POLYNOMIAL EQUATIONS FOR MATRICES OVER FINITE FIELDS

Jiuzhao Hua

Let $E(x)$ be a monic polynomial over the finite field \mathbf{F}_{q} of q elements. A formula for the number of $n \times n$ matrices θ over \mathbf{F}_{q} satisfying $E(\theta)=0$ is obtained by counting the representations of the algebra $\mathbb{F}_{\mathrm{q}}[x] /(E(x))$ of degree n. This simplifies a formula of Hodges.

1. Introduction and notation

Let \mathbb{F}_{q} denote the finite field of q elements, where q is a prime power. If $E=E(x)$ is a monic polynomial over \mathbb{F}_{q}, let $N(E, n)$ be the number of matrices θ of order n with entries in \mathbb{F}_{q} such that $E(\theta)=0$. In his paper [2], Hodges obtained a formula for $N(E, n)$, but this is not easy to handle in practice. The purpose of this note is to give a simplification of Hodges' formula. This was achieved by counting the representations of a finite dimensional algebra A; here $A=\mathbb{F}_{q}[x] /(E(x))$.

A matrix representation of the algebra A of degree n is a homomorphism from A to the full matrix algebra $\mathcal{M}_{n}\left(\mathbb{F}_{q}\right)$, which consists of all $n \times n$ matrices over \mathbb{F}_{q}. Since A is generated by a single element x, every matrix representation of A is specified by a single matrix, that is, the image of x. It is clear that a square matrix θ over \mathbb{F}_{q} satisfies the equation $E(\theta)=0$ if and only if the map $x \mapsto \theta$ defines a matrix representation of A. Thus the number $N(E, n)$ is exactly the number of representations of A of degree n. In what follows, a representation always means a matrix representation.

Suppose that E can be factorised into the following form:

$$
\begin{equation*}
E=P_{1}^{h_{1}} P_{2}^{h_{2}} \ldots P_{s}^{h_{s}} \tag{1.1}
\end{equation*}
$$

where the P_{i} are distinct monic irreducible polynomials over $\mathbb{F}_{q}, h_{i} \geqslant 1$ and $\operatorname{deg} P_{i}=d_{i}$ for $i=1, \ldots, s$. Thus, the Chinese Remainder Theorem for $\mathbb{F}_{q}[x]$ implies that

$$
\begin{equation*}
A \cong \mathbb{F}_{q}[x] /\left(P_{1}^{h_{1}}\right) \oplus \mathbb{F}_{q}[x] /\left(P_{2}^{h_{2}}\right) \oplus \cdots \oplus \mathbb{F}_{q}[x] /\left(P_{s}^{h_{s}}\right) \tag{1.2}
\end{equation*}
$$

So, the representations of A are determined by the representations of the algebra of the form $\mathbb{F}_{q}[x] /\left(P(x)^{h}\right)$ with $P(x)$ being monic irreducible over \mathbb{F}_{q}.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.

$$
\text { 2. Representations of } \mathbb{F}_{q}[x] /\left(P(x)^{h}\right)
$$

Let $P(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$ be a monic irreducible polynomial of degree d over \mathbb{F}_{q}, and let h be a positive integer. Let $B=\mathbb{F}_{q}[x] /\left(P(x)^{h}\right)$.

Let $J(P)$ be the companion matrix of P, that is

$$
J(P)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \ldots & -a_{d-1}
\end{array}\right)
$$

This has characteristic polynomial $P(\lambda)$. For any positive integer $m \geqslant 1$, let $J_{m}(P)$ denote the following block matrix:

$$
J_{m}(P)=\left(\begin{array}{ccccc}
J(P) & I_{d} & 0 & \ldots & 0 \\
0 & J(P) & I_{d} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & I_{d} \\
0 & 0 & 0 & \ldots & J(P)
\end{array}\right)
$$

which has m blocks of $J(P)$ in the diagonal, where I_{d} denotes the identity matrix of order d.

The structure theorem for modules over principal ideal domains implies that every indecomposable representation of B is isomorphic to some $J_{k}(P)$ with $1 \leqslant k \leqslant h$. This is a modified Jordan canonical form theorem.

