yj ^ ^ ^ a < u < a» which 

shows that for low p the lower threshold for critical shear velocity can be very low which 

makes a low p region very favourable for negative energy waves and for all accompanied 

phenomena. With increasing p the critical velocity threshold increases and the region of 
existence of negative energy waves becomes more narrow, (ii) I do not think so. The 
general philosophy and practice show that nonlinear effects are invaluable for efficient 
heating, at least when waves are involved, (iii) As I already mentioned, the nonlinear phase 
shift which leads to the breaking of the synchrony in time is the earliest effect which can 
saturate the explosive instability. 
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ROBERTS: You have mentioned several mechanisms for the generation of waves in 
tubes. Which mechanism do you think is likely to be the most important in photospheric 
flux tubes, and do you expect impulsive phenomena to occur? 

RYUTOVA: The most important effect for the excitation of photospheric flux tube 
oscillations is the resonance absorption of sound waves by flux tubes which takes place if 

the Cerenkov condition is fulfilled: s = v<pcos0(s is sound speed, vq> is the phase velocity of 

tube waves and 6 is an angle between the sound propagation and the tube axis). Besides 
that, a very important effect is noncollinearity of flux tubes (Ryutov and Ryutova, 1976). 
For excitation of negative energy waves the presence of shear flows along flux tubes is 
necessary. Concerning impulsive phenomena, as you have shown they can occur and I 
agree with that. 
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