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Abstract. Let T : [0, 1] → [0, 1] be an expanding Markov map with a finite partition. Let
μφ be the invariant Gibbs measure associated with a Hölder continuous potential φ. For
x ∈ [0, 1] and κ > 0, we investigate the size of the uniform approximation set

Uκ(x) := {y ∈ [0, 1] : for all N � 1, there exists n ≤ N , such that |T nx − y| < N−κ}.
The critical value of κ such that dimH Uκ(x) = 1 for μφ-almost every (a.e.) x is

proven to be 1/αmax, where αmax = − ∫
φ dμmax/

∫
log |T ′| dμmax and μmax is the

Gibbs measure associated with the potential − log |T ′|. Moreover, when κ > 1/αmax, we
show that for μφ-a.e. x, the Hausdorff dimension of Uκ(x) agrees with the multifractal
spectrum of μφ .
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1. Introduction and motivation
Denote by ‖ · ‖ the distance to the nearest integer. The famous Dirichlet theorem asserts
that for any real number x ∈ [0, 1] and N ≥ 1, there exists a positive integer n such that

‖nx‖ < 1
N

and n ≤ N . (1.1)

As a corollary, for any x ∈ [0, 1], there exist infinitely many positive integers n such that

‖nx‖ ≤ 1
n

. (1.2)
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Let ({nx})n≥0 be the orbit of 0 of the rotation by an irrational number x, where {nx} is
the fractional part of nx. From the dynamical perspective, the Dirichlet theorem and its
corollary describe the rate at which 0 is approximated by the orbit ({nx})n≥0 in a uniform
and asymptotic way, respectively.

In general, one can study the Hausdorff dimension of the set of points which are
approximated by the orbit ({nx})n≥0 with a faster speed. For the asymptotic approximation,
Bugeaud [8] and, independently, Schmeling and Troubetzkoy [28] proved that for any
x ∈ [0, 1] \ Q,

dimH{y ∈ [0, 1] : ‖nx − y‖ < n−κ for infinitely many n} = 1
κ

,

where dimH stands for the Hausdorff dimension. The corresponding uniform approxima-
tion problem was recently studied by Kim and Liao [18] who obtained the Hausdorff
dimension of the set

{y ∈ [0, 1] : for all N � 1, there exists n ≤ N , such that ‖nx − y‖ < N−κ }.

Naturally, one wonders about the analog results when the orbit ({nx})n≥0 is replaced
by an orbit (T nx)n≥0 of a general dynamical system ([0, 1], T ). For any κ > 0, Fan,
Schmeling, and Troubetzkoy [13] considered the set

Lκ(x) := {y ∈ [0, 1] : |T nx − y| < n−κ for infinitely many n}

of points that are asymptotically approximated by the orbit (T nx)n≥0 with a given speed
n−κ , where T is the doubling map. It seems difficult to investigate the size of Lκ(x) when
x is not a dyadic rational, as the distribution of (T nx)n≥0 is not as well studied as that
of ({nx})n≥0, see for example [1] for more details about the distribution of ({nx})n≥0.
However, from the viewpoint of ergodic theory, Fan, Schmeling, and Troubetzkoy [13]
obtained the Hausdorff dimension of Lκ(x) for μφ almost all points x, where μφ is the
Gibbs measure associated with a Hölder continuous potential φ. They found that the size
of Lκ(x) is closely related to the local dimension of μφ and to the first hitting time for
shrinking targets.

In their paper [21], Liao and Seuret extended the results of [13] to expanding Markov
maps. Later, Persson and Rams [24] considered more general piecewise expanding interval
maps, and proved some similar results to those of [13, 21]. These studies are also closely
related to the metric theory of a random covering set; see [3, 11, 12, 17, 29, 30, 32] and
references therein.

As a counterpart of the dynamically defined asymptotic approximation set Lκ(x), we
would like to study the corresponding uniform approximation set Uκ(x) defined as

Uκ(x) : = {y ∈ [0, 1] : for all N � 1, there exists n ≤ N , such that |T nx − y| < N−κ }

=
∞⋃
i=1

∞⋂
N=i

N⋃
n=1

B(T nx, N−κ),
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where B(x, r) is the open ball with center x and radius r , and T is an expanding Markov
map (see Definition 1.1).

As the studies on Lκ(x), we are interested in the sizes (Lebesgue measure and Hausdorff
dimension) of Uκ(x). By a simple argument, one can check that Uκ(x) \ {T nx}n≥0 ⊂
Lκ(x). Thus trivially, one has λ(Uκ(x)) ≤ λ(Lκ(x)) and dimH Uκ(x) ≤ dimH Lκ(x).
Here, λ denotes the Lebesgue measure on [0, 1].

Our first result asserts that for any κ > 0, the Lebesgue measure and the Hausdorff
dimension of Uκ(x) are constants almost surely with respect to a T -invariant ergodic
measure.

THEOREM 1.1. Let T be an expanding Markov map on [0, 1] and ν be a T -invariant
ergodic measure. Then for any κ > 0, both λ(Uκ(x)) and dimH Uκ(x) are constants almost
surely.

To further describe the size of Uκ(x) for almost all points, we impose a stronger
condition, the same as that of Fan, Schmeling, and Troubetzkoy [13] and Liao and
Seuret [21], that ν is a Gibbs measure. Precisely, let φ be a Hölder continuous potential
and μφ be its associated Gibbs measure. Let Bκ(x) := [0, 1] \ Uκ(x). We remark that the
sets Uκ(x) are decreasing (the sets Bκ(x) are increasing) with respect to κ . Then, we want
to ask, for μφ almost all points x, how the size of Uκ(x) (and Bκ(x)) changes with respect
to κ . We thus would like to answer the following questions.
(Q1) When Uκ(x) = [0, 1] for μφ-almost every (a.e.) x, what is the critical value

κφ := sup{κ ≥ 0 : Uκ(x) = [0, 1] for μφ-a.e. x}?
(Q2) When λ(Uκ(x)) = 1 for μφ-a.e. x, what is the critical value

κλφ := sup{κ ≥ 0 : λ(Uκ(x)) = 1 for μφ-a.e. x}?
(Q3) What are the Hausdorff dimensions of Uκ(x) and Bκ(x) for μφ-a.e. x? What is the

critical value

κHφ := sup{κ ≥ 0 : dimH(Uκ(x)) = 0 for μφ-a.e. x}?
In this paper, we answer these questions when T is an expanding Markov map of the

interval [0, 1] with a finite partition—an expanding Markov map, for short. We stress
that according to our definition, an expanding Markov map is mixing (see the following
Theorem 4.2 whose proof can be found in [2, 22, 23, 27]).

Definition 1.1. (Expanding Markov map) A transformation T : [0, 1] → [0, 1] is an
expanding Markov map with a finite partition provided that there is a partition of [0, 1]
into subintervals I (i) = (ai , ai+1) for i = 0, . . . , Q− 1 with endpoints 0 = a0 < a1 <

· · · < aQ = 1 satisfying the following properties.
(1) There is an integer n0 and a real number ρ such that |(T n0)′| ≥ ρ > 1.
(2) T is strictly monotonic and can be extended to a C2 function on each I (i).
(3) If I (j) ∩ T (I (k)) �= ∅, then I (j) ⊂ T (I (k)).
(4) There is an integer R such that I (j) ⊂ ⋃R

n=1 T
n(I (k)) for every k, j .

(5) For every k ∈ {0, 1, . . . , Q− 1}, sup(x,y,z)∈I (k)3(|T ′′(x)|/|T ′(y)||T ′(z)|) < ∞.

https://doi.org/10.1017/etds.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.10


162 Y. He and L. Liao

For a probability measure ν and for y ∈ [0, 1], we set

dν(y) := lim inf
r→0

log ν(B(y, r))
log r

and dν(y) := lim sup
r→0

log ν(B(y, r))
log r

,

which are called respectively the lower and upper local dimensions of ν at y. When
dν(y) = dν(y), their common value is denoted by dν(y), and is simply called the local
dimension of ν at y. Let Dν be the multifractal spectrum of ν defined by

Dν(s) := dimH{y ∈ [0, 1] : dν(y) = s} for all s ∈ R.

