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POLYNOMIAL EQUATIONS FOR MATRICES OVER FINITE FIELDS

JlUZHAO HUA

Let E(x) be a monic polynomial over the finite field F , of q elements. A formula
for the number of n x n matrices 6 over F , satisfying E(9) — 0 is obtained
by counting the representations of the algebra Fq[x]/(E(x)) of degree n . This
simplifies a formula of Hodges.

1. INTRODUCTION AND NOTATION

Let ¥q denote the finite field of q elements, where q is a prime power. If E = E(x)

is a monic polynomial over ¥q, let N(E, n) be the number of matrices 6 of order n

with entries in ¥q such that E{8) — 0. In his paper [2], Hodges obtained a formula for

N(E, n), but this is not easy to handle in practice. The purpose of this note is to give

a simplification of Hodges' formula. This was achieved by counting the representations

of a finite dimensional algebra A; here A — Fq[x]/(E(x)).

A matrix representation of the algebra A of degree n is a homomorphism from A

to the full matrix algebra Mn{¥q), which consists of all n x n matrices over ¥q. Since

A is generated by a single element x, every matrix representation of A is specified by a

single matrix, that is, the image of x. It is clear that a square matrix 6 over F, satisfies

the equation E(9) = 0 if and only if the map x*-+ 6 defines a matrix representation of

A. Thus the number N(E,n) is exactly the number of representations of A of degree

n. In what follows, a representation always means a matrix representation.

Suppose that E can be factorised into the following form:

(1.1) E = PI1P£2...P*-,

where the Pi are distinct monic irreducible polynomials over ¥q, hi ^ 1 and deg Pi = di

for i = 1,. . . , s. Thus, the Chinese Remainder Theorem for ¥q[x] implies that

(1.2) A^¥q[x]/(P^) ©F,[x]/(pa
fc>) (B---(BFq[x}/(Ps

h>).

So, the representations of A are determined by the representations of the algebra of

the form ¥q[x]/(P(x)hj with P(x) being monic irreducible over ¥q.

Received 25th May, 1998
I am indebted to Professor J. Brawley for bringing Hodges' work to ray attention, and to my thesis
advisor Peter Donovan for helpful comments.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 $A2.00+0.00.

59

https://doi.org/10.1017/S0004972700032603 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032603


60 J. Hua [2]

2. REPRESENTATIONS OF ¥q[x]/(p(x)hj

Let P(x) = xd + a.d-\xd~l + • • • + a\x + a0 be a monic irreducible polynomial of

degree d over ¥q, and let h be a positive integer. Let B — ¥q[x]/(P(x) ) .

Let J(P) be the companion matrix of P, that is

/ 0
0

0

\-a0

1
0

0

0 ..
1

0 ..
- a 2 ..

0
0

1

-ad_

\

This has characteristic polynomial P(A). For any positive integer m ^ 1, let Jm(P)
denote the following block matrix:

Jm(P) =

/ J(P) Id 0 . . . 0 \
0 J{P) Id . . . 0

0 0 0 . . . Id

\ 0 0 0 ... J{P)J

which has m blocks of J{P) in the diagonal, where Id denotes the identity matrix of
order d.

The structure theorem for modules over principal ideal domains implies that every
indecomposable representation of B is isomorphic to some Jk{P) with 1 ^ k ^ h.
This is a modified Jordan canonical form theorem.

A partition A = (Ai, A2,...) is a finite sequence Ai ^ X2 ^ • • • of non-negative
integers. The Aj's are called the parts of A. The largest part of A is denote by Z(A),
and the integer | A | = Ai + A2 -I is called the weight of A. Let V denote the set of
all partitions including the unique partition of 0. Every partition A can be written in
the form (lfcl2fc23fc3 • • • ) , which means that there are k{ parts equal to i in A.

