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A nonlinear theory for thermoacoustic waves in a gas-filled, narrow channel and pore
subject to an axial temperature gradient is developed based on the fluid dynamical
equations for an ideal gas. Under the narrow-tube approximation, three small
parameters are introduced as asymptotic parameters, one being the ratio of a span
length to a typical thickness of the thermoviscous diffusion layer, another the ratio of
the typical propagation speed of thermoacoustic waves to an adiabatic sound speed
and the final parameter is the ratio of the typical magnitude of a pressure disturbance
to uniform pressure in a quiescent state. No thermal interaction between the gas and
the solid wall is taken into account on assuming that the wall has a large heat capacity.
Using the three small parameters, the fluid dynamical equations are approximated
asymptotically to be reduced to a single nonlinear diffusion wave (advection) equation
for an excess pressure. All field variables are determined consistently in terms of the
excess pressure so as to satisfy the boundary conditions on the wall. Supposing a
time-periodic solution to the equation derived, the mean value of the excess pressure
over one period is examined. It is shown that while the mean vanishes in the linear
theory, it decreases monotonically due to nonlinearity. It is also shown that mean
values of the shear stress and the heat flux at the wall, as well as those of the
vector fields of the mass and energy fluxes representing, respectively, acoustic and
thermoacoustic streaming, are expressed in terms of the mean values of the products
of the spatial and/or temporal pressure gradients, which are reduced to the spatial
derivatives of the mean pressure.

Key words: acoustics, nonlinear instability, waves/free-surface flows

1. Introduction

When an acoustic wave is incident on a gas-filled, narrow channel or pore, it cannot
be propagated farther through it but is simply diffused due not only to wall friction
but also to heat conduction at the wall. Because the span is narrow, the thermoviscous
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766 N. Sugimoto

diffusion prevails quickly and spanwise over a period of the acoustic wave. In the
motion of gas, a shear stress due to viscous diffusion dominates over fluid inertia and
a pressure gradient balances with the wall friction. The resultant flow is similar to
Poiseuille flow of incompressible fluids driven by a pressure difference. On the other
hand, the thermal diffusion sets the gas to be in thermally perfect contact with a solid
wall, yielding an isothermal process locally.

The above physical consideration suggests that the axial velocity of the gas is
proportional to the pressure gradient and directed downward, while a density variation
in the isothermal process is proportional to a pressure variation. Using these relations
in the linearised equation of continuity averaged over a cross-section of a flow
passage, it is reduced to a diffusion equation for the pressure variation. This is the
basis of the statement made at the beginning. Such a picture is valid when the
channel or the pore is free from a temperature gradient.

If a temperature gradient is present, the situation is dramatically changed. Sugimoto
(2010) derived the thermoacoustic wave equation which describes generally the spatio-
temporal behaviour of thermoacoustic waves in a channel and a pore. This is the linear
equation valid in the time domain and corresponds to an equation transformed from
the Rott equation derived in the frequency domain (Rott 1969; Swift 2002). Taking a
limit that the frequency of the thermoacoustic waves is so low that the thermoviscous
diffusion layer is much thicker than the span length, the equation is reduced to a
diffusion wave (advection) equation. It is thus revealed that the gradient gives rise
to wave propagation (or advection) directed in the sense of the temperature gradient.

The diffusion wave equation may be derived not only in the case of a simple
geometry such as the channel and the pore, but also in complicated cases such as in
the regenerative heat exchangers (called simply regenerators) used in thermoacoustic
devices. Flow passages in the regenerators are tortuous, but because of the slow
motion of the gas, the mean velocity over a cross-section of the regenerator is
considered to be proportional to the pressure gradient. This is the very case to which
the empirical Darcy’s law is applicable. Although the coefficient of permeability in
Darcy’s law depends on temperature and also on porosity, the diffusion wave equation
is expected to be derived from the equation of continuity. Such a picture, based on
the diffusion wave equation, would be applicable as long as the magnitude of the
pressure disturbances remains very small and the span remains very narrow.

In recent thermoacoustic devices, however, the pressure has attained the level
of 10 % of the mean pressure so that finite effects in the magnitude are no
longer negligibly small, while the span length is not always small enough. Then,
an appreciable temperature variation arises so that no isothermal process can be
maintained. While the latter effects are identified in the thermoacoustic wave equation,
the former finite effects are unknown. One effect due to nonlinearity is the emergence
of slow and steady streaming of mass and energy, which affect crucially both the
power and efficiency of devices. Regarding acoustic streaming by a standing wave in
a closed resonator, the literature is extensive. For example, see Nyborg (2008) and
a review by Boluriaan & Morris (2003) in which many key papers and reviews so
far published are cited. In particular, the latter review may be the first in referring to
a new type of acoustic streaming such as Gedeon streaming (Gedeon 1997) in the
thermoacoustic context.