Our answers to questions (Q1)–(Q3) are stated in the following theorem. For an
expanding Markov map T and a Hölder continuous potential φ, we first define

α− : = min
ν∈Minv

− ∫
φ dν∫

log |T ′| dν , (1.3)

αmax : = − ∫
φ dμmax∫

log |T ′| dμmax
, (1.4)

α+ : = max
ν∈Minv

− ∫
φ dν∫

log |T ′| dν , (1.5)

where Minv is the set of T -invariant probability measures on [0, 1] and μmax is the
Gibbs measure associated with the potential − log |T ′|. By definition, it holds that
α− ≤ αmax ≤ α+. Indeed, the quantities α−, αmax, and α+ depend on T and φ. However,
for simplicity, we leave out the dependence unless the context requires specification.

The following main theorem tells us that the three critical values demanded in questions
(Q1)–(Q3) are 1/α+, 1/αmax, and 1/α−, correspondingly.

THEOREM 1.2. Let T be an expanding Markov map. Let φ be a Hölder continuous
potential and μφ be the corresponding Gibbs measure.
(1) The critical value κφ is 1/α+. Namely, for μφ-a.e.x, Uκ(x) = [0, 1] if 1/κ > α+,

and Uκ(x) �= [0, 1] if 1/κ < α+.
(2) The critical value κλφ is 1/αmax. Moreover, for μφ-a.e.x,

λ(Uκ(x)) = 1 − λ(Bκ(x)) =
{

0 if 1/κ ∈ (0, αmax),

1 if 1/κ ∈ (αmax, +∞).

(3) The critical value κHφ is 1/α−. Moreover, for μφ-a.e.x,

dimH Uκ(x) =
{
Dμφ(1/κ) if 1/κ ∈ (0, αmax] \ {α−},
1 if 1/κ ∈ (αmax, +∞).

(4) For μφ-a.e.x,

dimH Bκ(x) =
{

1 if 1/κ ∈ (0, αmax),

Dμφ(1/κ) if 1/κ ∈ [αmax, +∞) \ {α+}.
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Remark 1. Item (2) of Theorem 1.2 is valid in a wider setting (in particular, the Markov
assumption can be dropped) and is a direct consequence of [15, Theorem 3.2] and [19,
Proposition 1 and Theorem 5]. We will provide a self-contained proof for the reader’s
convenience.

Remark 2. It is worth noting that the multifractal spectrum Dμφ(s) vanishes if
s /∈ [α−, α+]. So if 1/κ < α−, then dimH Uκ(x) = 0 for μφ-a.e. x.

Remark 3. The cases 1/κ = α− and α+ are not covered by Theorem 1.2. However,
if the multifractal spectrum Dμφ is continuous at α− (respectively α+), we get that
dimH Uα−(x) = 0 (respectively dimH Bα+(x) = 0) for μφ-a.e. x. The situation becomes
more subtle if Dμφ(·) is discontinuous at α− (respectively α+). Our methods do not work
for obtaining the value of dimH Uα−(x) (respectively dimH Bα+(x) = 0) for μφ-a.e. x.

Let dimH ν be the dimension of the Borel probability measure ν defined by

dimH ν = inf{dimH E : E is a Borel set of [0, 1] and ν(E) > 0}.

Remark 4. As already discussed above, Uκ(x) \ {T nx}n≥0 ⊂ Lκ(x), one may wonder
whether the sets Uκ(x) and Lκ(x) are essentially different. More precisely, is it possible
that dimH Uκ(x) is strictly less than dimH Lκ(x)? Theorem 1.2 affirmatively answers this
question. Compared with the asymptotic approximation set Lκ(x), the structure of the
uniform approximation set Uκ(x) does have a notable feature. When 1/κ ∈ (0, dimH μφ) \
{α−}, the map 1/κ �→ dimH Uκ(x) agrees with the multifractal spectrum Dμφ(1/κ),
while the map 1/κ �→ dimH Lκ(x) is the linear function f (1/κ) = 1/κ independent of
the multifractal spectrum. Therefore, dimH Uκ(x) < dimH Lκ(x). See Figure 1 for an
illustration.

Remark 5. For the asymptotic approximation set Lκ(x), the most difficult part lies in
establishing the lower bound for dimH Lκ(x)when 1/κ < dimH μφ , for which a multifrac-
tal mass transference principle for Gibbs measure is applied, see [13, §8], [21, §5.2], and
[24, §6]. Specifically, since μφ(Lδ(x)) = 1 for all 1/δ > dimH μφ , the multifractal mass
transference principle guarantees the lower bound dimH Lκ(x) ≥ (dimH μφ)δ/κ for all
1/κ < dimH μφ . By letting 1/δ monotonically decrease to dimH μφ along a sequence (δn),
we get immediately the expected lower bound dimH Lκ(x) ≥ 1/κ for all 1/κ < dimH μφ .
However, recent progresses in uniform approximation [9, 18, 20, 34] indicate that there is
no mass transference principle for uniform approximation set. Therefore, we cannot expect
that dimH Uκ(x) decreases linearly with respect to 1/κ as dimH Lκ(x) does. The main new
ingredient of this paper is the difficult upper bound for dimH Uκ(x)when 1/κ < dimH μφ .
To overcome the difficulty, we fully develop and combine the methods in [13, 20].

To illustrate our main theorem, let us give some examples.

Example 1. Suppose that T is the doubling map and μφ := λ is the Lebesgue measure.
Applying Theorem 1.2, we have that for λ-a.e. x,
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FIGURE 1. The multifractal spectrum of μφ and the maps 1/κ �→ dimH Bκ (x), 1/κ �→ dimH Uκ (x), and
1/κ �→ dimH Lκ (x).

dimH Uκ(x) =
{

0 if 1/κ ∈ (0, 1),

1 if 1/κ ∈ (1, +∞).

The Lebesgue measure is monofractal and hence the corresponding multifractal spectrum
Dλ is discontinuous at 1. Theorem 1.2 fails to provide any metric statement for the set
U1(x) for λ-a.e. x. However, we can conclude that U1(x) is a Lebesgue null set for λ-a.e.
x from the Fubini theorem and a zero-one law established in [15, Theorem 2.1]. Further,
by Theorem 1.1, dimH U1(x) is Lebesgue almost surely a constant.

Some sets similar to U1(x) in Example 1 have recently been studied by Koivusalo,
Liao, and Persson [20]. In their paper, instead of the orbit (T nx)n≥0, they investigated
the sets of points uniformly approximated by an independent and identically distributed
sequence (ωn)n≥1. Specifically, they showed that with probability one, the lower bound of
the Hausdorff dimension of the set

{y ∈ [0, 1] : for all N � 1, there exists n ≤ N , such that |ωn − y| < 1/N}
is larger than 0.217 744 429 848 5995 [20, Theorem 5].

Example 2. Let p ∈ (1/2, 1). Suppose that T is the doubling map on [0, 1] and μp is the
(p, 1 − p)Bernoulli measure. It is known that the multifractal spectrumDμp is continuous
on (0, +∞) and attains its unique maximal value 1 at − log2(p(1 − p))/2. Theorem 1.2
then gives that for μp-a.e. x,
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dimH Uκ(x) =

⎧⎪⎪⎨
⎪⎪⎩
Dμp(1/κ) if 1/κ ∈

(
0, − log2(p(1−p))

2

)
,

1 if 1/κ ∈
[

− log2(p(1−p))
2 , +∞

)
.

