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We investigate the counter-intuitive initial decrease and subsequent increase in the Nusselt
number Nu with increasing wall Reynolds number Rew in the sheared Rayleigh–Bénard
(RB) system by studying the energy spectra of convective flux and turbulent kinetic
energy for Rayleigh number Ra = 107, Prandtl number Pr = 1.0 and inverse Richardson
numbers 0 ≤ 1/Ri ≤ 10. These energy spectra show two distinct high-energy regions
corresponding to the large-scale superstructures in the bulk and small-scale structures in
the boundary layer (BL) regions. A greater separation between these scales at the thermal
BL height correlates to a higher Nu and indicates that the BLs are more turbulent. The
minimum Nu, which occurs at 1/Ri = 1.0, is accompanied by the smallest separation
between the large- and small-scale structures at the thermal BL height. At 1/Ri = 1.0,
we also observe the lowest value of turbulent kinetic energy normalized with the square
of friction velocity within the thermal BL. Additionally, we find that the domain size has
a limited effect on the heat and momentum transfer in the sheared RB system as long
as the domain can accommodate the small-scale convective structures at the thermal BL
height, signifying that capturing the large-scale superstructures is not essential to obtain
converged values of Nu and shear Reynolds number Reτ . When the domain is smaller than
these small-scale convective structures, the overall heat and momentum transfer reduces
drastically.
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Figure 1. The ratio of Nu to Nu0 plotted against Ri. Here Nu0 indicates Nu for standard Rayleigh–Bénard.
The grey diamond indicates the minimum Nu observed at Ri = 1.0 in the present simulations for Ra = 107.

1. Introduction

Sheared turbulent thermal convection is a widely occurring phenomenon in nature. It is
observed in atmospheric flows (Hartmann, Moy & Fu 2001), ocean currents (Marshall
& Schott 1999) and the geophysical flows present in the Earth’s mantle (Richards &
Engebretson 1992). Therefore, understanding the effects of shear on heat transport in
turbulent flows is vital for meteorological, environmental, geophysical and industrial
applications.

The sheared Rayleigh–Bénard (RB) system (Domaradzki & Metcalfe 1988; Shevkar
et al. 2019; Blass et al. 2020, 2021a), which is obtained by adding Couette-type forcing to
standard RB, is the canonical model configuration to study the interplay between buoyancy
and shear in turbulent thermal convection. The properties of the fluid are indicated by
the Prandtl number (Pr). The thermal driving is characterized by the Rayleigh number
(Ra), while the shear driving is characterized by the wall Reynolds number (Rew). The
non-dimensional heat flux through the system is given by the Nusselt number (Nu) and the
non-dimensional wall shear is given by the shear Reynolds number (Reτ ). A better control
parameter to study the dependence of Nu and Reτ on applied shear is the Richardson
number (Ri = Ra Pr−1Re−2

w ), which characterizes the ratio of the thermal to shear driving.
This is because the Nu/Nu0 data from Blass et al. (2020, 2021a) shows an appreciable
collapse with 1/Ri for 106 ≤ Ra ≤ 108, 0.22 ≤ Pr ≤ 4.6 and 0 ≤ Rew ≤ 10000 as shown
in figure 1. The precise definitions of these control and response parameters are mentioned
in § 2.

Turbulent thermal convection is often dominated by large flow structures, which are
known as turbulent superstructures (Pandey, Scheel & Schumacher 2018; Stevens et al.
2018). For example, such structures can be seen in cloud streets in the atmosphere
(Kuo 1963), sometimes extending for hundreds of kilometres (Miura 1986). Large-scale
structures have also been observed in several experiments (Ingersoll 1966; Solomon &
Gollub 1990). These turbulent superstructures exhibit strong vertical coherence in RB flow
(Krug, Lohse & Stevens 2020) and are thought to play a crucial role in the heat transfer
of unstably stratified channel flows (Pirozzoli et al. 2017) and sheared RB flows (Blass,
Pirozzoli & Verzicco 2019; Blass et al. 2020, 2021a). A scaling for Nu based on the ‘wind

944 A1-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.425


Small-scale flow structures in sheared thermal convection

of turbulence’ generated by these structures in the unstably stratified channel flows has
been proposed by Scagliarini, Gylfason & Toschi (2014) along with a phenomenological
model resulting in a modified logarithmic law of the wall (Scagliarini et al. 2015). Based
on experimental observations, Shevkar et al. (2019) modelled the effect of wall shear on
the spacing of these large-scale structures in sheared RB flow. Capturing these structures
in simulations requires large computational domains. The domain size is characterized by
the aspect ratios Γx and Γy, which are reported as Γx = Lx/H, and Γy = Ly/H, where Lx,
Ly and H represent the streamwise, spanwise and vertical domain extent, respectively.