A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ is a finite sequence $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots$ of non-negative integers. The λ_{i} 's are called the parts of λ. The largest part of λ is denote by $l(\lambda)$, and the integer $|\lambda|=\lambda_{1}+\lambda_{2}+\cdots$ is called the weight of λ. Let \mathcal{P} denote the set of all partitions including the unique partition of 0 . Every partition λ can be written in the form $\left(1^{k_{1}} 2^{k_{2}} 3^{k_{3}} \ldots\right)$, which means that there are k_{i} parts equal to i in λ.

If $\mu=\left(1^{k_{1}} 2^{k_{2}} \cdots r^{k_{r}}\right)$ is a partition, then we define

$$
J_{\mu}(P)=\operatorname{diag}(\underbrace{J_{1}(P), \cdots, J_{1}(P)}_{k_{1} \text { copies }}, \underbrace{J_{2}(P), \cdots, J_{2}(P)}_{k_{2} \text { copies }}, \cdots \cdots, \underbrace{J_{r}(P), \cdots, J_{r}(P)}_{k_{r} \text { copies }}) .
$$

Thus, $J_{\mu}(P)$ is a diagonal block matrix with k_{i} copies of $J_{i}(P)$ in the diagonal. It is clear that $J_{\mu}(P)$ has degree $|\mu| d$.

It follows from the Krull-Schmidt theorem that every representation of B is isomorphic to some $J_{\mu}(P)$ with some unique $\mu \in \mathcal{P}$ such that $l(\mu) \leqslant h$.

3. The number $N(E, n)$

The result in the last section and isomorphism (1.2) show that the isomorphism classes of representations of A of degree n are in one-to-one correspondence with the s-tuples $\left(\mu_{1}, \ldots, \mu_{s}\right) \in \mathcal{P}^{s}$ such that $l\left(\mu_{i}\right) \leqslant h_{i}$ for $i=1, \ldots, s$ and $\sum_{i=1}^{s}\left|\mu_{i}\right| d_{i}=n$; here $\left(\mu_{1}, \ldots, \mu_{s}\right)$ corresponds to the matrix $J_{\mu_{1}}\left(P_{1}\right) \oplus J_{\mu_{2}}\left(P_{2}\right) \oplus \cdots \oplus J_{\mu_{s}}\left(P_{s}\right)$, where we use $M \oplus N$ to mean the diagonal block matrix $\operatorname{diag}(M, N)$.

If M is a representation of A of degree n, then the general linear group $G L(n, q)$, which consists of all non-singular $n \times n$ matrices over \mathbb{F}_{q}, acts transitively on the set of representations of A which are isomorphic to M. The stabiliser of M, which is denote by $\operatorname{Aut}(M)$, consists of all invertible matrices commuting with M. And so, the number of elements in this orbit is equal to $|G L(n, q)| /|\operatorname{Aut}(M)|$. As $J\left(P_{i}\right)$ and $J\left(P_{j}\right)$ have no common eigenvalues for all $i \neq j$, an easy exercise shows that

$$
\begin{equation*}
\operatorname{Aut}\left(J_{\mu_{1}}\left(P_{1}\right) \oplus \cdots \oplus J_{\mu_{s}}\left(P_{s}\right)\right) \cong \operatorname{Aut}\left(J_{\mu_{1}}\left(P_{1}\right)\right) \oplus \cdots \oplus \operatorname{Aut}\left(J_{\mu_{s}}\left(P_{s}\right)\right) \tag{3.1}
\end{equation*}
$$

For $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots\right) \in \mathcal{P}$, we let $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \cdots\right)$ denote the partition conjugate to λ, that is, λ_{i}^{\prime} is equal to the number of parts no less than i in λ, and we define $\langle\lambda, \lambda\rangle=\sum_{i \geqslant 1}\left(\lambda_{i}^{\prime}\right)^{2}$. For example if $\lambda=(3,2,2,1)$ then $\lambda^{\prime}=(4,3,1)$ and $\langle\lambda, \lambda\rangle=$ $4^{2}+3^{2}+1^{2}=26$. If $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots\right) \in \mathcal{P}$ with $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots$, following Macdonald [3] we define $n(\lambda)=\sum_{i \geqslant 1}(i-1) \lambda_{i}$. It is a routine exercise to show that $\langle\lambda, \lambda\rangle=|\lambda|+2 n(\lambda)$ for all $\lambda \in \mathcal{P}$. Again following Macdonald, for $\lambda=\left(1^{k_{1}} 2^{k_{2}} \cdots\right) \in \mathcal{P}$ we define $b_{\lambda}(q)=$ $\prod_{i \geqslant 1}(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{k_{i}}\right)$.