If n - (lfci2fc2 • • • rkr) is a partition, then we define

= diag(J1(F),- - ,UP), ,Jr(P))-
fcj copies copies fcr copies

Thus, J,x(P) is a diagonal block matrix with ki copies of Ji(P) in the diagonal. It is
clear that JM(P) has degree \n\d.

It follows from the Krull-Schmidt theorem that every representation of B is iso-
morphic to some J^P) with some unique fj. eV such that i(/i) ^ h.
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3. T H E NUMBER N(E,n)

The result in the last section and isomorphism (1.2) show that the isomorphism
classes of representations of A of degree n are in one-to-one correspondence with the

s
s-tuples (iii,... ,fis) € Vs such that l(y.i) ^ hi for i = 1 , . . . , s and £ iMtl^t = n;

t=i

here (fii,... ,fis) corresponds to the matrix JM1 (Pi) © J M ( P 2 ) ©•••© J M a (P s ) , where
we use M © N to mean the diagonal block matrix diag (M, N).

If M is a representation of A of degree n , then the general linear group GL(n,q),
which consists of all non-singular n x n matrices over ¥q, acts transitively on the set
of representations of A which are isomorphic to M. The stabiliser of M, which is
denote by Aut (M) , consists of all invertible matrices commuting with M. And so,
the number of elements in this orbit is equal to |GL(n ,g ) | / |Au t (M) | . As J(Pi) and
J(Pj) have no common eigenvalues for all i ^ j , an easy exercise shows that

/'Q 1 \ A i i W T / D \ /T\ /T\ T ( D \ \ rs^ A n f | 7 / D \ | /T\ /TN A * if- / T ^ D \ A
I O . l I / i U u I " / ! ! \ 1 / ^ ^ ^ ^ i /H , \ ± g l l — /A. LIU I t/ *^. l i J I I Ĵ7 vJ7 JVU.II I t/*(_ I J g / / •

For A = (Ai, A2, • • •) € V, we let A' = (Aj, A2, • • •) denote the partition conjugate
to A, that is, X'{ is equal to the number of parts no less than i in A, and we define
(A, A) = £ ( A i ) 2 - For example if A = (3,2,2,1) then A' = (4,3,1) and (A, A) =

42 + 32 + l 2 = 26. If A = (Ai,A2, •••) eV with At ̂  A2 > •••, following Macdonald [3]
we define n(A) = £ (i — 1)A*. It is a routine exercise to show that (A, A) = | A | + 2n(A)

for all A G V. Again following Macdonald, for A = (lfci2fc2 • • •) € V we define b\(q) =

Notice that for any /j. € V, A u t ( J ^ P ) ) is the centraliser of J^(P) in the group
GL(m,q), where m = | / x | d e g P . Formula (2.6) of Macdonald [3, p.139] shows that
| Aut(JM(P)) | = qd(M+2"(>iVbti(q-d), where d = d e g P . Thus, with notations intro-
duced as above, we have | Aut(JM(P)) | — qd^ti'^bli(q~d). And so, the above isomor-
phism (3.1) implies that

As ( M I , - - - IMS) runs through all s-tuples of partitions which satisfy l(fi{) ^ hi
s

for i = 1 , . . . , s and £ I MiMt = n, the matrix J M l (Pi ) ® J^PT) © • • -©^ . ( -Ps ) runs

through all isomorphism classes of representations of A of degree n . The number of
representations of A which are isomorphic to a single representation JMl (Pi)© J^ (P2)®
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•••®Jp, (Ps) is found to be | GL(n, q) | divided by ft 9di<Wl'*<>tw {q~di) . It is well-

known that the group GL(n, q) has order (qn - l)(qn - q) • • • ( ? " - qn~l). Thus we
have proved the following theorem.