Various numerical studies (Bailon-Cuba, Emran & Schumacher 2010; Zhou et al. 2012;
Chong et al. 2017; Stevens et al. 2018) have focused on understanding the effects of these
large-scale structures on the heat transfer in RB flow, through restricting the domain size
or through the analysis of energy spectra. These studies suggest that the heat transfer
only weakly depends on the large-scale flow structures. Blass et al. (2021b) conclude that
the thermal boundary layer (BL) thickness and the Reynolds number associated with the
‘wind of turbulence’ are very similar for simulations of Γx = Γy = 1 and Γx = Γy = 32.
Observations of Stevens et al. (2018) suggest that although domains with aspect ratios
as large as Γx = Γy = 64 are required to obtain convergence in the spectra of turbulent
kinetic energy, the value of Nu is already converged for domains with aspect ratios of
around Γx = Γy = 4. This suggests that the presence of superstructures is not critical for
the heat transport.

Blass et al. (2020, 2021a) performed direct numerical simulations in domains of
Γx = 9π, Γy = 4π and observed that with increasing Rew the Nu number of the sheared
RB system initially decreases and subsequently increases as shown in figure 1. For strong
shear, Blass et al. (2020) suggested that Nu scales linearly with Rew. Analogous studies
in Taylor–Couette flows have observed a scaling of Nu ∼ Reγ with γ ≈ 0.6 (Leng &
Zhong 2021; Leng et al. 2021). However, the initial counter-intuitive decrease in Nu
with increasing 1/Ri is still not very well understood. Through the visualizations of the
mid-height cross-section of the temperature fields, Blass et al. (2020, 2021b) reason
that the breakup of these superstructures causes the initial decrease in Nu. In standard
(unsheared) RB, large-scale randomly oriented thermal superstructures dominate the
flow. As shear is applied, the flow transitions from a buoyancy-dominated regime to
the transitional regime where these large-scale structures break down into thin streaks.
Further increasing the shear leads to reorganization of the large-scale flow structures into
elongated, coherent, meandering streaks. The increase of Nu is attributed to the formation
of these large-scale structures (Blass et al. 2020, 2021b). However, it is unclear whether
Nu as a function of 1/Ri is dependent on the domain size and whether the organization of
the large-scale structures has a significant impact on the heat transport in the sheared RB
flow, leading us to the current study.

The manuscript is organized as follows. In § 2 we present the numerical methods
used for the simulations. In § 3 we discuss the flow organization of the small-scale flow
structures at the thermal BL height. In § 4 we analyse the time-averaged energy spectra of
the convective heat flux and turbulent kinetic energy and in § 5 their coherence spectra. In
§ 6 we discuss the effect of shear on the large-scale structures. In § 7 we analyse the effect
of domain size on the Nu number. Finally, conclusions are presented in § 8.

2. Numerical method

The sheared RB system is governed by the incompressible Navier–Stokes equations, the
continuity equation and the transport equation for temperature, here both assumed within
the Boussinesq approximation. In Cartesian coordinates x ≡ (x, y, z) ≡ (x1, x2, x3), they
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read as

∂tui + uj∂jui = −∂ip + ν∂2
j ui + βgδi,3θ, (2.1)

∂iui = 0, (2.2)

∂tθ + uj∂jθ = κ∂2
j θ, (2.3)

where u ≡ (u1, u2, u3) ≡ (
ux, uy, uz

)
is the velocity, p(x, t) is the kinematic pressure and

θ(x, t) the temperature with the arithmetic mean of the top and bottom wall temperatures
subtracted, g is the acceleration due to gravity and β is the isobaric thermal expansion
coefficient. The distance between the horizontal plates is H and the temperature difference
between the plates is Δ. The top plate (at z = H) moves with the speed Uw, while the
speed of the bottom plate (at z = 0) is −Uw. The control parameters for the system are the
Rayleigh number

Ra ≡ βgH3Δ

νκ
, (2.4)

the Prandtl number
Pr ≡ ν/κ (2.5)

and the wall Reynolds number
Rew ≡ UwH/ν. (2.6)

The non-dimensional heat flux from the hot bottom plate to the cold top plate is the Nusselt
number, which has an advective and a diffusive contribution, i.e.