Our paper is organized as follows. We start in §2 with some preparations on an
expanding Markov map, and then use ergodic theory to give a proof of Theorem 1.1.
Section 3 contains some recollections on multifractal analysis and a variational principle
which are essential in the proof of Theorem 1.2. Section 4 describes some relations among
hitting time, approximating rate, and local dimension of μφ . From these relations, we
then derive items (1), (2), and (4) of Theorem 1.2 in §5.1, as well as the lower bound of
dimH Uκ(x) in §5.2. In the same §5.2, we establish the upper bound of dimH Uκ(x), which
is arguably the most substantial part.

2. Basic definitions and the proof of Theorem 1.1
2.1. Covering of [0, 1] by basic intervals. Let T be an expanding Markov map as defined
in Definition 1.1. For each (i1i2 · · · in) ∈ {0, 1, . . . , Q− 1}n, we call

I (i1i2 · · · in) := I (i1) ∩ T −1(I (i2)) ∩ · · · ∩ T −n+1(I (in))

a basic interval of generation n. It is possible that I (i1i2 · · · in) is empty for some
(i1i2 · · · in) ∈ {0, 1, . . . , Q− 1}n. The collection of non-empty basic intervals of a given
generation n will be denoted by 
n. Let E denote the set of endpoints of basic intervals.
The set E is a countable set, so dimH E = 0. For any x ∈ [0, 1] \ E , we denote In(x) the
unique basic interval I ∈ 
n containing x.

By the definition of an expanding Markov map, we obtain the following bounded
distortion property on basic intervals: there is a constant L > 1 such that for any
x ∈ [0, 1] \ E ,

for any n ≥ 1, L−1|(T n)′(x)|−1 ≤ |In(x)| ≤ L|(T n)′(x)|−1, (2.1)

where |I | is the length of the interval I . Consequently, we can find two constants 1 < L1 <

L2 such that

for every I ∈ 
n, L−n
2 ≤ |I | ≤ L−n

1 . (2.2)

2.2. Proof of Theorem 1.1. Let us start with a simple but crucial observation.

LEMMA 2.1. Let T be an expanding Markov map. For any x ∈ [0, 1] and κ > 0, we have
Uκ(x) \ {T x} ⊂ Uκ(T x).

Proof. Let y ∈ Uκ(x) \ {T x} and let i be the smallest integer satisfying y /∈ B(T x, i−κ).
By the definition of Uκ(x), for any integer N > i large enough, there exists 1 ≤ n ≤ N

such that y ∈ B(T nx, N−κ). Moreover, the condition N > i implies that n �= 1, and
hence y ∈ B(T n−1(T x), N−κ). This gives that y ∈ Uκ(T x); therefore, Uκ(x) \ {T x} ⊂
Uκ(T x).
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Recall that a T -invariant measure ν is ergordic if and only if any T -invariant function
is constant almost surely. The proof of Theorem 1.1 falls naturally into two parts. We first
deal with the Lebesgue measure part.

Proof of Theorem 1.1: Lebesgue measure part. For any κ > 0, define the function gκ :
x �→ λ(Uκ(x)). We claim that gκ is measurable. In fact, it suffices to observe that

gκ(x) = lim
i→∞ lim

m→∞ λ

( m⋂
N=i

N⋃
n=1

B(T nx, N−κ)
)

and that, by the piecewise continuity of T n (n ≥ 1), the set{
x ∈ [0, 1] : λ

( m⋂
N=i

N⋃
n=1

B(T nx, N−κ)
)
> t

}

is measurable for any t ∈ R.
By Lemma 2.1, we see that λ(Uκ(T x)) ≥ λ(Uκ(x)), or equivalently, gκ(T x) ≥ gκ(x).

Since gκ is measurable, by the fact 0 ≤ gκ ≤ 1 and the invariance of ν, we have that gκ
is invariant with respect to ν, that is, gκ(T x) = gκ(x) for ν-a.e. x. In the presence of
ergodicity of ν, gκ is constant almost surely.

Proof of Theorem 1.1: Hausdorff dimension part. Fix κ > 0 and define the function fκ :
x �→ dimH Uκ(x). Again by Lemma 2.1, we see that fκ(T x) ≥ fκ(x). Proceeding in the
same way as the Lebesgue measure part, we get that fκ is constant almost surely provided
that fκ is measurable.

To show that fκ is measurable, it suffices to prove that for any t > 0, the set

A(t) := {x ∈ [0, 1] : fκ(x) < t} =
{
x ∈ [0, 1] : dimH

( ∞⋃
i=1

∞⋂
N=i

N⋃
n=1

B(T nx, N−κ)
)
< t

}

is measurable. Throughout the proof of this part, we will assume that the ball
B(T nx, N−κ) is closed. This makes the proof achievable and it does not change the
Hausdorff dimension of Uκ(x).

By the definition of Hausdorff dimension, a point x ∈ A(t) if and only if there exists
h ∈ N such that

Ht−1/h
( ∞⋃
i=1

∞⋂
N=i

N⋃
n=1

B(T nx, N−κ)
)

= 0,

or equivalently for all i ≥ 1,

Ht−1/h
( ∞⋂
N=i

N⋃
n=1

B(T nx, N−κ)
)

= 0. (2.3)

By the definition of Hausdorff measure, equation (2.3) holds if and only if for any j , k ∈ N,

Ht−1/h
1/j

( ∞⋂
N=i

N⋃
n=1

B(T nx, N−κ)
)
<

1
k

.
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Hence, we see that

A(t) =
∞⋃
h=1

∞⋂
i=1

∞⋂
j=1

∞⋂
k=1

{
x ∈ [0, 1] : Ht−1/h

1/j

( ∞⋂
N=i

N⋃
n=1

B(T nx, N−κ)
)
<

1
k

}

=:
∞⋃
h=1

∞⋂
i=1

∞⋂
j=1

∞⋂
k=1

Bh,i,j ,k .

If x ∈ Bh,i,j ,k , then there is a countable open cover {Up}p≥1 with 0 < |Up| < 1/j
satisfying

∞⋂
N=i

N⋃
n=1

B(T nx, N−κ) ⊂
∞⋃
p=1

Up and
∞∑
p=1

|Up|t−1/h <
1
k

. (2.4)

The set
⋂∞
N=i

⋃N
n=1 B(T

nx, N−κ) can be viewed as the intersection of a family of
decreasing compact sets {⋂l

N=i
⋃N
n=1 B(T

nx, N−κ)}l≥i , and hence there exists l0 ≥ i

satisfying

l0⋂
N=i

N⋃
n=1

B(T nx, N−κ) ⊂
∞⋃
p=1

Up,

which implies

Ht−1/h
1/j

( l0⋂
N=i

N⋃
n=1

B(T nx, N−κ)
)
<

1
k

.

We then deduce that

Bh,i,j ,k ⊂
∞⋃
l=i

{
x ∈ [0, 1] : Ht−1/h

1/j

( l⋂
N=i

N⋃
n=1

B(T nx, N−κ)
)
<

1
k

}
=:

∞⋃
l=i

Ch,i,j ,k,l .

(2.5)

If x ∈ Ch,i,j ,k,l for some l ≥ 1, then

Ht−1/h
1/j

( ∞⋂
N=i

N⋃
n=1

B(T nx, N−κ)
)

≤ Ht−1/h
1/j

( l⋂
N=i

N⋃
n=1

B(T nx, N−κ)
)
<

1
k

.

Hence, x ∈ Bi,j ,k,l and the reverse inclusion of equation (2.5) is proved.
Notice that T , T 2, . . . , T l are continuous on every basic interval of generation greater

than l. For any x ∈ Ch,i,j ,k,l , denote S(x) := ⋂l
N=i

⋃N
n=1 B(T

nx, N−κ). There is an open
cover (Vp)p≥1 of S(x) with 0 < |Vp| < 1/j and

∑
p |Vp|t−1/h < 1/k. Since S(x) is

compact, we see that the distance δ between S(x) and the complement of
⋃
p≥1 Vp is

positive. By the continuities of T , T 2, . . . , T l , there is some l1 := l1(δ) > l for which if
y ∈ Il1(x), then S(y) is contained in the δ/2-neighborhood of S(x). Thus, S(y) can also
be covered by

⋃
p≥1 Vp and Il1(x) ⊂ Ch,i,j ,k,l . Finally, Ch,i,j ,k,l is a union of some basic

intervals, which is measurable.
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Now, combining the equalities obtained above, we have

A(t) =
∞⋃
h=1

∞⋂
i=1

∞⋂
j=1

∞⋂
k=1

∞⋃
l=i

Ch,i,j ,k,l ,

which is a Borel measurable set.