Impacts of a temperature gradient on acoustic streaming were first studied by Rott
(1974) for the case of a thin diffusion layer, in which the temperature dependence of
viscosity and heat conductivity is also taken into account. This is Rayleigh streaming
by a standing wave driven by the boundary layer in the presence of a temperature
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gradient. With historical perspective introduced, Bailliet et al. (2001) developed the
analysis for Rayleigh streaming due to a thermoacoustic standing wave in a closed
resonator, and also performed experiments to measure the acoustic streaming. It
was shown that the impacts of the temperature gradient are not significant despite
expectations, and the analytical results agree with the experimental ones. Later
Moreau, Bailliet & Valière (2009) studied the influence of a stack on Rayleigh
streaming and found new streaming vortices just outside the stack end, while the
same authors (2008) developed the experimental techniques to measure streaming by
laser Doppler velocimetry (LDV) in view of application to thermoacoustic devices,
though in the case without a temperature gradient.

Thompson, Atchley & Maccarone (2005) investigated the influences of a thermo-
acoustically induced temperature gradient and fluid inertia on the acoustic streaming
in a standing wave. They reported that the streaming cell and its magnitude depend
sensitively on the thermal condition imposed on the tube wall and therefore the
axial temperature gradient induced along it, except for the isothermal (fixed) case.
Although the influence of the temperature gradient is noticeable, it appears to suppress
the streaming in some places and deforms significantly streaming cells. They also
reported that the streaming velocities do not agree with any available theories. In the
case of a looped tube, Gusev et al. (2000) made an analysis of the streaming and
derived an equation which determines the streaming velocity. It is shown, however,
that the sense of the acoustic streaming is sensitive to the thickness of the viscous
diffusion layer.

For the energy flux, a similar steady streaming occurs, especially of the enthalpy
flux, called ‘thermoacoustic streaming’, which occurs generally (Merkli & Thomann
1975; Rott 1980). In the isothermal process, the enthalpy variation vanishes locally
and so does the enthalpy flux. By virtue of the thermodynamic relation, a pressure
variation is then proportional to an entropy variation with the sign reversed so that the
acoustic energy flux vector (or so-called acoustic intensity) is set equal to the entropy
flux vector in the opposite sense. According to the terminology in thermoacoustics,
the former is called the work flow, while the latter is called the heat flow. Although
these fluxes are of quadratic order in amplitude, they can be evaluated in terms of
linear solutions only and therefore no nonlinear effects are included.

Effects of nonlinearity are not restricted to acoustic and thermoacoustic streaming.
Recently, it is shown by Biwa, Takahashi & Yazaki (2011) that the shock wave
emerges in a looped tube. When the shock wave hits the regenerator, it is unknown
what effect will be brought about in it. The ends of the regenerators play a very
important role in efficiency and power because vortical motions are generated by
sudden contraction and expansion of flow passages and both heat conduction and
heat transfer are enhanced near the edges. Jet-driven streaming also occurs. These
lead to so-called minor losses (Swift 2002), though they are major in their effects.
However, such a complicated field would be limited in the vicinity of the end, and
the end effects would disappear towards the inside of the regenerator. While the
far-field behaviour of the gas from the end and in the outside of the regenerator is
known to some extent even in a nonlinear regime, its behaviour in the inside of the
regenerator is unknown. Little is known about the nonlinear behaviour of the gas
inside so analytical investigations are desirable. Hence the purpose of this paper is
to develop a nonlinear theory for thermoacoustic waves in such a simple case in the
geometry of a narrow channel or pore, and to demonstrate its application to analysis
of acoustic and thermoacoustic streaming.

The theory is developed based on a system of fluid dynamical equations for
an ideal gas. Non-uniformity in the temperature distribution is taken into account
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through the narrow-tube approximation. This rests on an assumption of a gentle
temperature gradient along the wall axially so that the first-order derivative of the
wall temperature is taken into account but the second-order one is neglected (Sugimoto
2010). In addition, introducing three small parameters, one being the ratio of the span
length to the thickness of the thermoviscous diffusion layer, another the ratio of the
propagation speed of the thermoacoustic waves to an adiabatic sound speed and the
final one being the ratio of the magnitude of the pressure disturbance to the uniform
pressure in a quiescent state, the system of equations is approximated asymptotically
to be reduced to a single equation for the excess pressure. In this process, all field
variables are sought consistently so as to satisfy the boundary conditions on the
wall. No thermal interaction between the gas and the solid is taken into account on
assuming that the wall has so large a heat capacity that no temperature fluctuations
occur on the wall. The linear diffusion wave equation is derived to the lowest-order
approximation in these three parameters. Proceeding to a higher-order approximation,
a nonlinear diffusion wave equation is derived.