Notice that for any $\mu \in \mathcal{P}, \operatorname{Aut}\left(J_{\mu}(P)\right)$ is the centraliser of $J_{\mu}(P)$ in the group $G L(m, q)$, where $m=|\mu| \operatorname{deg} P$. Formula (2.6) of Macdonald [3, p.139] shows that $\left|\operatorname{Aut}\left(J_{\mu}(P)\right)\right|=q^{d(|\mu|+2 n(\mu))} b_{\mu}\left(q^{-d}\right)$, where $d=\operatorname{deg} P$. Thus, with notations introduced as above, we have $\left|\operatorname{Aut}\left(J_{\mu}(P)\right)\right|=q^{d(\mu, \mu)} b_{\mu}\left(q^{-d}\right)$. And so, the above isomorphism (3.1) implies that

$$
\left|\operatorname{Aut}\left(J_{\mu_{1}}\left(P_{1}\right) \oplus \cdots \oplus J_{\mu_{s}}\left(P_{s}\right)\right)\right|=\prod_{i=1}^{s} q^{d_{i}\left(\mu_{i}, \mu_{i}\right\rangle} b_{\mu_{i}}\left(q^{-d_{i}}\right)
$$

As $\left(\mu_{1}, \ldots, \mu_{s}\right)$ runs through all s-tuples of partitions which satisfy $l\left(\mu_{i}\right) \leqslant h_{i}$ for $i=1, \ldots, s$ and $\sum_{i=1}^{s}\left|\mu_{i}\right| d_{i}=n$, the matrix $J_{\mu_{1}}\left(P_{1}\right) \oplus J_{\mu_{2}}\left(P_{2}\right) \oplus \cdots \oplus J_{\mu_{s}}\left(P_{s}\right)$ runs through all isomorphism classes of representations of A of degree n. The number of representations of A which are isomorphic to a single representation $J_{\mu_{1}}\left(P_{1}\right) \oplus J_{\mu_{2}}\left(P_{2}\right) \oplus$
$\cdots \oplus J_{\mu_{s}}\left(P_{s}\right)$ is found to be $|G L(n, q)|$ divided by $\prod_{i=1}^{s} q^{d_{i}\left\langle\mu_{i}, \mu_{i}\right\rangle} b_{\mu_{i}}\left(q^{-d_{i}}\right)$. It is wellknown that the group $G L(n, q)$ has order $\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{n-1}\right)$. Thus we have proved the following theorem.

Theorem 3.1. If $E=E(x)$ is a monic polynomial over \mathbb{F}_{q} with factorisation given by (1.1), then the number of matrices θ of order n over \mathbb{F}_{q} such that $E(\theta)=0$ is

$$
N(E, n)=\sum_{\left(\mu_{1}, \cdots, \mu_{s}\right)} \frac{\prod_{1 \leqslant i \leqslant s}\left(q^{n}-q^{i}\right)}{\prod_{1 \leqslant n-1} q^{d_{i}\left(\mu_{i}, \mu_{i}\right)} b_{\mu_{i}}\left(q^{\left.-d_{i}\right)}\right.}
$$

where the summation is over all s-tuples of partitions $\left(\mu_{1}, \ldots, \mu_{s}\right) \in \mathcal{P}^{s}$ such that $l\left(\mu_{i}\right) \leqslant h_{i}$ for $i=1,2, \ldots, s$ and $\sum_{i=1}^{s}\left|\mu_{i}\right| d_{i}=n$.

4. The numbers $N\left(x^{3}-1, n\right)$ and $N\left(x^{4}-1, n\right)$

The numbers $N\left(x^{2}-1, n\right)$ and $N\left(x^{3}-1, n\right)$ were obtained by Hodges [1] and [2] respectively. Here we deduce $N\left(x^{3}-1, n\right)$ and $N\left(x^{4}-1, n\right)$ by using Theorem 3.1, and compare our results with those of Hodges.