3. Multifractal properties of Gibbs measures
In this section, we review some of the standard facts on multifractal properties of Gibbs
measures.

Definition 3.1. A Gibbs measure μφ associated with a potential φ is a probability measure
satisfying the following: there exists a constant γ > 0 such that

for any basic interval I ∈ 
n, γ−1 ≤ μφ(I)

eSnφ(x)−nP (φ)
≤ γ for every x ∈ I ,

where Snφ(x) = φ(x)+ · · · + φ(T n−1x) is the nth Birkhoff sum of φ at x, and P(φ) is
the topological pressure of φ defined by

P(φ) = lim
n→∞

1
n

log
∑
I∈
n

sup
x∈I

eSnφ(x).

The following theorem ensures the existence and uniqueness of invariant Gibbs
measure.

THEOREM 3.1. [6, 33] Let T : [0, 1] → [0, 1] be an expanding Markov map. Then for
any Hölder continuous function φ, there exists a unique T -invariant Gibbs measure μφ
associated with φ. Further, μφ is ergodic.

The Gibbs measureμφ also satisfies the quasi-Bernoulli property (see [21, Lemma 4.1]),
that is, for any n > k ≥ 1, for any basic interval I (i1 · · · in) ∈ 
n, we have

γ−3μφ(I
′)μφ(I ′′) ≤ μφ(I) = μφ(I

′ ∩ T −kI ′′) ≤ γ 3μφ(I
′)μφ(I ′′), (3.1)

where I ′ = I (i1 · · · ik) ∈ 
k and I ′′ = I (ik+1 · · · in) ∈ 
n−k . It follows immediately
that

for any m ≥ k, μφ(I
′ ∩ T −mU) ≤ γ 3μφ(I

′)μφ(U), (3.2)

where U is an open set in [0, 1].
We adopt the convention that φ is normalized, that is, P(φ) = 0. If it is not the case, we

can replace φ by φ − P(φ).
Now, let us recall some standard facts on multifractal analysis which aims at studying

the multifractal spectrumDμφ . Some multifractal analysis results were summarized in [21]
and we present them as follows. The proofs can also be found in Refs. [4, 7, 10, 25, 26, 31].

THEOREM 3.2. [21, Theorem 2.5] Let T be an expanding Markov map. Let φ be a Hölder
continuous potential and μφ be the corresponding Gibbs measure. Then, the following
hold.
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(1) The function Dμφ of μφ is a concave real-analytic map on the interval (α−, α+),
where α− and α+ are defined in equations (1.3) and (1.5), respectively.

(2) The spectrum Dμφ reaches its maximum value 1 at αmax defined in equation (1.4).
(3) The graph ofDμφ and the line with equation y = x intersect at a unique point which

is (dimH μφ , dimH μφ). Moreover, dimH μφ satisfies

dimH μφ = − ∫
φ dμφ∫

log |T ′| dμφ .

PROPOSITION 3.3. [21, §2.3] For every q ∈ R, there is a unique real number ηφ(q) such
that the topological pressure P(−ηφ(q) log |T ′| + qφ) is equal to 0. Further, ηφ(q) is
real-analytic and concave.

Remark 6. For simplicity, denote byμq the T -invariant Gibbs measure associated with the
potential −ηφ(q) log |T ′| + qφ. Certainly, ηφ(0) = 1 and the corresponding measure μ0

is associated with the potential − log |T ′|. By the bounded distortion property in equation
(2.1), the Gibbs measure μ0, coinciding with μmax, is strongly equivalent to the Lebesgue
measure λ, which means that there exists a constant c ≥ 1 such that for every measurable
set E, we have

c−1μ0(E) ≤ λ(E) ≤ cμ0(E).

For every q ∈ R, we introduce the exponent

α(q) = − ∫
φ dμq∫

log |T ′| dμq . (3.3)

PROPOSITION 3.4. [21, §2.3] Letμq and α(q) be as above. The following statements hold.
(1) The Gibbs measure μq is supported by the level set {y : dμφ (y) = α(q)} and

Dμφ(α(q)) = dimH μq = ηφ(q)+ qα(q).
(2) The map α(q) is decreasing, and

lim
q→+∞ α(q) = α−, lim

q→−∞ α(q) = α+,

α(1) = dimH μφ , α(0) = αmax.

(3) The inverse of α(q) exists and is denoted by q(α). Moreover, q(α) < 0 if α ∈
(αmax, α+), and q(α) ≥ 0 if α ∈ (α−, αmax].

Recall that E is the set of endpoints of basic intervals which has Hausdorff dimension 0.
For a measure ν and a point y ∈ [0, 1] \ E , define the lower and upper Markov pointwise
dimensions respectively by

Mν(y) := lim inf
n→∞

log ν(In(y))
log |In(y)| , Mν(y) := lim sup

n→∞
log ν(In(y))
log |In(y)| .

When Mν(y) = Mν(y), their common value is denoted by Mν(y). By equations (2.1) and
(2.2), we have

dν(y) ≤ Mν(y),
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which implies the inclusions

{y : dν(y) = s} \ E ⊂ {y : dν(y) ≥ s} \ E ⊂ {y : dν(y) ≥ s} \ E ⊂ {y : Mν(y) ≥ s}.
(3.4)

By the Gibbs property of μφ and the bounded distortion property on basic intervals in
equation (2.1), the definitions of Markov pointwise dimensions can be reformulated as

Mμφ(y) = lim sup
n→∞

Snφ(y)

Sn(− log T ′)(y)
and Mμφ(y) = lim

n→∞
Snφ(y)

Sn(− log T ′)(y)
. (3.5)

This allows us to derive the following lemma, which is an alternative version of a
proposition due to Jenkinson [16, Proposition 2.1]. We omit its proof since the argument
is similar.

LEMMA 3.5. Let T be an expanding Markov map. Let φ be a Hölder continuous potential
and μφ be the corresponding Gibbs measure. Then,

sup
y∈[0,1]

Mμφ(y) = sup
y : Mμφ

(y) exists
Mμφ(y) = max

ν∈Minv

− ∫
φ dν∫

log |T ′| dν = α+.

In particular, for any s > α+,

{y : dμφ (y) = s} = {y : dμφ (y) ≥ s} = ∅.

We finish the section with a variational principle.

LEMMA 3.6. Let T be an expanding Markov map. Let φ be a Hölder continuous potential
and μφ be the corresponding Gibbs measure.
(1) For every s < αmax, dimH{y : dμφ (y) ≤ s} = dimH{y : dμφ (y) ≤ s} = Dμφ(s).

(2) For every s ∈ (αmax, +∞) \ α+, dimH{y : dμφ (y) ≥ s} = dimH{y : dμφ (y) ≥ s} =
Dμφ(s).

Proof. (1) Note that

{y : dμφ (y) = s} ⊂ {y : dμφ (y) ≤ s} ⊂ {y : dμφ (y) ≤ s}.
In [21, Proposition 2.8], the leftmost set and the rightmost set were shown to have the same
Hausdorff dimension. This together with the above inclusions completes the proof of the
first point of the lemma.

(2) When T is the doubling map, the statement was formulated by Fan, Schmeling,
and Trobetzkoy [13, Theorem 3.3]. Our proof follows their idea closely, we include it for
completeness.

