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STABILITY, INSTABILITY, OSCILLATION AND NONOSCILLATION
IN SCALAR INTEGRODIFFERENTIAL SYSTEMS

K. GOPALSAMY

Sufficient conditions are obtained for a homogeneous scalar

integrodifferential system to have solutions all of which either

converge to zero or oscillate or at least one of which can be

nonoscillatory asymptotically.

1. Introduction

The purpose of this article is to derive a set of sufficient

conditions for scalar integrodifferential equations of the form

(1.1) 2 Z ± J L L = a x ( t ) + b k { t - s ) x ( s ) d s , t > 0 ,
a t J_oo

to have solutions (when supplemented with suitable in i t i a l conditions)

which converge to zero as t -*• °° , oscillate or do not oscillate asymptot-

ically. Equations of the form ( l . l ) can be regarded as differential

equations with an unbounded delay; for a survey on equations with

unbounded delays we refer to Corduneanu and Lakshmikantham [4].

The following lemma establishes an a priori estimate for solutions of

equations of the form ( l . l ) and such an estimate will also justify the

application of Laplace transform techniques to systems such as ( l . l ) .

LEMMA 1.1. Suppose a and b are real constants and let
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k : [0 , <*>)•+ (-«>, <*>) be integrable such that

(1.2) I \k(s)\ds < « , I s\k(s)\ds < » .

Let <j> : (-00, 0] -»• (-°°, °°) be any bounded function. Then any solution of

the initial value problem

= ax{t) + b k(t-s)x(s)ds , t > 0 ,

(1.3)
x(s) = ij>(s) 3 s £ {a, 0] ,

where a = -00 or c = 0 satisfies an estimate of the form

( l . U ) | a : ( t ) |

f
Jo

B

J
exp f|a| + |b| f , * > 0 ,

where sup |<()(s)| .
a€(c ,0]

Proof. The loca l existence of solutions of ( l . 2 ) - ( l . 3 ) can be

discussed by the usual methods (see for instance Miller [S ] ) . The global

exis tence (for a l l t > 0 ) of solutions of (1.2)-(1.3) wi l l be a

consequence of our lemma. We wi l l consider only the case c = -°° and the

proof for o = 0 i s s imi la r . We can rewrite (1.3) in the form

(1.5) ^ = ax{t) + 6

< ax( t )

Hence from ( l .5 )»

r*
(1.6) *(t) - x(0) s a

o

Simplifying (1.6) ,

r
h J0

fe(t-s)x(s)ds

k(t-s)x(s)iis .

f \\ \k(u)\du)ds
J0 U s J

+ fc f I f \k(s-v)\\x{v)\dv\ds
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\a\ f \x(s)\ds + \b\U\\ f s\k{s)\ds

+ b f |x(s
Jo

that is,

(1.7)

f |*(e)|dn] f \x(u)\du .
Jo ' Jo

The r e su l t follows from (1.7) by an applicat ion of Gronwall's lemma (Brauer

and Nohel [ 2 ] ) .

The resu l t of Lemma 1.1 provides suff ic ient conditions (a priori

ver i f iable) for the solution of (1.3) to be of exponential order; in fact

(l.U) provides an a priori estimate for the solut ion of ( l . 2 ) - ( l . 3 ) . We

note that an estimate of the type (l.U) i s also val id for scalar systems of

the form

n tt
£ b.\ k .(
j=l 3 >o °

= au(t) + Y, ̂ A I kj(t-s)u(s)ds , a = -°° Or 0
J=l

(1.8)
u(s) = <(>(s) , s € (c, 0] ,

where a, b , ..., b are real constants and <J>, fe , ..., k are of the

type in Lemma 1.1. The following result provides a set of sufficient

conditions for the asymptotic stability and instability of the trivial

solution of (1.8); if all solutions of (1.8) exist for all t > 0 and

converge to zero as t •*•<*> then the trivial solution of (1.8) is said to

be asymptotically stable and otherwise the trivial solution is said to be

"unstable". The following result provides a set of sufficient conditions

for the asymptotic stability and instability of the trivial solution of

(1.8).

THEOREM 1.1. Suppose the delay kernels k. (j = i, 2, ..., n) of
3

(1.8) are pieaewise continuous such that
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(1.9) k. : [0, ») +
J

o, » ) , Is \k.(s) \ds < co , I \k . ( s ) \ds < » ,
>0 lJ >Q 3

j = 1, 2, . . . , n .