Nu ≡ 〈uzθ〉A,t − κ〈∂zθ〉A,t

κΔH−1 . (2.7)

Here, 〈· · · 〉A,t indicates the mean over time and an arbitrary horizontal plane A.
Additionally, we define the friction velocity as

uτ ≡
√
ν 〈∂zux〉w,t, (2.8)

with 〈· · · 〉w,t indicating the mean over time at the top and bottom walls. The shear
Reynolds number is defined as

Reτ ≡ uτH/2ν. (2.9)

The equations (2.1) to (2.3) are solved numerically using the AFiD GPU package (Zhu
et al. 2018), which is based on a second-order finite-difference scheme (van der Poel et al.
2015). The code has been extensively validated and verified (Verzicco & Orlandi 1996;
Verzicco & Camussi 1997; Stevens, Verzicco & Lohse 2010; Stevens, Lohse & Verzicco
2011; Kooij et al. 2018). We impose periodic boundary conditions in the horizontal
directions and no-slip boundary conditions at the top and bottom plates. We use a uniform
discretisation in the horizontal, periodic directions and a non-uniform grid, with a clipped
Chebyshev-like clustering of nodes in the wall-normal direction. The simulations are
performed for Ra = 107, Pr = 1 and 0 ≤ Rew ≤ 104 for various aspect ratios as listed
in table 1.

It is ensured that the thermal BL is sufficiently resolved as per the resolution
requirements put forward by Shishkina et al. (2010). The near-wall resolution is
comparable to the values mentioned in Lozano-Durán & Jiménez (2014), Pirozzoli,
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Bernardini & Orlandi (2014) and Lee & Moser (2018) to ensure that the kinetic
BL is sufficiently resolved. The simulations for Γx = 48, Γy = 24 are run for 200
non-dimensional time units and flow snapshots are obtained at intervals of five
non-dimensional time units from t/tff = 100 to t/tff = 200, with tff = √

H/gβΔ being
the free fall velocity. The energy spectra for these 21 snapshots are computed and averaged
to yield the time-averaged energy spectra reported below. The Nu number is converged to
within 1 % of its mean value, which ensures that the spectra are computed once the flow
has achieved a statistically steady state.

3. Visualization of small-scale structures at thermal BL height

The Nu obtained from the current simulations are shown in figure 1 and agree well with the
results from Blass et al. (2020). With increasing shear, the heat transfer initially decreases,
attaining a minimum at Ri = 1.0, and increases again for very strong shear. We begin with
a visual analysis of the instantaneous snapshots of the temperature fluctuations shown in
figure 2. In agreement with Blass et al. (2020, 2021a) the snapshots at the mid-height
reveal that with increasing shear, the superstructures break down from the randomly
oriented convection rolls at 1/Ri = 0 into thin elongated streaks at 1/Ri = 1.0 for which
Nu is lowest. Further increasing the shear leads to the formation of meandering streaks at
1/Ri = 10. For small 1/Ri, the flow is primarily driven by the buoyancy effects generated
by the temperature field. For large values of 1/Ri, the temperature acts more and more like
a passive scalar and the flow is driven primarily by wall shear. This is reflected strongly in
the large-scale flow structures. The large meandering streaks at 1/Ri = 10 are reminiscent
of the ‘rollers’ observed in plane Couette flow (Pirozzoli et al. 2014; Lee & Moser 2018).

The visualizations at the thermal BL height reveal smaller flow structures nested within
the large-scale flow organization. The large-scale flow organization of the flow at the
thermal BL height is similar to that at mid-height, which implies strong coherence in the
vertical direction extending from mid-height to at least the thermal BL height. A visual
inspection suggests that the size of the small-scale structures at the thermal BL height
increases from 1/Ri = 0 to 1/Ri = 1.0 before it decreases again towards 1/Ri = 10, which
is confirmed later in section § 4 by studying the spectra of convective heat flux.

4. Analysis of spectra of convective flux and turbulent kinetic energy

To further analyse these smaller flow structures and their impact on the heat transfer, we
compute the one-dimensional (1-D) and two-dimensional (2-D) spectra of the convective
heat flux (uzθ ) normalized with UFΔ and turbulent kinetic energy (k) normalized with
the square of the friction velocity uτ . Here, UF = √

gβΔH is the free fall velocity. These
spectra are calculated at mid-height and thermal BL height as

φq1,q2(kx, ky, z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R (F (q1(x, y, z))F∗ (q2(x, y, z))) , kx /= 0, ky /= 0,

2R (F (q1(x, y, z))F∗ (q2(x, y, z))) , kx /= 0, ky = 0,

2R (F (q1(x, y, z))F∗ (q2(x, y, z))) , kx = 0, ky /= 0,

4R (F (q1(x, y, z))F∗ (q2(x, y, z))) , kx = 0, ky = 0,

(4.1)

where R represents the real value operator, F represents the discrete Fourier transform
operator, and F∗ represents its complex conjugate. The variables q1, q2 can be the
convective flux (uzθ ) or the turbulent kinetic energy (k). The 2-D spectra evaluated at
z = H/2 and z = λθ , corresponding to horizontal cross-sections at mid-height and the
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Figure 2. Visualisations of the temperature fluctuations in horizontal cross-sections. The first column is at
mid-height whereas the third column is at the thermal BL height. The second and fourth columns are magnified
views of the first and third column, respectively, showing the small-scale structures in greater detail.