By Lemma 3.5, we can assume without loss of generality that s < α+. The inclusions
in equation (3.4) imply the following inequalities:

dimH{y : dμφ (y) = s} ≤ dimH{y : dμφ (y) ≥ s} ≤ dimH{y : Mμφ(y) ≥ s}.
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We turn to prove the reverse inequalites. By Proposition 3.4 and the condition s > αmax,
there exists a real number qs := q(s) < 0 such that

s = − ∫
φ dμqs∫

log |T ′| dμqs
and Dμφ(s) = dimH μqs = ηφ(qs)+ qss,

where μqs is the Gibbs measure associated with the potential −ηφ(qs) log |T ′| + qsφ.
Now let y be any point such thatMμφ(y) ≥ s. By Proposition 3.3, the topological pressure
P(−ηφ(qs) log |T ′| + qsφ) is 0. Then, we can apply the Gibbs property of μqs and
equation (2.1) to yield

Mμqs
(y) = lim inf

n→∞
log eSn(−ηφ(qs) log |T ′|+qsφ)(y)

log |In(y)|
= lim inf

n→∞

(−ηφ(qs) log |(T n)′(y)|
log |In(y)| + qs · log eSnφ(y)

log |In(y)|
)

= ηφ(qs)+ qs · lim sup
n→∞

log μφ(In(y))
log |In(y)|

= ηφ(qs)+ qsMμφ (y)

≤ ηφ(qs)+ qss = Dμφ(s),

where the inequality holds because qs < 0.
Finally, Billingsley’s lemma [5, Lemma 1.4.1] gives

dimH{y : Mμφ(y) ≥ s} ≤ dimH{y : Mμqs
(y) ≤ Dμφ(s)} ≤ Dμφ(s)

= dimH{y : dμφ (y) = s}.

4. Covering questions related to hitting time and local dimension
In §4.1, we reformulate the uniform approximation set Uκ(x) in terms of hitting time.
Thereafter, we relate the first hitting time for shrinking balls to local dimension in §4.2.

4.1. Covering questions and hitting time. Denote O+(x) := {T nx : n ≥ 1}.
Definition 4.1. For every x, y ∈ [0, 1] and r > 0, define the first hitting time of the orbit
of x into the ball B(y, r) by

τr (x, y) := inf{n ≥ 1 : T nx ∈ B(y, r)}.
Set

R(x, y) := lim inf
r→0

log τr (x, y)
− log r

and R(x, y) := lim sup
r→0

log τr(x, y)
− log r

.

For convenience, when O+(x) ∩ B(y, r) = ∅, we set τr (x, y) = ∞ and R(x, y) =
R(x, y) = ∞. If R(x, y) = R(x, y), we denote the common value by R(x, y).

For any ball B ⊂ [0, 1], define the first hitting time τ(x, B) by

τ(x, B) := inf{n ≥ 1 : T nx ∈ B}.
Similarly, we set τ(x, B) = ∞ when O+(x) ∩ B = ∅.
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The following lemma exhibits a relation between Uκ(x) and hitting time.

LEMMA 4.1. For any κ > 0, we have{
y ∈ [0, 1] : R(x, y) >

1
κ

}
⊂ Bκ(x) ⊂

{
y ∈ [0, 1] : R(x, y) ≥ 1

κ

}
,{

y ∈ [0, 1] : R(x, y) <
1
κ

}
⊂ Uκ(x) ⊂

{
y ∈ [0, 1] : R(x, y) ≤ 1

κ

}
.

Proof. The top left and bottom right inclusions imply one another. Let us prove the bottom
right inclusion. Suppose that y ∈ Uκ(x). Then for all large enough N , there is an n ≤ N

such that T nx ∈ B(y, N−κ). Thus, τN−κ (x, y) ≤ N for all N large enough, which implies
R(x, y) ≤ 1/κ .

The top right and bottom left inclusions imply one another. So, it remains to prove the
bottom left inclusion. Consider y such that R(x, y) < 1/κ . If y ∈ O+(x) with y = T n0x

for some n0 ≥ 1, then the system

|T nx − y| = |T nx − T n0x| < N−κ and 1 ≤ n ≤ N

always has a trivial solution n = n0 for all N ≥ n0. Therefore, y ∈ Uκ(x). Now assume
that y /∈ O+(x). By the definition of R(x, y), there is a positive real number r0 < 1 such
that

τr (x, y) < r−1/κ for all 0 < r < r0.

Denote nr := τr(x, y) for all 0 < r < r0. Since y /∈ O+(x), the family of positive integers
{nr : 0 < r < r0} is unbounded. For each N > r

−1/κ
0 , denote t := N−κ . The definition of

nt implies that

T nt x ∈ B(y, t) = B(y, N−κ).

We conclude y ∈ Uκ(x) by noting that nt < t−1/κ = N .

4.2. Relation between hitting time and local dimension. As Lemma 4.1 shows, we need
to study the hitting time R(x, y) of the Gibbs measure μφ . We will prove that the hitting
time is related to local dimension when the measure is exponential mixing.

Definition 4.2. A T -invariant measure ν is exponential mixing if there exist two constants
C > 0 and 0 < β < 1 such that for any ball A and any Borel measurable set B,

|ν(A ∩ T −nB)− ν(A)ν(B)| ≤ Cβnν(B). (4.1)

THEOREM 4.2. [2, 22, 23, 27] The T -invariant Gibbs measure μφ associated with a
Hölder continuous potential φ of an expanding Markov map T is exponential mixing.

The exponential mixing property allows us to apply the following theorem which
describes a relation between hitting time and local dimension of invariant measure.

https://doi.org/10.1017/etds.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.10


Uniform approximation problems of expanding Markov maps 173

THEOREM 4.3. [14] Let (X, T , ν) be a measure-theoretic dynamical system. If ν is
superpolynomial mixing and if dν(y) exists, then for ν-a.e.x, we have

R(x, y) = dν(y).

It should be noticed that the superpolynomial mixing property is much weaker than the
exponential mixing property.

Now, we turn to the study of the expanding Markov map T on the interval [0, 1]. An
application of Fubini’s theorem yields the following corollary.

COROLLARY 4.4. [21, Corollary 3.8] Let T be an expanding Markov map. Let μφ and μψ
be two T -invariant Gibbs probability measures on [0, 1] associated with Hölder potentials
φ and ψ , respectively. Then,

for μφ × μψ -a.e. (x, y), R(x, y) = dμφ (y) = − ∫
φ dμψ∫

log |T ′| dμψ .

5. The studies of Bκ(x) and Uκ(x)
5.1. The study of Bκ(x). In this subsection, we are going to prove Theorem 1.2 except
for item (3). Let us start with the lower bound for dimH Bκ(x).

LEMMA 5.1. Let T be an expanding Markov map. Let φ be a Hölder continuous potential
and μφ be the corresponding Gibbs measure. For any κ > 0, the following hold.
(a) If 1/κ ∈ (0, αmax), then λ(Bκ(x)) = 1 for μφ-a.e.x.
(b) If 1/κ ∈ [αmax, +∞) \ {α+}, then dimH Bκ(x) ≥ Dμφ(1/κ) for μφ-a.e.x.

Proof. (a) Let 1/κ ∈ (0, αmax). As already observed in §3, the Gibbs measure μ0

associated with log |T ′| is strongly equivalent to the Lebesgue measure λ. Thus, a set
F has full μ0-measure if and only if F has full λ-measure. Corollary 4.4 implies that

for μφ × μ0-a.e. (x, y), R(x, y) = dμφ (y) = − ∫
φ dμ0∫

log |T ′| dμ0
= αmax.

By Fubini’s theorem, for μφ-a.e. x, the set {y : R(x, y) = dμφ (y) = αmax} has full
μ0-measure. Then for μφ-a.e. x, we have

μ0({y : R(x, y) > 1/κ}) ≥ μ0({y : R(x, y) = dμφ (y) = αmax}) = 1.

By Lemma 4.1, we arrive at the conclusion.
(b) By Lemma 3.5, the level set {y : dμφ (y) = 1/κ} is empty if 1/κ > α+. Thus,

Dμφ(1/κ) = 0 and therefore dimH Bκ(x) ≥ 0 = Dμφ(1/κ) trivially holds for all
1/κ > α+.