For $k \geqslant 1$ we define $\psi_{k}(q)=\left(1-q^{-1}\right)\left(1-q^{-2}\right) \cdots\left(1-q^{-k}\right)$, with the convention that $\psi_{0}(q)=1$. Then the order of $G L(n, q)$ can be written as $q^{n^{2}} \psi_{n}(q)$. If $\mu=$ $\left(1^{k_{1}} 2^{k_{2}} \cdots\right) \in \mathcal{P}$, then $b_{\mu}\left(q^{-1}\right)=\prod_{i \geqslant 1} \psi_{k_{i}}(q)$.

Let us recall Hodges' results about $N\left(x^{3}-1, n\right)$. The factorisation of $x^{3}-1$ into irreducible polynomials over \mathbb{F}_{q} depends on the residue of q modulo 3 .

CASE 1. $q \equiv 0 \bmod 3$. Then $x^{3}-1=(x-1)^{3}$. Formula (6.1) of Hodges [2] implies that

$$
\begin{equation*}
N\left(x^{3}-1, n\right)=g_{n} \sum_{k_{1}+2 k_{2}+3 k_{3}=n} q^{-a(\pi)}\left(g_{k_{1}} g_{k_{2}} g_{k_{3}}\right)^{-1} \tag{4.1}
\end{equation*}
$$

where $a(\pi)=2 k_{1}\left(k_{2}+k_{3}\right)+k_{2}^{2}+4 k_{2} k_{3}+2 k_{3}^{2}$ and $g_{k}=g(k, 1)$ with $g(k, d)=$ $q^{d k^{2}} \prod_{i=1}^{k}\left(1-q^{-d i}\right)$. Note that if $\mu=\left(1^{k_{1}} 2^{k_{2}} \cdots\right)$ then $\langle\mu, \mu\rangle=\sum_{i \geqslant 1}\left(\sum_{j \geqslant i} k_{j}\right)^{2}$. Now, Theorem 3.1 implies that

$$
\begin{equation*}
N\left(x^{3}-1, n\right)=\sum_{k_{1}+2 k_{2}+3 k_{3}=n} \frac{q^{n^{2}} \psi_{n}(q)}{q^{\left(k_{1}+k_{2}+k_{3}\right)^{2}+\left(k_{2}+k_{3}\right)^{2}+k_{3}^{2}} \psi_{k_{1}}(q) \psi_{k_{2}}(q) \psi_{k_{3}}(q)} \tag{4.2}
\end{equation*}
$$

Note that $g(k, d)=q^{d k^{2}} \psi_{k}\left(q^{d}\right)$ and thus $g_{k}=q^{k^{2}} \psi_{k}(q)$. A simple transformation shows that (4.1) and (4.2) are equivalent.

Case 2. $q \equiv 1 \bmod 3$. Then $x^{3}-1=(x-1)(x-\alpha)(x-\beta)$ with $\alpha, \beta \in \mathbb{F}_{q}$ and $\alpha \neq \beta, \alpha \neq 1, \beta \neq 1$. Formula (6.2) of Hodges [2] shows that

$$
\begin{equation*}
N\left(x^{3}-1, n\right)=g_{n} \sum_{k_{1}+k_{2}+k_{3}=n}\left(g_{k_{1}} g_{k_{2}} g_{k_{3}}\right)^{-1} \tag{4.3}
\end{equation*}
$$

Theorem 3.1 implies that

$$
\begin{equation*}
N\left(x^{3}-1, n\right)=\sum_{k_{1}+k_{2}+k_{3}=n} \frac{q^{n^{2}} \psi_{n}(q)}{q^{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}} \psi_{k_{1}}(q) \psi_{k_{2}}(q) \psi_{k_{3}}(q)} \tag{4.4}
\end{equation*}
$$