944 A1-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.425


Small-scale flow structures in sheared thermal convection

Contours containing

half of total energy

Secondary peak corresponding to

the small-scale structures

Primary peak corresponding

to the superstructures

(kxkyφuzθ,uzθ
) H2/UFΔ, z = H/2

(kxkyφuzθ,uzθ
) H2/UFΔ, z = λθ

(kxφuzθ,uzθ
) H /UFΔ, (kyφuzθ,uzθ

) H /UFΔ

(kxkyφuzθ,uzθ
) H2/UFΔ

λθ

(kyφuzθ,uzθ
) H/UFΔ

(kxφuzθ,uzθ
) H/UFΔ

102

102

101

100

kx
ky

101

100

10–8 10–7 10–6 10–5

10–9 10–8 10–7 10–6

H/2

z

Figure 3. A 3-D representation of the premultiplied spectrum of the convective flux. The slices of normalized
2-D spectra ((kxkyφuzθ,uzθ )H

2/UFΔ) taken at mid-height and the thermal BL height are shown along
with the normalized 1-D premultiplied spectra along the streamwise ((kxφuzθ,uzθ )H/UFΔ) and spanwise
((kyφuzθ,uzθ )H/UFΔ) directions. The locations of the primary and secondary peaks corresponding to the
superstructures and the small-scale structures are indicated with blue and red lines, respectively. The separation
between the scales is indicated with the green line. Contours containing half of the spectral energy are indicated
with cyan coloured curves in these slices.

thermal BL height, respectively, are highlighted in figure 3. The 1-D spectra are obtained
as

φq1,q2(kx, z) =
∫
φq1,q2(kx, ky, z) dky, φq1,q2(ky, z) =

∫
φq1,q2(kx, ky, z) dkx. (4.2a,b)

The volume visualisation of the normalized 2-D premultiplied spectra of the convective
flux (kxkyφuzθ,uzθ )H

2/UFΔ for 1/Ri = 1.0 is shown in figure 3. Two high-energy regions
corresponding to the low wavenumber superstructures and high wavenumber small-scale
structures are observed. Since a larger separation of scales indicates stronger turbulence,
we hypothesize that the scale separation between the superstructures and small-scale
structures is a measure for the turbulence inside the BLs.

Figure 4 shows the premultiplied 2-D spectra of the convective flux (kxkyφuzθ,uzθ )
computed at mid-height and the thermal BL height. The plots (i-a)–(viii-a) show two
distinct high-energy regions. The coloured contours enclose half of the total spectral
energy and the colours are indicative of the 1/Ri as they vary from red for 1/Ri = 0
to blue for 1/Ri = 10. The marker indicates the location of the secondary high-energy
region corresponding to the small-scale structures. It is difficult to indicate a similar
location for the low wavenumber high-energy region because of the lack of fully converged
data. The time scales of these large-scale flow structures are very large and it is
computationally very expensive to time average for a sufficient interval of time to obtain
fully converged spectra in this low wavenumber region. The high-energy region at low
wavenumbers corresponds to thermal superstructures, while the high-energy region at the
high wavenumbers corresponds to the small-scale flow structures. As the shear imposed on
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Figure 4. (i-a)–(viii-b) Two-dimensional premultiplied spectra of the convective flux. The coloured contours
represent the envelope containing half of the total spectral energy. One-dimensional premultiplied spectra of the
convective flux along the (i-c)–(viii-c) streamwise direction and (i-d)–(viii-d) spanwise direction. The dashed
line indicates the thermal BL height. The location of the secondary peak corresponding to the small-scale
structures is shown with the coloured markers. The colours of the markers and contours correspond to various
1/Ri as listed in the legend of figure 5.
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Figure 5. (a) Contours of normalized 2-D premultiplied convective spectra kxkyφuzθ,uzθH2/UFΔ taken
from figure 4(i-a)–(viii-a) and (d) contours of normalized 2-D premultiplied convective spectra
kxkyφuzθ,uzθLxLy/UFΔ taken from figure 4(i-b)–(viii-b) containing half of the total spectral energy.
Corresponding 1-D premultiplied spectra of the convective flux at mid-height for various 1/Ri plotted against
the (b,e) streamwise and (c, f ) spanwise wavenumber. The markers represent the location of the small-scale
structure peak. Note the different scales in (a–c) and (d–f ); see details in text. The location of the peaks
corresponding to the superstructures is very close to the origin. Therefore, the separation between the scales of
these flow structures is essentially the distance between the origin and the indicated markers.

the system increases, the separation between the superstructures and small-scale structures
increases. This is demonstrated by the half-energy contours being ‘stretched’ more and
more as 1/Ri increases from 0 to 10. The plots (i-b)–(vii-b) show that the secondary
high-energy region is dominant at the thermal BL height. The plots (i-c)–(viii-c) and
(i-d)–(viii-d) show that the secondary high-energy region occurs very close to the thermal
BL height.