Then every solution of ( l .8 ) - (1 .9 ) corresponding to bounded initial

conditions $ : (-°°, 0] -*• (-130, °°) converges to zero as t -*• °° provided

the real constants a, b , . . . , b satisfy

n fc°
( 1 . 1 0 ) a < 0 , | a | > I b.\\k.\\ , Ilk-II = l k . ( s ) | d s .

j = l 3 3 3 )Q 3

If instead of (1.10) we have

( 1 . 1 1 ) a + £ 2>. I | k . ( s ) | d s > 0
n fo

= l <? J o 3

then ( l .8)-( l .9) will have at least one solution which does not converge to

zero as t •* oo .

Proof. Suppose (1.10) holds and l e t c = -m in (1 .8) . Consider a

Lyapunov function v(t) = V(t, u) where

n -x) ,,t ..

(1.12) v(t) = V(t, u) = | w ( t ) | + V \b.\ \kAs)\\\ \u(n)\dr\\ds .

3=1 Jo J wt_e J

One can verify that (1.9) and the boundedness of $ imply that

n *o
( 1 . 1 3 ) y ( 0 ) < |c)>(0)| + ||(|)|| £ \b .\ s | k . ( s ) | d s < «> .

i=l J Jo °
Computing the upper right Dini-derivative of v along the solutions of

(1.8) (with a = -°° ) and simplifying we derive that

D+v(t) < -{\a\ - I |fe.|||k.||}|«
I j-=l 3 3 J

n
where 6 = |a| - J |& . | ||k .|| > 0 . I t follows that

tt
[t) - u ( 0 ) < - 6 | u ( s ) | d B

Jo
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or since |w( t ) | 2 v{t) we have

tt
(1.15) \u{t)\ + 6 \u{s)\ds 5 u(0) < °° , t > 0 .

J0

(1.15) implies that u € 1^(0, ») and w(t) is bounded for t * 0 .

Since the right side of (1.8) is bounded under (1.9) for bounded u , it

will follow that u is uniformly continuous on [0, °°) ; such a uniform

continuity along with the fact u (. L, (0, °°) implies that u(t) •*• 0 as

t -*•">.

The proof for the case e = 0 is similar; we rewrite (1.8) as

follows:

(1.16)

where

% = au{t) + I 6. f k (ts)u(s)ds - f(t) , t > 0 ,

(1.17) /(*) = I b. \ kAt-e)M8)dB .

One can see that

\f(t)\ 5 £ |fe | f |fc(
j=i J J t J

and hence

(1.19) f \f(s)\ds < ||(j>|| £ \b.\ f ( f |fc.(n)|dh}dB
J0 ,7=1 3 '0 I J s J -1

j = l J '0 J

implying that / € L (0, °°) . Thus for the case e = 0 in (1 .8) , we can

use (I . l6)-(1.19)• The Lyapunov function v in (1.12) will in this case

lead to

r i
( 1 . 2 0 ) Dv(t) < -\\a\ - £ |2>.| | |fc. | | | M ( * ) I + l / ( * ) l •

L 0=1 3 °_
Since / € L (0, <*>) , i t will again follow from (1.20) as before that
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u(t) -»• 0 a s t •*•<*>.

We will supply the remainder of the proof assuming that a = -°° in

(1.8) and the modifications needed for the case c = 0 are minimal. Since

the solutions of ( l .8)-( l .9) are of exponential order (Lemma l . l ) one can

show by means of Laplace transform techniques that if u{z) denotes the

Laplace transform of u then we will have

(1.21)

where

2(a) = (<|>(0+) i-\a + T b. \\ A 3 Jo
e~zsk.(s)ds

= j e~SVU k(v-s)4>(s)ds\dv .

Now we consider the solution corresponding to <j>(s) = 0 , s € (-00, 0) ,

<j>(0+) + 0 . For such a solution we have

(1.22) u{z) = 3-{a + E b. f
1 .7=1 J J 0

It is known from the theory of Laplace transforms (see Churchill [3]) that

corresponding to each simple zero a of

(1.23) g{ ) = z - [a + I b. [ e-zsk.{s)ds\
I j=l ° >0 ^ >

atthere exists a solution u(t) in the form u(t) = Ae for some constant

A (not necessarily real) . Thus i t will follow from

(1.2U) a + £ b. \ k.{s)ds = 0
j= l 3 J0 3

that g in (1.23) has a zero given by z = 0 corresponding to which there

is a solution u{t) = a constant . If however

(1.25)
i=l ° '0 3

> 0

then g in (1.23) has a real positive zero say 8 > 0 corresponding to

which we have a solution of the form say u(t) = Ae for some constant

A . To see the existence of such a positive zero of g under (1.25) we
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l e t

fJz) = a + £ 6 . f * .(s)e-2Sds ,
^ ,7=1 J J0 J

and plot the graphs of f, and f2 for 2 > 0 . Since /g(0) > 0 ,

/2(s) •»• a < 0 as 2-*"°° and /_ is monotonically decreasing in z for

s > 0 it will follow that there exists a unique positive number say $

such that

= /2(8) •

The proof is now complete.