In what follows, a set of fluid dynamical equations for an ideal gas is presented
in § 2. On the basis of these equations, a weakly nonlinear theory is developed
in § 3 for the case of a channel. It is an asymptotic theory with respect to the
three small parameters based on the narrow-tube approximation. The fluid dynamical
equations are approximated asymptotically so as to satisfy the boundary conditions
on the wall and all field variables are expressed in terms of the excess pressure.
The nonlinear diffusion wave equation is derived finally from consistency with the
boundary conditions on the wall. For the case of a pore, the results are given in
§ 4 because this analysis is made in parallel to the one for the channel. Supposing
a time-periodic solution to the equation derived, general relations among the mean
values over the period are examined in § 5. Using these results, the mean values
of the shear stress, the heat flux on the wall and the vector fields of the mass and
energy fluxes are evaluated in terms of the mean values of products of the spatial
and/or temporal gradients of the excess pressure. In § 6, some discussions are given
on the evaluation of these mean values.

2. Formulation of the problem
2.1. Basic equations and boundary conditions

At the outset, we summarize the basic equations for compressible Newtonian fluids
obeying the ideal gas law, gravity being ignored. They consist of the equations of
continuity, of motion, i.e. Navier–Stokes equation and of energy, which are given,
respectively, by

1
ρ

Dρ
Dt
+∇ · v = 0, (2.1)

ρ
Dv

Dt
=−∇p+∇ · [2µ (e− 1

3 I∇ · v
)]+∇(µv∇ · v), (2.2)

and

ρcp
DT
Dt
= Dp

Dt
+∇ · (k∇T)+Φ, (2.3)

where D/Dt stands for the Lagrangian derivative defined by ∂/∂t+ v · ∇, t being the
time; ρ, v, p and T denote, respectively, density, velocity vector, pressure and absolute
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temperature, while µ, µv and k denote, respectively, a shear viscosity, a bulk viscosity
and a thermal conductivity, cp being the specific heat at constant pressure; e and I
denote, respectively, the rate of stain tensor and the unit tensor, and the components
of e will be given later in terms of those of v; Φ denotes the viscous dissipation
function defined by

Φ = tr(σe)= 2µtr(ee)+ (µv − 2µ/3)[tr(e)]2, (2.4)

with tr(e) = ∇ · v, where tr(· · ·) designates taking the trace of the tensor, and the
viscous stress tensor σ is related to e through

σ = 2µ[e− tr(e)I/3] +µvtr(e)I. (2.5)

The temperature dependence of µ, µv and k is taken into account by a power law
of the form

µ

µ0
= µv

µv0
= k

k0
=
(

T
T0

)β
, (2.6)

where quantities with a subscript 0 imply values in a reference state, and β is a
positive constant between 0.5 and 0.6 for air.

In addition to these equations, the ideal gas is stipulated by the equation of state
given by

p=RρT, (2.7)

where R is the gas constant. Using this, the equation of continuity is rewritten as

1
p

Dp
Dt
− 1

T
DT
Dt
+∇ · v = 0. (2.8)

On the other hand, boundary conditions on the surface of solid wall require that

v = 0 and T = Tw on wall surface, (2.9a,b)

where Tw represents the temperature on the wall surface. It is assumed that the heat
capacity of the solid wall is so large that no temperature variations take place in the
solid (for the effects of heat conduction, see Sugimoto & Hyodo (2012)). Hence Tw
is given and fixed. Boundary conditions at both ends of a channel and a pore are left
open, assuming that they are long axially.

3. Nonlinear theory for a gas in a channel
3.1. Dimensionless parameters and approximation

We consider a gas-filled channel of width 2H confined between two flat and parallel
walls, as shown in figure 1. The x-axis is taken along the channel, while the y-axis is
taken normal to it with the origin at a midpoint between the plates. This illustration
depicts not only the channel but also a circular pore of radius R, to be treated later.