In order to better understand the difference in the separation between the primary and
secondary peaks with increasing wall shear, we plot the half-energy contours and the
location of the peaks taken from figure 4(i-a)–(viii-a) in figure 5(a) and we plot the
half-energy contours and the location of the peaks taken from figure 4(i-b)–(viii-b) in
figure 5(b). Although figure 5(a) shows that the variation with 1/Ri in the location of the
secondary peaks at mid-height is minimal, figure 5(d) clearly shows that the separation
of scales at the thermal BL height attains a minimum for 1/Ri = 1.0, coinciding with the
minimum in Nu shown in figure 1. Although we can not point out the exact location of
the primary peaks, it is to be noted that they are very close to the origin. Therefore, the
separation between the scales of these flow structures is essentially the distance between
the origin and the indicated markers. Also note that the wavenumbers for figure 5(d) are
normalized with the domain length and width while the wavenumbers for figure 5(a) are
normalized with the domain height. For the spectra computed at the thermal BL height,
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the influence of the domain size on structures is more prominent than at the mid-height
due to the stronger effect of shear. Therefore, at the thermal BL height it is more useful
to look at the wavenumbers normalized with the respective domain sizes rather than with
the domain height. The high-energy region also shrinks in size as the shear increases from
1/Ri = 0 to 1/Ri = 1.0 where the secondary high-energy region is smallest. Beyond this
point, the region again grows as the applied shear forcing increases from 1/Ri = 1.0 to
1/Ri = 10.0. A larger separation of scales in the convective flux indicates a wider range of
sizes in the flow structures contributing to the heat transfer, suggesting that the thermal BL
is more turbulent. The variation in the bulk is less pronounced as the bulk offers a thermal
‘shortcut’ at the Ra and Pr considered here (Grossmann & Lohse 2000, 2001, 2002, 2004;
Stevens et al. 2013). Clearly, the heat flux through the BL is the bottleneck for the total
heat flux through the system for the range of Ri considered here.

In addition to the separation of scales, figures 5(b), 5(c) and 5(e) show that the energy
contained in the secondary peak shows a similar trend as Nu. With an increase in 1/Ri,
the height of the secondary peaks in figures 5(b), 5(c) and 5(e) initially decrease, attain
a minimum for 1/Ri = 1.0 and increase again up to 1/Ri = 10.0. Note that the markers
indicating the location of the secondary peak do not completely collapse with the location
of the secondary peak in figures 5(b) and 5(c) because the marker indicates the secondary
peak of the 2-D spectra as shown in figure 4. The streamwise and spanwise 1-D spectra
in figures 5(b) and 5(c) are obtained by integrating the 2-D spectra from figure 4 in the
spanwise and streamwise directions, respectively. The peak of the integrated 1-D spectra
is at a slightly different location than the peak in the parent 2-D spectra from which it was
derived. Therefore, there is a small difference in the location of the secondary peak of the
1-D and 2-D spectra; therefore, the markers in figures 5(b) and 5(c) do not always fall on
the peak. This also holds true for figures 7(b) and 7(c).

Figure 6 shows the time-averaged premultiplied spectra of turbulent kinetic energy. The
normalized turbulent kinetic energy represents the amount of kinetic energy contained
in the turbulent fluctuations in comparison with the kinetic energy supplied through the
shear forcing. At the thermal BL height, the normalized kinetic energy should be a good
indicator of the effectiveness of the applied shear forcing in making the thermal BL more
turbulent. In figure 6(i-a)–(vii-b) the secondary peaks are prominent and follow a similar
locus of travel in the wavenumber space with variation in 1/Ri as the secondary energy
peaks in the convective flux spectra. The variation is clearer in figures 7(a) and 7(d) with
the strength of the secondary peak dominating the energy distribution at the thermal BL
height as shown in figures 7(e) and 7( f ).

One wonders whether for strong shear Lumley-type scaling (Lumley 1967; Lohse
1994; Biferale & Procaccia 2005) Eu(k) ∼ k−7/3 and Eθ (k) ∼ k−4/3 for the velocity and
temperature spectrum may show up in our spectra. Note that here k indicates the the wave
number. However, those theoretical predictions were made for homogeneous turbulent
shear flow. Given the plates, the detachment of plumes from them, and the relatively low
Reynolds numbers we can numerically treat and the correspondingly short inertial range,
we do not expect to see pronounced Lumley-type shear in our data. This is confirmed by
the 1-D velocity and temperature spectra included in the online supplementary material
available at https://doi.org/10.1017/jfm.2022.425.