2. Oscillatory and nonoscillatory solutions

We shall now derive a set of sufficient conditions on the parameters

of a scalar integrodifferential system so that all solutions of the system

oscillate or the system has at least one nonoscillatory solution. A non-

constant solution defined on (-00, °°) is said to be oscillatory if it has

arbitrarily large zeros on [0, °°) ; otherwise a nonconstant solution is

said to be nonoscillatory. We can now formulate the following.

THEOREM 2.1. Consider the system

& = a y { t ) - b ^ Ht-8)y{s)ds , t > 0 ,

(2.1)
y(s) = <J)(s) , s € (-», 0] , <j>(0+) * 0 ,

where c = -m or a = 0 ;

(2.2) k : [0, °°) -• [0, ») , 0 < [ k{s)ds < » , I sk{s)ds < » ,

a being any real constant while b is a -positive constant. Then a
sufficient condition for all solutions of (2.l)-(2.2) corresponding to
bounded initial conditions $ on (-00, 0] to be oscillatory is

(2.3) eb I Hs)e~assds > 1 .
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If (2.3) falls to hold then (2.l)-(2.2) can have nonos dilatory solutions.

Proof. First suppose o = -°° and let

(2.1*) y(t) = u{t)eat

in (2.1). Then the oscillatory or nonos dilatory nature of y will be

governed by that of u ; we derive from (2.1) and (2.1*) that

(2.5) %r = -b I k(s)e~asu{t-s)ds , t > 0 .

I t will now follow from Lemma 1.1 that the Laplace transform of y in

(2.1) exists and hence that of u will exist. If u(z) denotes the

Laplace transform of u in (2.5) then i t can be found that

(2.6) u{z) = ((J)(O+)+$(s)J/ z+b

where $(3) denotes the transform of

c -as -zs

k{s)e~asu(t-s)ds

which is related to the initial condition $ and hence $ is a known

entity. From the convolution theorem on Laplace transforms (Churchill

[3]),

(2 .7) u ( t ) = <J)(O+)y(t) + [ U{t-s){- \ k{T\)e~aT)u(s-r))dT)\ds

where £/(£) denotes the inverse Laplace transform of

1/ a+i rHs)e-aV3Scfe .

I t follows from (2.7) that u{t) will be oscillatory or nonosdilatory for

al l in i t i a l bounded conditions if and only if U{t) is oscillatory or non-

oscillatory; from the inversion theorem on Laplace transforms we note that

U{t) will be oscillatory if and only if all the roots of

(2.8) z = -b \ Us)e~aSe~zsds
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have nonzero imaginary p a r t s ; that i s (2.8) has no purely rea l roo ts .

I t i s clear t ha t 3 = 0 cannot be a root of (2 .8 ) ; since b > 0 ,

k(s) > 0 on [0, °°) , (2.8) cannot have a r ea l pos i t ive root a l so . We

wil l show that when (2.3) holds , (2.8) cannot have a rea l negative root .

We l e t f i r s t U = - s in (2.8) and rewrite (2.8) in the form

(2.9) 1 = 6 - a s

'0

= h(]i) (say)

us-
as , y = -z

and consider the nature of My) for y > 0 . From elementary consider-

ations one finds that My) for y > 0 is bounded below such that

(2.10) inf My) = eb I k(s)e~aSsds .
]t>n '0

Thus (2.3), (2.8), (2.9) and (2.10) imply that (2.8) cannot have a real

negative root. Already we have verified that (2.8) cannot have a non-

negative root. Thus (2.8) has no real roots and hence all the solutions of

(2.1)-(2.2) will be oscillatory when (2.3) holds. In the case

corresponding to e = 0 we will not have $ in (2.6) and other details

are identical.

If (2.3) fails to hold, (2.8) can have real roots (as seen from

(2.9)-(2.10)] corresponding to which (2.l)-(2.2) can have nonoscillatory

solutions and the proof is complete.

The following corollaries are easy consequences of Theorem 2.1 and

hence we will suppress their proofs.

COROLLARY 2.1. Let a, b, T be real constants such that b > 0 ,

T > 0 . Then a sufficient condition for all solutions of

=L = ay{t) - by{t-j)

to be oscillatory is

beie > 1 .