Let 1/κ ∈ [αmax, α+). We can suppose that αmax �= α+, since otherwise [αmax, α+) =
∅ and there is nothing to prove. For any s ∈ (1/κ , α+), by Proposition 3.4, there exists a
real number qs := q(s) such that

s = − ∫
φ dμqs∫

log |T ′| dμqs
and μqs ({y : dμφ (y) = s}) = 1.
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Applying Corollary 4.4, we obtain

for μφ × μqs -a.e. (x, y), R(x, y) = dμφ (y) = − ∫
φ dμqs∫

log |T ′| dμqs
= s.

It follows from Fubini’s theorem that, for μφ-a.e. x, the set {y : R(x, y) = dμφ (y) = s}
has full μqs -measure. Consequently, for μφ-a.e. x,

dimH{y : R(x, y) > 1/κ} ≥ dimH{y : R(x, y) = dμφ (y) = s}
≥ dimH μqs = Dμφ(s).

We conclude by noting that s ∈ (1/κ , α+) is arbitrary and Dμφ is continuous on
[αmax, α+).

We are left to determine the upper bound of dimH Bκ(x). The following four lemmas
were initially proved by Fan, Schmeling, and Troubetzkoy [13] for the doubling map, and
later by Liao and Sereut [21] in the context of expanding Markov maps. We follow their
ideas and demonstrate more general results. In Lemmas 5.2–5.4, we will not assume that
T is an expanding Markov map.

LEMMA 5.2. Let T be a map on [0, 1] and ν be a T -invariant exponential mixing measure.
LetA1, A2, . . . , Ak be k subsets of [0, 1] such that eachAi is a union of at mostm disjoint
balls. Then,

k∏
i=1

(
1 − mCβd

ν(Ai)

)
≤ ν(A1 ∩ T −dA2 ∩ · · · ∩ T −d(k−1)Ak)

ν(A1)ν(A2) · · · ν(Ak) ≤
k∏
i=1

(
1 + mCβd

ν(Ai)

)
,

where β is the constant appearing in equation (4.1).

Proof. Since each Ai is a union of at most m disjoint balls, the exponential mixing
property of ν gives that, for every d ≥ 1,

|ν(Ai ∩ T −dB)− ν(Ai)ν(B)| ≤ mCβdν(B), (5.1)

where B is a Borel measurable set. In particular, defining

Bi = Ai ∩ T −dAi+1 ∩ · · · ∩ T −d(k−i)Ak ,

we get, for any i < k,

|ν(Ai ∩ T −d(Bi+1))− ν(Ai)ν(Bi+1)| ≤ mCβdν(Bi+1).

The above inequality can be written as

1 − mCβd

ν(Ai)
≤ ν(Ai ∩ T −dBi+1)

ν(Ai)ν(Bi+1)
≤ 1 + mCβd

ν(Ai)
.

Multiplying over all i ≤ k and using the identity

Bi+1 = Ai+1 ∩ T −dBi+2,
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we have
k∏
i=1

(
1 − mCβd

ν(Ai)

)
≤ ν(A1 ∩ T −dA2 ∩ · · · ∩ T −d(k−1)Ak)

ν(A1)ν(A2) · · · ν(Ak) ≤
k∏
i=1

(
1 + mCβd

ν(Ai)

)
.

The following lemma illustrates that balls with small local dimension for exponential
mixing measure are hit with big probability.

LEMMA 5.3. Let T be a map on [0, 1] and ν be a T -invariant exponential mixing measure.
Let h and ε be two positive real numbers. For each n ∈ N, consider N ≤ 2n distinct balls
B1, . . . , BN satisfying |Bi | = 2−n and ν(Bi) ≥ 2−n(h−ε) for all 1 ≤ i ≤ N . Set

Cn,N ,h = {x ∈ [0, 1] : there exists 1 ≤ i ≤ N such that τ(x, Bi) ≥ 2nh}.
Then there exists an integer nh ∈ N independent of N such that

for every n ≥ nh, ν(Cn,N ,h) ≤ 2−n.

Proof. For each i ≤ N , let

�i := {x ∈ [0, 1] : for all k ≤ 2nh, T kx /∈ Bi}.
Obviously, we have Cn,N ,h = ⋃N

i=1 �i , so it suffices to bound from above each ν(�i). Pick
an integer ω such that ω > logβ−1 2h. Let k = [2nh/(ωn)] be the integer part of 2nh/(ωn).
Then,

�i ⊂
k⋂
j=1

{x ∈ [0, 1] : T jωnx /∈ Bi} =
k⋂
j=1

T −jωnBci .

Since ω > logβ−1 2h, there is an nh large enough such that for any n ≥ nh,

2Cβωn < 2−nh−1 ≤ ν(Bi)/2 (5.2)

and

2n+1 exp
(−2nε

2ωn

)
≤ 2−n. (5.3)

Now applying Lemma 5.2 to Al = Bi for all l ≤ N and to m = 2, we conclude from
equation (5.2) that

ν(�i) ≤ ν(

k⋂
j=1

T −jωnBci ) ≤ (ν(Bci )+ 2Cβωn)k

≤ (1 − ν(Bi)/2)k

≤ (1 − 2−n(h−ε)−1)2
nh/(ωn)−1

= (1 − 2−n(h−ε)−1)−1 exp
(

2nh log(1 − 2−n(h−ε)−1)

ωn

)

≤ 2 exp
(−2nε

2ωn

)
.
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By equation (5.3),

ν(Cn,N ,h) ≤
N∑
i=1

ν(Bi) ≤ 2n+1 exp
(−2nε

2ωn

)
≤ 2−n.

Let us recall that {y : R(x, y) ≥ s} is a random set depending on the random element x,
but {y : dμφ (y) ≥ s} is independent of x. The following lemma reveals a connection
between the random set {y : R(x, y) ≥ s} and the deterministic set {y : dμφ (y) ≥ s}.
LEMMA 5.4. Let T be a map on [0, 1] and ν be a T -invariant exponential mixing measure.
Let s ≥ 0. Then for ν-a.e.x,

{y : R(x, y) ≥ s} ⊂ {y : dν(y) ≥ s}.
Proof. The case s = 0 is obvious. We therefore assume s > 0. For any integer n ≥ 1, let

Rn,s,ε(x) = {y : τ(x, B(y, 2−n+1)) ≥ 2n(s−ε)},
En,s,ε = {y : ν(B(y, 2−n)) ≤ 2−n(s−2ε)}.

By definition, y ∈ {y : R(x, y) ≥ s} if and only if for any ε > 0, there exist infinitely
many integers n such that

log τ(x, B(y, 2−n+1))

log 2n
≥ s − ε.

Hence, we have

{y : R(x, y) ≥ s} =
⋂
ε>0

lim sup
n→∞

Rn,s,ε(x). (5.4)

Similarly,

{y : dμφ (y) ≥ s} =
⋂
ε>0

lim sup
n→∞

En,s,ε .

Thus, it is sufficient to prove that, for ν-a.e. x, there exists some integer n(x) such that

for all n ≥ n(x), Rn,s,ε(x) ⊂ En,s,ε , (5.5)

or equivalently,

for all n ≥ n(x), Ecn,s,ε(x) ⊂ Rc
n,s,ε . (5.6)

Notice that Ecn,s,ε can be covered by N ≤ 2n balls with center in Ecn,s,ε and radius 2−n.
Let Fn,s,ε := {B1, B2, . . . , BN } be the collection of these balls. By definition, we have
ν(Bi) ≤ 2−n(s−2ε). Applying Lemma 5.3 to the collection Fn,s,ε of balls and to h = s − ε,
we see that∑

n≥nh
ν({x : there exists B ∈ Fn,s,ε such that τ(x, B) ≥ 2n(s−ε)}) ≤

∑
n≥nh

2−n < ∞.