5. Coherence spectra of convective flux and turbulent kinetic energy

The correlation between the heat transfer and the strength of turbulent kinetic energy can
be investigated further by studying the coherence spectra between the normalized turbulent
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Figure 6. (i-a)–(viii-b) Two-dimensional premultiplied spectra of the normalized turbulent kinetic energy.
The coloured contours represent the envelope containing half of the spectral energy. Corresponding 1-D
premultiplied spectra along the (i-c)–(viii-c) streamwise and (i-c)–(viii-c) spanwise direction. The dashed line
indicates the location of the thermal BL height. The location of the secondary peak corresponding to the
small-scale structures is indicated by the coloured markers. The colours of the markers and contours correspond
to various 1/Ri as listed in the legend of figure 5.

944 A1-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.425


G.S. Yerragolam and others

(k
xφ

k,
k)

Ly
/u

2 τ

(k
yφ

k,
k)

Lx
/u

2 τ

k yL
y

0

20

40

60

0

0.01

0.02

0

0.5

1.0

1.5

0 1000 2000 3000

1000

2000

3000

0

2

4

6

8

0

10

20

30

1/Ri = 0.1

1/Ri = 0.2

1/Ri = 0.5

1/Ri = 1

1/Ri = 2

1/Ri = 5

1/Ri = 10

k yH

25 50 75

kxH kxH kyH
100 102 102 104

(k
xφ

k,
k)

H
/u

2 τ

(k
yφ

k,
k)

H
/u

2 τ

kxLx kxLx kyLy
102 104 102 104

(a) (b) (c)

(d ) (e) ( f )

Figure 7. (a) Contours of normalized turbulent kinetic energy (kxkyφk,k)H2/u2
τ taken from

figure 6(i-a)–(viii-a) and (d) contours of normalized turbulent kinetic (kxkyφk,k)LxLy/u2
τ taken from

figure 6(i-b)–(viii-b), containing half of the total spectral energy. Corresponding 1-D spectra at mid-height for
various 1/Ri plotted against the (b,e) streamwise and (c, f ) spanwise wavenumber. The markers indicate the
location of the secondary peak corresponding to the small-scale structures.

kinetic energy and convective flux (γ 2
uzθ,k), which is defined as

γ 2
uzθ,k(kx, ky, z) = φuzθ,k(kx, ky, z)

φuzθ,uzθ (kx, ky, z)φk,k(kx, ky, z)
, (5.1)

with φuzθ,k representing the co-spectra of the convective flux and turbulent kinetic energy.
Figure 8(i-a)–(vii-b) shows that the wavenumbers corresponding to high-energy regions
enclosing the small-scale peak of the convective flux (represented with the solid contours)
are very similar to those of the turbulent kinetic energy (shown with the dotted contours).
The location of the secondary peaks of the convective flux spectra (represented with the
circular and diamond markers) are almost coincident with those of the turbulent kinetic
energy spectra (shown with plus and star markers). The coherence between the convective
flux and turbulent kinetic energy is relatively high in these regions. Figure 8(i-c)–(viii-d)
shows that the coherence at the BL height is very similar for the large- and small-scale
flow structures. This shows that there is a strong correlation between the turbulent kinetic
energy and the convective heat flux in the BLs.

This strong correlation is also suggested by figure 9(b), which shows the wall-normal
turbulent kinetic energy profile, averaged in time and horizontal directions and normalized
with u2

τ . It can be seen that this ratio of turbulent kinetic energy to the kinetic

944 A1-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.425


Small-scale flow structures in sheared thermal convection

100

101

102

1
/R

i=
0

k yH
z = H/2 z = λθ

10–3

10–2

10–1

100

101

z/
λ
θ

100

101

102

1
/R

i=
0
.1

k yH

10–3

10–2

10–1

100

101

z/
λ
θ

100

101

102

1
/R

i=
0
.2

k yH

10–3

10–2

10–1

100

101

z/
λ
θ

100

101

102

1
/R

i=
0
.5

k yH

10–3

10–2

10–1

100

101
z/
λ
θ

100

101

102

1
/R

i=
1

k yH

10–3

10–2

10–1

100

101

z/
λ
θ

100

101

102

1
/R

i=
2

k yH

10–3

10–2

10–1

100

101

z/
λ
θ

100

101

102

1
/R

i=
5

k yH

10–3

10–2

10–1

100

101

z/
λ
θ

100 101 102

kxH

100

101

102

1
/R

i=
1
0

k yH

100 101 102

kxH
100 101 102

kxH

10–3

10–2

10–1

100

101

z/
λ
θ

100 101 102

kyH

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 0.1 0.2 0.3 0.4 0.5

(i-a) (i-b) (i-c) (i-d)