COROLLARY 2.2. Let a be a real constant and let b , b , .... b

be positive constants; let k. : [0, °°) -• [0, <*>) be such that
3
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I k.(s)ds < °° , P
J 0

 3 JO
sk.{s)ds < » ° J j = 1 , 2 , . . . , n .

3%en a sufficient condition for all solutions of

du n rt
% = ay - V i . k .(t-s)y(s)ds , t > 0 ,
d t j=l 3 ]c 3

ov

corresponding to bounded initial conditions on (-00, 0] to be oscillatory

is that

« [ 1 . 1 fe.(s)e~assds > l
«7=J

or

nelfj \b. f k.(s)se~asds}\ > 1 .
i = l >• ° J o d H

3. Equations with variable coefficients

We shall briefly consider a scalar integrodifferential system of the

form

, . , rt
^±L = a{t)x{t) - kit, s)x(s)ds , t > 0 ,

(3.1)
x(0) = xQ * 0 ,

where a i s continuous on [0, °°) and k{t, s) SO , continuous for

0 5 s 5 t <=• such that k(t, s) > 0 for some s > 0 . We can simplify

(3.1) by l e t t i ng

(3.2) x(t) = y{t)exp j a{s)ds\

so that

(3.3) -^7—= - k(t, s)exp - a{u)du\y(s)ds .
J0 L Js J

I f we consider solut ions of (3.3) in the form
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( 3 . U ) y{t) = expfi:My)dy\

for not necessarily real valued functions A(i) defined for t > 0 then

i t will follow that y and hence x will be oscillatory if and only i f

there is no real valued function A : [0, <*>) •* {-<*>, °°) ; i t is found that

A(•) is governed by

"~ tt
( 3 . 5 ) \{t) = k(t, s)exp

0

r r
a(u)du exp My)dy

ds .

It is also found from (3-5) that A(•) cannot be negative and A(t) £ 0 .

We formulate our result in the following.

THEOREM 3 .1 . Assume that a(t) and k(t, s) are continuous

respectively for t > 0 and 0 i s < t < » . Suppose further that

k{t, s) > 0 , 0 5 s 2 £ < °° and k(t, s) > 0 for some s t. 0 .

If

(3.6) lim sup
tt \tV r- rV -I

e •( fe(u, s)exp - a(w)dM
Jo ^ 0 L J s -1

1 "
ds \dv > 1

then every solution of (3-1) is oscillatory. If (3-6) fails to hold, (3.1)

can have nonoscillatory solutions.

Proof. I t i s enough to prove from the foregoing preparation that

there ex is t s no real valued X sa t i s fy ing (3 .5 ) . We wi l l prove the non-

existence of rea l A when (3-6) holds as follows. Suppose (3-6) holds and

a real A ex is t s sa t i s fy ing (3.5)- Then as seen above, A has to be non-

negative valued and we have for some a ,

( 3 . 7 ) lim inf exp j Hu)du\ = a> 1 .

Let {t } •* °° as «-»•<*> be such t h a t

( 3 . 8 )

We no te from (3-5) t h a t

\a = lim exp
J
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(3 .9) \{u)du

tt V,V r- rV - , [ f,t
> k(v, s)exp - a(u)du Uim inf exp

•'OHO l - J g _ l | t-KD Un
i— \

o r

rt rV i— eV —i

(3.10) log a > a -H k(u, s)exp - a(u)du\ds\dv
J0 !J0 L Js J

where

an = e x p r
J0

Thus

l o g a r n \rV r- rV - ,

-TT^-l \\ Hv, 8)exp\- \ a(u)du\ds\dv .
n '0 {'0 L >s -1 J

(3.11)

If a is finite then we have from (3-U) that

and hence

( 3

I f

( 3

13)

a is

lh)

XJ-m a

n-x» n

\ - l i m

not finite

i:

t

inf
-XX)

, (3.

i in
->oo

f
J0
11)

Jo Vo

leads to

s)exp

r»<
["

•xp - u\u/c

-i i
&< dsWw s 0 .

- i

u
J

dsfdv

\ds\dv

Both (3.13) and (3.11*) contradict (3.6) and hence there cannot be real A

satisfying (3-5). If however (3-6) fails to hold real A can exist and

the proof is complete.

We conclude with a few remarks. Integrodifferential equations can

represent as special cases delay-differential or functional differential

equations. We have provided a set of a priori verifiable sufficient

conditions for the existence of oscillatory solutions for scalar integro-
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differential systems. The result of Corollary 2-11 is well known in the

l i te ra ture . (Bellman and Cooke [ J ] , Goel et al [5] , Smith [9].) As a

special case of Corollary 2.2, one can derive some results of Ladde [7] .

I t is an open problem to examine sufficient conditions for linear coupled

systems to have oscillatory solutions. However results on the asymptotic

s tabi l i ty and decay rate of solutions of linear coupled integrodifferential

systems are available in a recent ar t ic le of the author (Gopalsamy [6]) .
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