Supposing that the span is so narrow that the diffusion layer is thick enough to
fill the channel spanwise, we develop a weakly nonlinear theory for disturbances to
the quiescent state. Since gravity is neglected, the pressure in this state is uniform
throughout the gas, and is denoted by p0. In the first place, we remark that the
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Wall

Gas

q
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FIGURE 1. (Colour online) Illustration of a gas-filled channel of width 2H between two
flat and parallel walls subjected axially to a non-uniform temperature distribution, where
the x-axis is taken along the channel and the y-axis is taken normal to it. This illustration
includes a gas-filled pore of radius R if y and ±H are replaced, respectively, with the
radial coordinate r and the radius R. Here Tw denotes the wall temperature, while Te and
ρe denote, respectively, the gas temperature and density in a quiescent state at uniform
pressure p0; p′, ρ ′ and T ′ denote, respectively, excess quantities in pressure, density and
temperature, while u′ and v′ denote, respectively, axial and spanwise (radial) components
of the velocity vector, s and q designating, respectively, the shear stress acting on the gas
in contact with the wall surface and the heat flux flowing into it.

present theory is based on the narrow-tube approximation stipulated by H/L � 1,
where L represents the typical length in the x-direction. The theory takes account of
quantities of order H/L but neglects those of (H/L)2. Consider the wall temperature
Tw(x), which varies in the x direction so gradually that the following inequalities are
satisfied:

H2

Tw

∣∣∣∣d2Tw

dx2

∣∣∣∣� H
Tw

∣∣∣∣dTw

dx

∣∣∣∣� 1. (3.1)

Because Tw|dTw/dx|−1 specifies a typical axial length of the temperature gradient, the
middle term is small, of order H/L, while the term on the left-hand side is of order
(H/L)2 and is smaller.

When the second-order derivative of Tw is ignored, it is shown that the gas
temperature in the quiescent state, denoted by Te, may be regarded as being spanwise
uniform and may be identified with Tw (Sugimoto 2010). Then distinction between
Tw and Te is unnecessary and Te is used instead of Tw hereafter. When Te is spanwise
uniform, so also is the gas density ρe because ρeTe must be equal to ρ0T0 by Charles’
law. Hereafter, the quantities with subscript 0 represent those at temperature T0 in
the quiescent state under pressure p0, while quantities with the subscript e represent
those in the quiescent state determined in terms of Te so that they are functions of x.

Besides the narrow-tube approximation, we are concerned with the slow dynamical
process of a small, but finite magnitude, pressure disturbance. Letting a typical angular
frequency of the disturbance be ω, the process is characterized by the following three
parameters:

H√
ν/ω
≡ 1
δ
� 1,

ωL
a
≡ 1
χ
� 1 and

1p
p0
≡ ε� 1, (3.2a−c)
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where ν, a and 1p represent, respectively, typical values of kinematic viscosity µ/ρ,
adiabatic sound speed and the magnitude of the excess pressure p′ (= p− p0). In the
case of the circular pore, H should be read as R. The first parameter δ measures the
thickness of the viscous diffusion layer

√
ν/ω relative to the half-width of the channel.

There also appears the thermal diffusion layer of thickness
√
κ/ω, κ (= √k/ρcp)

being a typical thermal diffusivity. Because the Prandtl number Pr (= ν/κ) is of
order unity, for example 0.72 for air, both diffusion layers may be regarded as being
comparable in thickness, though the thermal one is a little thicker.

The parameter δ2 may also be regarded as the ratio of the typical period of
slow temporal variations ω−1 relative to the time for the viscous diffusion to spread
spanwise over H, i.e. H2/ν. When the diffusion layer is thick, disturbances are
propagated neither with the adiabatic sound speed nor with the isothermal one,
though the isothermal process takes place. Hence both the adiabatic and isothermal
sound speeds have no physical significance in this situation. When the temperature
gradient is present, as was already shown in Sugimoto (2010), disturbances are not
only diffused but also propagated axially in the sense of the positive gradient. The
second parameter χ measures this slow speed of propagation relative to the adiabatic
sound speed. The last parameter ε measures the magnitude of the disturbances. This is
the parameter measuring the order of nonlinearity. Relationships of these parameters
with the Reynolds number and the Mach number will be discussed later.

Because ν and a depend on temperature, δ and χ may be defined based on local
values of νe(= µe/ρe) and ae [= √γ p0/ρe =

√
γRTe =

√
(γ − 1)cpTe], where µe

denotes the viscosity at the temperature Te at a position of x and γ (≡ cp/cv) denotes
the ratio of specific heats, cv being the specific heat at constant volume. These local
values of δ and χ may be designated by attaching the subscript e. When δ and χ are
defined in the reference state at p0 and T0, their local values are related through

δe

δ
=
(

Te

T0

)(1+β)/2
and

χe

χ
=
(

Te

T0

)1/2

. (3.3a,b)

Although δe and χe change with position, they may be regarded as being of order δ
and χ , unless Te/T0 is extremely large or small. In the following, Te/T0 is assumed
to be of order unity so that no subscript e is attached to δ and χ .