THEOREM 3 . 1 . If E — E(x) is a monic polynomial over ¥q with factorisation

given by (1.1), then the number of matrices 9 of order n over Wq such that E(6) = 0

n («"-«*)

where the summation is over all s -tuples of partitions (HI,... ,/zs) € Vs such that
s

l(m) ^ hi for i = 1,2,. . . , s and £3 I vMi = n -
t=i

4. T H E NUMBERS N(X3 - l ,n) AND A^(X4 - l ,n )

The numbers N(x2 — l , n ) and iV(x3 — l ,n) were obtained by Hodges [1] and [2]
respectively. Here we deduce iV(a;3 — l,n) and AT(x4 - l ,n) by using Theorem 3.1,
and compare our results with those of Hodges.

For k ̂  1 we define tpk(q) = (l - 9 - 1 ) ( l - <7~2) • • • ( ! — 9~fc), with the convention

that ipo(<l) = 1- Then the order of GL(n,q) can be written as qn ipn(q)- If /* =

(1*12*2...) €V,thenbll(q-1)= I I i M ? ) •

Let us recall Hodges' results about JV(a;3 — l , n ) . The factorisation of z 3 - 1 into
irreducible polynomials over ¥q depends on the residue of q modulo 3.

C A S E 1. q = 0 mod 3. Then x3 - 1 = (x - I ) 3 . Formula (6.1) of Hodges [2] implies
that

(4.1) N(x3-l,n)=9n J
fc1+2fc2+3fc3=n

where O(TT) = 2k1(k2 + k3) + k\ + 4k2k3 + 2fc| and gk = g{k,l) with g(k,d) =

qdk2 f ] (1 - Q~di) • Note that if M = (l*»2*a • • •) then (M,M) = E ( E *i) • Now,
t=l iJPjJi '

Theorem 3.1 implies that

(4 2) iVfx3 - I n ) -

Note that g(k,d) — qdk ipk(qd) and thus gn = qh ipk{q)- A simple transformation
shows that (4.1) and (4.2) are equivalent.

https://doi.org/10.1017/S0004972700032603 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032603


[5] Polynomial equations for matrices 63

CASE 2. q = 1 mod 3. Then x3 - 1 = (x - l)(x - a)(x - /?) with a,/3 e ¥q and
a ^ /?, c t / 1 , P ^ 1. Formula (6.2) of Hodges [2] shows that

(4.3) N(x3-l,n)=gn V
As '

fcl+fc2+fc3=n

Theorem 3.1 implies that

(4.4) AT(x3-l,n)= £
fc1+fc2+fc3=n :

It is easy to see that (4.3) and (4.4) are equivalent.

CASE 3. q = 2 mod 3. Then x 3 - l = (x - l)(x2 + x + l) and x2+x + l is irreducible
over ¥q. Formula (6.3) in Hodges [2] shows that

N(x3-l,n)=gn ^
fc1+2fc2=n

The above Theorem 3.1 implies that

AT(z3-l,n) =

It is clear that the above two formulae are equivalent.
The factorisation of x4 — 1 into irreducible polynomials over ¥q depends on the

residue of q modulo 4. There are three cases to be considered.

CASE 1. q = 0 or 2 mod 4. Then char¥q = 2, and so x4 - 1 = (x - I)4. Thus
Theorem 3.1 implies that

i V ( x 4 - l , n ) = ^ ^ ^

where t(klt k2, k3, k4) = (&i + k2 + k3 + k4)
2 + (k2 + k3 + k4)

2 + (k3 + k4)
2 + k\.

CASE 2. q = 1 mod 4. Then x2 + 1 is reducible over Fg, and x2 +1 = (x - a)(x - P)
with a, 0 6 F, and a ̂  p, a ̂  ±1, P ̂  ±1 . Thus x 4 - l = (x - l)(x + l)(x - a){x - P)
in ¥q[x], and hence Theorem 3.1 implies that

J V ( x 4 - l , n ) = Y)
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C A S E 3. q = 3 mod 4. Then x2 + 1 is irreducible over F g . Thus in ¥q[x] we have
x4 - 1 = (x - l){x + 1) (x2 + l ) , and Theorem 3.1 implies that
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