(ii-a) (ii-b) (ii-c) (ii-d)

(iii-a) (iii-b) (iii-c) (iii-d)

(iv-a) (iv-b) (iv-c) (iv-d)

(v-a) (v-b) (v-c) (v-d)

(vi-a) (vi-b) (vi-c) (vi-d)

(vii-a) (vii-b) (vii-c) (vii-d)

(viii-a) (viii-b) (viii-c) (viii-d)

Figure 8. (i-a)–(viii-b) Coherence spectra between the convective flux and normalized turbulent kinetic
energy. The dotted curve indicates the half-energy contours of the convective flux taken from
figure 4(i-a)–(viii-b), and the solid curve indicates the half-energy contours of the turbulent kinetic energy
taken from figure 6(i-a)–(viii-b). The markers are consistent with the legends in figures 5 and 7. Corresponding
1-D spectra along the (i-c)–(viii-c) streamwise and (i-d)–(viii-d) spanwise direction. The dashed line represents
the thermal BL height.
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Figure 9. (a) Thermal BL thickness (λθ ) and kinetic BL thickness (λu) vs wall Reynolds number. (b) The
turbulent kinetic energy normalized with the square of the friction velocity plotted against wall-normal
coordinate. Both plots correspond to Γx = 48, Γy = 24.

energy imparted through shear is lowest in the BL for 1/Ri = 1.0 when Nu is
lowest.

6. Effect of shear on large-scale structures

This reduction in the turbulence level in the thermal BL may be attributed to the following
phenomena. The buoyancy-driven plumes responsible for the turbulent convective
transport of heat are ejected from the thermal BLs (Ahlers, Grossmann & Lohse 2009)
and impact the opposite BL. In sheared RB the plumes carry heat and momentum. This
momentum is small for lower imposed wall velocities. In this regime, the kinetic BL is
much thicker than the thermal BL, due to which the plumes carry a relatively large fraction
of the momentum imposed by the wall. For higher imposed wall velocities, the kinetic
BL is thinner, and the fraction of the momentum of the wall that is transferred to the
plumes is relatively low. However, this is compensated by the larger wall velocity. Around
1/Ri = 1.0, the thickness of the kinetic BL (λu) is only slightly larger than the thickness
of the thermal BL (λθ ) as seen in figure 9(a), and the wall velocity is not high enough to
energize the plumes sufficiently to enhance Nu.

The change in the BL dynamics can also be observed in figure 10. Figure 10(i-a)–(viii-a)
shows the probability density plot of the local horizontal flow velocity with respect to
the imposed wall velocity as a function of the normalized height from the wall (z/λθ ).
Figure 10(i-b)–(viii-b) shows the corresponding plot for the local horizontal component
of velocity with the temporally and spatially averaged mean subtracted. The probability
densities are defined as

ψux,uy(α) = N(α − δ ≤ α(ux, uy) < α + δ)

2NGδ
∀ α ∈ {−π,−π + 2δ,−π + 4δ, . . .π}

(6.1)
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Figure 10. (i-a)–(viii-a) Probability density function given by (6.1), as a function of the angle subtended by
the local horizontal component of the velocity with the streamwise direction (α), plotted against height from
the wall normalized by the BL height (z/λθ ). (i-b)–(viii-b) Probability density function of the fluctuations
of the horizontal components of the velocity given by (6.2). The white dashed line indicates the thermal BL
height. (i-c)–(viii-c) Probability density function of ψ(α) for the horizontal components and their fluctuations
at mid-height and thermal BL height.
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and

ψu′
x,u′

y
(α) = N(α − δ ≤ α(u′

x, u′
y) < α + δ)

2NGδ
∀ α ∈ {−π,−π + 2δ,−π + 4δ, . . .π},

(6.2)

with N(· · · ) indicating the number of grid points satisfying the condition inside
the parenthesis, NG indicating the total number of grid points at a given height z,
and

u′
x = ux − 〈ux〉A,t , u′

y = uy − 〈
uy

〉
A,t . (6.3a,b)

The angle α(ux, uy) is defined as the angle subtended by the vector (ux, uy, 0) with
(−Uw, 0, 0) if the grid point under consideration lies in the bottom half of the domain.
For grid points in the top half of the domain, α(ux, uy) is defined as the angle subtended
by the vector (ux, uy, 0) with (Uw, 0, 0). The angle α(u′

x, u′
y) is also defined similarly. The

value of δ is chosen to be π/72.
In both cases, a prominent high probability density region is observed for α ≈ π/2

just above the thermal BL height. This region has the highest probability density for
1/Ri = 1.0, which shows that the velocity induced at the thermal BL height by the
large-scale superstructures or plumes is primarily oriented in a direction perpendicular to
that of the wall velocity, indicating that at 1/Ri = 1.0 the imposed shear is least effective
at making the thermal BLs more turbulent. A more thorough investigation involving
conditional averaging of the momentum carried by the plumes, similar to the study
performed in Blass et al. (2021b), could further strengthen this view. Future studies are
planned to filter out the smaller scales to study the orientation of these larger heat-carrying
plumes and the ‘wind of turbulence’ (Castaing et al. 1989; Grossmann & Lohse 2000)
imparted by these plumes to the thermal BL.