It is easy to see that (4.3) and (4.4) are equivalent.
Case 3. $q \equiv 2 \bmod 3$. Then $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$ and $x^{2}+x+1$ is irreducible over $\mathbb{F}_{\boldsymbol{q}}$. Formula (6.3) in Hodges [2] shows that

$$
N\left(x^{3}-1, n\right)=g_{n} \sum_{k_{1}+2 k_{2}=n}\left(g\left(k_{1}, 1\right) g\left(k_{2}, 2\right)\right)^{-1}
$$

The above Theorem 3.1 implies that

$$
N\left(x^{3}-1, n\right)=\sum_{k_{1}+2 k_{2}=n} \frac{q^{n^{2}} \psi_{n}(q)}{q^{k_{1}^{2}+2 k_{2}^{2}} \psi_{k_{1}}(q) \psi_{k_{2}}\left(q^{2}\right)}
$$

It is clear that the above two formulae are equivalent.
The factorisation of $x^{4}-1$ into irreducible polynomials over \mathbb{F}_{q} depends on the residue of q modulo 4 . There are three cases to be considered.

CASE 1. $q \equiv 0$ or $2 \bmod 4$. Then $\operatorname{char} \mathbb{F}_{q}=2$, and so $x^{4}-1=(x-1)^{4}$. Thus Theorem 3.1 implies that

$$
N\left(x^{4}-1, n\right)=\sum_{k_{1}+2 k_{2}+3 k_{3}+4 k_{4}=n} \frac{q^{n^{2}} \psi_{n}(q)}{q^{t\left(k_{1}, k_{2}, k_{3}, k_{4}\right)} \psi_{k_{1}}(q) \psi_{k_{2}}(q) \psi_{k_{3}}(q) \psi_{k_{4}}(q)}
$$

where $t\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\left(k_{1}+k_{2}+k_{3}+k_{4}\right)^{2}+\left(k_{2}+k_{3}+k_{4}\right)^{2}+\left(k_{3}+k_{4}\right)^{2}+k_{4}^{2}$.
Case 2. $q \equiv 1 \bmod 4$. Then $x^{2}+1$ is reducible over \mathbb{F}_{q}, and $x^{2}+1=(x-\alpha)(x-\beta)$ with $\alpha, \beta \in \mathbb{F}_{q}$ and $\alpha \neq \beta, \alpha \neq \pm 1, \beta \neq \pm 1$. Thus $x^{4}-1=(x-1)(x+1)(x-\alpha)(x-\beta)$ in $\mathbb{F}_{q}[x]$, and hence Theorem 3.1 implies that

$$
N\left(x^{4}-1, n\right)=\sum_{k_{1}+k_{2}+k_{3}+k_{4}=n} \frac{q^{n^{2}} \psi_{n}(q)}{q^{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}+k_{4}^{2}} \psi_{k_{1}}(q) \psi_{k_{2}}(q) \psi_{k_{3}}(q) \psi_{k_{4}}(q)}
$$

CASE 3. $q \equiv 3 \bmod 4$. Then $x^{2}+1$ is irreducible over \mathbb{F}_{q}. Thus in $\mathbb{F}_{q}[x]$ we have $x^{4}-1=(x-1)(x+1)\left(x^{2}+1\right)$, and Theorem 3.1 implies that

$$
N\left(x^{4}-1, n\right)=\sum_{k_{1}+k_{2}+2 k_{3}=n} \frac{q^{n^{2}} \psi_{n}(q)}{q_{1}^{k_{1}^{2}+k_{2}^{2}+2 k_{3}^{2}} \psi_{k_{1}}(q) \psi_{k_{2}}(q) \psi_{k_{3}}\left(q^{2}\right)}
$$

References

[1] J. H. Hodges, 'The matrix equations $X^{2}-I=0$ over a finite field', Amer. Math. Monthly 65 (1958), 518-520.
[2] J.H. Hodges, 'Scalar polynomial equations for matrices over a finite field', Duke Math. J. 25 (1958), 291-296.
[3] I. G. Macdonald, Symmetric functions and Hall polynomials (Clarendon Press, Oxford, 1979).

School of Mathematics
University of New South Wales
Sydney NSW 2052
Australia
e-mail: hua@maths.unsw.edu.au

[^0]: Received 25th May, 1998
 I am indebted to Professor J. Brawley for bringing Hodges' work to my attention, and to my thesis advisor Peter Donovan for helpful comments.