By the Borel–Cantelli lemma, for ν-a.e. x, there exists an integer n(x) such that

for all n ≥ n(x), for all B ∈ Fn,s,ε , τ(x, B) < 2n(s−ε).
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If y ∈ B for some B ∈ Fn,s,ε and n ≥ n(x), then B ⊂ B(y, 2−n+1), which implies that
τ(x, B(y, 2−n+1)) < τ(x, B). We then deduce that B is included in Rc

n,s,ε . This yields
Ecn,s,ε ⊂ Rc

n,s,ε , which is what we want.

Remark 7. With the notation in Lemma 5.4, proceeding with the same argument as
equation (5.4), we have

{y : R(x, y) ≥ s} =
⋂
ε>0

lim inf
n→∞ Rn,s,ε(x) and {y : dμφ (y) ≥ s} =

⋂
ε>0

lim inf
n→∞ En,s,ε .

It then follows from equation (5.5) that for ν-a.e. x,

{y : R(x, y) ≥ s} ⊂ {y : dν(y) ≥ s}.
Applying Lemma 5.4 to the Gibbs measure μφ , we get the following upper bound.

LEMMA 5.5. Let T be an expanding Markov map. Let φ be a Hölder continuous potential
and μφ be the corresponding Gibbs measure. Suppose 1/κ ≥ αmax. Then for μφ-a.e.x,

dimH Bκ(x) ≤ Dμφ(1/κ).

Moreover, if 1/κ > α+, then for μφ-a.e.x,

Bκ(x) = ∅.

Proof. Recall that Lemma 4.1 asserts that

Bκ(x) ⊂ {y : R(x, y) ≥ 1/κ} ∪ O+(x).

A direct application of Proposition 3.6 and Lemma 5.4 yields the first conclusion.
The second conclusion follows from Lemmas 3.5 and 4.1.

Collecting the results obtained in this subsection, we can prove Theorem 1.2 except for
item (3).

Proof of the items (1), (2), and (4) of Theorem 1.2. Combining with Lemmas 5.1 and 5.5,
we get the desired result.

5.2. The study of Uκ(x). In this subsection, we prove the remaining part of Theorem 1.2,
that is, item (3). We begin by showing the lower bound of dimH Uκ(x), which may be
proved in much the same way as Lemma 5.1.

LEMMA 5.6. Let T be an expanding Markov map. Let φ be a Hölder continuous potential
and μφ be the corresponding Gibbs measure.
(a) If 1/κ ∈ (0, αmax] \ {α−}, then dimH Uκ(x) ≥ Dμφ(1/κ) for μφ-a.e.x.
(b) If 1/κ ∈ (αmax, +∞), then dimH Uκ(x) = 1 for μφ-a.e.x.

Proof. (a) By Lemma 3.6, the Hausdorff dimension of the level set {y : dμφ (y) = 1/κ} is
zero if 1/κ < α−. Therefore, dimH Uκ(x) ≥ 0 = Dμφ(1/κ).

The remaining case 1/κ ∈ (α−, αmax] holds by the same reasoning as proving
Lemma 5.1(b).
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(b) Observe that the full Lebesgue measure statement implies the full Hausdorff
dimension statement. It follows from item (2) of Theorem 1.2 that dimH Uκ(x) = 1 when
1/κ ∈ (αmax, +∞).

It is left to show the upper bound of dimH Uκ(x)when 1/κ ≤ αmax. The proof combines
the methods developed in [13, §7] and [20, Theorem 8]. Heuristically, the larger the local
dimension of a point is, the less likely it is to be hit.

LEMMA 5.7. Let T be an expanding Markov map. Let φ be a Hölder continuous potential
and μφ be the corresponding Gibbs measure. Let 1/κ ≤ αmax, then for μφ-a.e.x,

dimH Uκ(x) ≤ Dμφ(1/κ).

Proof. The proof will be divided into two steps.
Step 1. Given any a > 1/κ , we are going to prove that

dimH(Uκ(x) ∩ {y : dμφ (y) > a}) = 0 for μφ-a.e. x. (5.7)

Suppose now that equation (5.7) is established. Let (am)m≥1 be a monotonically decreasing
sequence of real numbers converging to 1/κ . Applying equation (5.7) to each am yields
a full μφ-measure set corresponding to am. Then, by taking the intersection of these
countable full μφ-measure sets, we conclude from the countable stability of Hausdorff
dimension that

dimH(Uκ(x) ∩ {y : dμφ (y) > 1/κ}) = 0 for μφ-a.e. x.

As a result, by Lemma 3.6, for μφ-a.e. x,

dimH Uκ(x) = dimH(Uκ(x) ∩ ({y : dμφ (y) ≤ 1/κ} ∪ {y : dμφ (y) > 1/κ}))
= dimH(Uκ(x) ∩ {y : dμφ (y) ≤ 1/κ})
≤ dimH{y : dμφ (y) ≤ 1/κ} = Dμφ(1/κ).

This clearly yields the lemma.
Choose b ∈ (1/κ , a). Put An := {y : μφ(B(y, r)) < rb for all r < 2−n}. By the

definition of dμφ (y), we have

{y : dμφ (y) > a} ⊂
∞⋃
n=1

An.

Thus, equation (5.7) is reduced to showing that for any n ≥ 1,

dimH(Uκ(x) ∩ An) = 0 for μφ-a.e. x. (5.8)

Step 2. The next objective is to prove equation (5.8).
Fix n ≥ 1. Let ε > 0 be arbitrary. Choose a large integer l ≥ n with

12 × 2−κl < 2−n and γ 312b2(1−bκ)l < ε, (5.9)

where the constant γ is defined in equation (3.1). Let θj = [κj logL1
2] + 1, where L1

is given in equation (2.2). Then, by equation (2.2), the length of each basic interval of
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generation θj is smaller than 2−κj . Recall that E is the set of endpoints of basic intervals
which is countable. For any x ∈ [0, 1] \ E , define

Ij (x) :=
⋃

J∈
θj : d(Iθj (x),J )<2−κj
J ,

where d(·, ·) is the Euclidean metric. Clearly, Ij (x) covers the ball B(x, 2−κj ) and is
contained in B(x, 3 × 2−κj ). Moreover, if Iθj (x) = Iθj (y), then Ij (x) = Ij (y). With the
notation Ij (x), we consider the set

Gl,i (x) = An ∩
( i⋂
j=l

2j⋃
k=1

Ij (T kx)
)

.

The advantage of using Ij (x) rather than B(x, 2−κj ) is that the map x �→ Gl,i (x) is
constant on each basic interval of generation 2i + θi . We are going to construct inductively
a cover of Gl,i (x) by the family {B(T kx, 3 × 2−κi) : k ∈ Si(x)} of balls, where Si(x) ⊂
{1, 2, . . . , 2i}.

For i = l, we let Sl(x) ⊂ {1, 2, . . . , 2l} consist of those k ≤ 2l such that Il(T kx)
intersects An. Suppose now that Si(x) has been defined. We define Si+1(x) to consist
of those k ≤ 2i+1 such that Ii+1(T

kx) intersects Gl,i (x). Then the family {B(T kx, 3 ×
2−κ(i+1)) : k ∈ Si+1(x)} of balls forms a cover of Gl,i+1(x), and the construction is
completed.

With the aid of the notation Ii+1(T
kx), one can verify that x �→ Si+1(x) is constant

on each basic interval of generation 2i+1 + θi+1. Let Ni+1(x) := �Si+1(x), then x �→
Ni+1(x) is also constant on each basic interval of generation 2i+1 + θi+1.