7. Effect of domain size on Nusselt number

To further confirm that the flow structures corresponding to the secondary peaks are
critical for the heat transport, we progressively reduce the domain size of the simulations
to assess how this affects Nu. Figure 11 shows that the changes in the variation of
Nu are minor until the domain is no longer large enough to contain the smaller flow
structures associated with the secondary peak. It can be seen that a domain of aspect
ratio Γx = 1.0, Γy = 0.5 is necessary to accommodate the secondary peak for most of
the Ri cases considered. As soon as the domain aspect ratio is reduced to Γx = 0.6,
Γy = 0.3 Nu drops drastically. Similar observations can be made on the variation of
Reτ with Rew. As soon as the domain aspect ratio is reduced to Γx = 0.6, Γy = 0.3,
we observe that Reτ drops drastically. This observation of the minimal sheared RB
domain is similar to the minimal Couette flow study performed by Sekimoto, Atkinson
& Soria (2018) and the minimal channel flow study by Jiménez & Moin (1991).
The minimum domain size required to obtain the Nu and Reτ values associated with
laterally unconfined sheared RB flow is a function of the shear and thermal driving.
However, the fact that the domain must be sufficiently large to accommodate these
small-scale structures associated with the secondary peaks is a valuable observation
for reducing the computational costs of simulations focusing on the heat transport
phenomena.
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Figure 11. (a) Boxes showing the domain sizes overlaid on the contours from figure 5(d). (b) Plot of Nu as a
function of Rew for various domain sizes. (c) Plot of Reτ as a function of Rew for various domain sizes.

8. Conclusions

Complimentary to previous studies (Blass et al. 2020, 2021a), which focus on how the
large-scale dynamics affect Nu, we focus on effects of small-scale flow structures at the
BL. Since the bulk offers a thermal ‘shortcut’ for the range of parameters considered in
the study, the BL dynamics determine the heat transfer in the system. This follows from
the analysis of the spectra of convective flux and turbulent kinetic energy, which shows the
presence of the spectral peaks corresponding to large-scale superstructures and small-scale
structures. We observe that the separation of scales between these superstructures and
small-scale structures at the thermal BL is indicative of the ratio between the turbulent
kinetic energy in the thermal BL and the square of the friction velocity. A larger separation
between superstructures and small-scale structures at the thermal BL height is directly
correlated to a more turbulent thermal BL and a higher Nu. We also observe the minimum
Nu occurs at 1/Ri = 1.0 along with the smallest separation between superstructures
and small-scale structures as well as the lowest normalized turbulent kinetic energy
at the thermal BL height. The strong coherence between the small-scale structures of
convective flux and turbulent kinetic energy spectra at the thermal BL height, which
is similar in magnitude to that of the superstructures in the bulk, confirms that the
convective heat transfer is closely related to the turbulent kinetic energy within the
BLs.
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Although the fluctuations of velocity in the thermal BL are imparted by the large-scale
‘wind of turbulence’ consisting of plumes travelling through the bulk, the orientation of
these plumes impacting the BLs is determined by the momentum carried by these plumes,
which, in itself, is a consequence of the BL dynamics. From probability density plots
computed using (6.1), (6.2) and shown in figure 10, we observe that the momentum of the
wall shear carried by the impacting plumes is lowest for 1/Ri = 1.0, which is also the case
with lowest Nu. We confirm that overall heat transfer is lowest when the applied wall shear
is least effective in turning the BLs turbulent, as shown by the smallest separation between
the spectral peaks of convective flux and turbulent kinetic energy at the thermal BL height
for 1/Ri = 1.0.

We find that the variation of Nu and Reτ in sheared RB convection with domain size
is limited as long as the small-scale structures associated with the secondary peaks of
the convective flux and turbulent kinetic energy spectra is captured. We find that, for the
parameter regime under consideration, a domain size of Γx = 1.0, Γy = 0.5 is sufficient
to achieve this. We note that the identification of a minimal system size that captures
the leading dynamics in sheared convection is analogous to the concept of minimal span
Couette flow studies performed by Sekimoto et al. (2018), and the study on minimal
channel flow by Jiménez & Moin (1991) which, in turn, support the inference that the large
domains that fully capture the superstructures are not required to obtain the converged
values of Nu and Reτ .

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.425.
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