To establish equation (5.8), we need to estimate Ni+1(x). For those k ∈ Si+1(x) ∩
{1, 2, . . . , 2i}, since Ii+1(T

kx) ⊂ Ii (T kx) and Gl,i (x) ⊂ Gl,i−1(x), we must have that
Ii (T kx) intersectsGl,i−1(x), and hence k ∈ Si(x). However, since Ii+1(T

kx) is contained
in B(T kx, 3 × 2−κ(i+1)), if Ii+1(T

kx) has non-empty intersection with Gl,i (x), then the
distance between T kx and Gl,i (x) is less than 3 × 2−κ(i+1). In particular,

T kx ∈ {y : d(y, Gl,i (x)) < 3 × 2−κ(i+1)} ⊂
⋃

J∈
θi : d(J ,Gl,i (x))<3×2−κ(i+1)

J . (5.10)

Denote the right-hand side union as Ĝl,i (x). The set Ĝl,i (x) is nothing but the union of
cylinders of level θi whose distance from Gl,i (x) is less than 3 × 2−κ(i+1). Thus, by the
fact that x �→ Gl,i (x) is constant on each basic interval of generation 2i + θi , we have

Ĝl,i (x) = Ĝl,i (y), whenever I2i+θi (x) = I2i+θi (y). (5.11)

According to the above discussion, it holds that

Ni+1(x) ≤ Ni(x)+Mi+1(x),

where Mi+1(x) is the number of 2i < k ≤ 2i+1 for which T kx intersects Ĝl,i (x).
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The function Mi+1(x) can further be written as

Mi+1(x) =
2i+1∑

k=2i+1

χ
Ĝl,i (x)

(T kx) =
2i+θi∑
k=2i+1

χ
Ĝl,i (x)

(T kx)+
2i+1∑

k=2i+θi+1

χ
Ĝl,i (x)

(T kx).

Since the countable set E has zero μφ-measure, all the functions given above are well
defined for μφ-a.e. x. It follows from the locally constant property in equation (5.11) of
Ĝl,i(x) that

∫
Mi+1(x)dμφ(x) =

2i+θi∑
k=2i+1

∫
χ
Ĝl,i (x)

(T kx)dμφ(x)+
2i+1∑

k=2i+θi+1

∫
χ
Ĝl,i (x)

(T kx)dμφ(x)

≤ θi +
∑

J∈
2i+θi

2i+1∑
k=2i+θi+1

∫
χJ (x)χĜl,i (x)

(T kx)dμφ(x)

= θi +
∑

J∈
2i+θi

2i+1∑
k=2i+θi+1

∫
χJ (x)χĜl,i (xJ )

(T kx)dμφ(x), (5.12)

where xJ is any fixed point of J . Now the task is to deal with the right-hand side
summation. We deduce from the quasi-Bernoulli property in equation (3.2) of μφ that
for each k > 2i + θi ,∫

χJ (x)χĜl,i (xJ )
(T kx)dμφ(x) = μφ(J ∩ T −k(Ĝl,i (xJ ))) ≤ γ 3μφ(J )μφ(Ĝl,i (xJ )).

(5.13)

Since Gl,i (xJ ) can be covered by the family {B(T kxJ , 3 × 2−κi) : k ∈ Si(xJ )} of balls,
then by equation (5.10), the family Fi (xJ ) := {B(T kxJ , 6 × 2−κi) : k ∈ Si(xJ )} of
enlarged balls forms a cover of Ĝl,i (xJ ). Observe that each enlarged ball B ∈ Fi (xJ )
intersects An, and thus B ⊂ B(y, 12 × 2−κi) for some y ∈ An. Then, by the definition of
An and equation (5.9),

μφ(B) ≤ μφ(B(y, 12 × 2−κi)) ≤ 12b2−bκi .

Accordingly,

μφ(Ĝl,i (xJ )) ≤ 12b2−bκiNi(xJ ). (5.14)

Recall that x �→ Ni(x) is constant on each basic interval of generation 2i + θi .
Applying the upper bound of equation (5.14) on μφ(Ĝl,i (xJ )) to equation (5.13), and then
substituting equation (5.13) into equation (5.12), we have

∫
Mi+1(x) dμφ(x) ≤ θi +

∑
J∈
2i+θi

2i+1∑
k=2i+θi+1

γ 3μφ(Ĝl,i (xJ ))μφ(J )

≤ θi +
∑

J∈
2i+θi

2i+1∑
k=2i+θi+1

γ 312b2−bκiNi(xJ )μφ(J )
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= θi + γ 312b2−bκi(2i − θi)

∫
Ni(x) dμφ(x)

≤ θi + ε

∫
Ni(x) dμφ(x),

where the last inequality follows from equation (5.9). Since Ni+1(x) ≤ Ni(x)+Mi+1(x),
we have ∫

Ni+1(x) dμφ(x) ≤ θi + (1 + ε)

∫
Ni(x) dμφ(x). (5.15)

Note that equation (5.15) holds for all i ≥ l and Nl(x) ≤ 2l . Then,

∫
Ni+1(x) dμφ(x) ≤

i∑
k=l
(1 + ε)i−kθk + (1 + ε)i−l+1

∫
Nl(x) dμφ(x)

< (1 + ε)i(iθi + 2l).

By Markov’s inequality,

μφ({x : Ni+1(x) ≥ (1 + ε)2i (iθi + 2l)})
≤ μφ

({
x : Ni+1(x) ≥ (1 + ε)i

∫
Ni+1(x) dμφ(x)

})
≤ (1 + ε)−i ,

which is summable over i. Hence, for μφ-a.e. x, there is an i0(x) such that

Ni+1(x) ≤ (1 + ε)2i (iθi + 2l) (5.16)

holds for all i ≥ i0(x).
Denote by Fl,ε the full measure set on which equation (5.16) holds. Let x ∈ Fl,ε . Then,

such an i0(x) exists. With i ≥ i0(x), we may cover the set

Gl(x) = An ∩
( ∞⋂
j=l

2j⋃
k=1

Ij (T kx)
)

by Ni(x) balls of radius 3 × 2−κi . Since θi = [κi logL1
2] + 1 ≤ ci for some c > 0, we

have

dimH Gl(x) ≤ lim sup
i→∞

log Ni(x)
log 2κi

≤ lim sup
i→∞

log((1 + ε)2i (iθi + 2l))
log 2κi

= 2 log(1 + ε)

κ log 2
.

(5.17)

Let (εm)m≥1 be a monotonically decreasing sequence of real numbers converging to 0.
For each εm, choose an integer lm satisfying equation (5.9), but with ε replaced by εm.
For every m ≥ 1, by the same reason as equation (5.17), there exists a full μφ-measure set
Flm,εm such that

for all x ∈ Flm,εm , dimH Glm(x) ≤ 2 log(1 + εm)

κ log 2
.
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By taking the intersection of the countable full μφ-measure sets (Flm,εm)m≥1, and using
the fact that Gl(x) is increasing in l, we obtain that for μφ-a.e. x,

for any l ≥ 1, dimH Gl(x) ≤ lim
m→∞ dimH Glm(x) = 0.

We conclude equation (5.8) by noting that

Uκ(x) ∩ An ⊂
⋃
l≥1

Gl(x).

Remark 8. Recall that Lemma 4.1 exhibits a relation between Uκ(x) and hitting time:

{y : R(x, y) < 1/κ} ⊂ Uκ(x) ⊂ {y : R(x, y) ≤ 1/κ}.
With this relation in mind, it is natural to investigate the size of the level sets

{y : R(x, y) = 1/κ}, κ ∈ (0, ∞).

Lemmas 5.4 and 5.7 together with the inclusions

{y : R(x, y) = 1/κ} ⊂ {y : R(x, y) ≤ 1/κ} and

{y : R(x, y) = 1/κ} ⊂ {y : R(x, y) ≥ 1/κ}
give the upper bound for Hausdorff dimension:

dimH{y : R(x, y) = 1/κ} ≤ Dμφ(1/κ) for μφ-a.e. x.

The lower bound, coinciding with the upper bound, can be proved by the same argument
as that of Lemma 5.1. Thus for μφ-a.e. x,

dimH{y : R(x, y) = 1/κ} = Dμφ(1/κ) if 1/κ /∈ {α−, α+}.
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