3.2. Lowest-order approximation
We consider the lowest-order approximation in the limits of δ →∞, χ →∞ and
ε→ 0. In these limits, fluid inertia is negligible and the wall friction dominates to
counteract the pressure gradient. On the other hand, since the solid wall has a large
heat capacity, the heat conduction suppresses gas temperature fluctuations from the
local wall temperature so that T ′ (= T − Te) vanishes. Then the viscosity and thermal
conductivity at position x take the values µe, µve and ke at T = Te.

Designating a disturbance to the quiescent state by attaching a prime ′ to a variable,
and assuming the disturbance to depend on x, y and t, the equation of continuity (2.1)
is linearised around the quiescent state as

∂

∂t

(
ρ ′

ρe

)
− u′

Te

dTe

dx
+ ∂u′

∂x
+ ∂v

′

∂y
= 0, (3.4)

where v is thus set to v′ [= (u′, v′)] and use has been made of the relation
ρ−1

e dρe/dx = −T−1
e dTe/dx, since ρeTe is constant in x. From this equation, v′ is

estimated to be smaller than u′ by H/L.
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When the temperature dependence of the viscosity is taken into account, the
x- and y-components of the equation of motion (2.2) are given, respectively, by (A 1)
and (A 2) in appendix A. Equation (A 1) is approximated by neglecting the inertia
terms to be

0=−∂p′

∂x
+ ∂

∂y

(
µe
∂u′

∂y

)
, (3.5)

where the inertia and the other linear terms neglected are small, of order 1/δ2 and
(H/L)2, respectively, in comparison with the terms retained, and µ is taken to be the
value at T = Te. It is estimated from this that u′ is comparable with H2p′/µL. Using
this, (A 2) for the y-component is similarly approximated by neglecting (H/L)2 to be

0=−∂p′

∂y
. (3.6)

Thus p′ is uniform over the channel width so that u′ is obtained from (3.5) as

u′ =− 1
2µe

∂p′

∂x
(H2 − y2). (3.7)

This parabolic distribution in y is simply the velocity profile due to Poiseuille flow.
When approximating the equation of energy (2.3), T ′/T0 is assumed momentarily to

be comparable with p′/p0 by the linearised equation of state (2.7), i.e. p′/p0=ρ ′/ρe+
T ′/Te, though T ′ is anticipated to be negligible physically because the gas is always
in thermally perfect contact with the wall. Then (2.3) is approximated to be

0= ∂

∂y

(
ke
∂T ′

∂y

)
. (3.8)

In deriving this, ρcp∂T/∂t and ∂p/∂t are negligibly small, of order 1/δ2, and the other
linear terms are of order (H/L)2 relative to (3.8). The advective term u′ dTe/dx is of
χ 2/δ2 relative to ∂T ′/∂t, but its magnitude is unknown at the present stage because
the relation between δ and χ is unknown. As shown later, however, this is negligible.
It then follows from the boundary conditions at x=±H that T ′= 0, as expected. Thus
the equation of state yields the isothermal relation locally

p′

p0
= ρ

′

ρe
. (3.9)

It is found from this and (3.4) that u′ is of order εωL. Because u′ is stipulated by (3.5)
to be of order H2p′/µL and p′/p0 is regarded as being of order ε, it follows that

p0H2

µωL2
∼ a2H2

γ νωL2
∼ χ

2

δ2
∼O(1), (3.10)

where ∼ implies equality in order of magnitude and the numerical factor γ (and Pr
later) are regarded as being of order unity. Thus χ turns out to be comparable with δ.

If (3.7) and (3.9) are substituted into (3.4), v′ will be obtained. Before doing this,
integration of (3.4) over the channel width with use of the boundary condition v′= 0
at y=±H yields

∂ρ ′

∂t
+ ∂

∂x
(ρeu′)= 0, (3.11)
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where the overline stands for the average over the channel width defined, for example,
for u′ by

u′ ≡ 1
2H

∫ H

−H
u′ dy. (3.12)

Using (3.7) and (3.9), p′ is governed by the following diffusion wave equation:

∂p′

∂t
− ∂

∂x

(
αe
∂p′

∂x

)
+ αe

Te

dTe

dx
∂p′

∂x
= 0, (3.13)

where αe is the diffusivity of the gas confined in the channel and is given by

αe = a2
eH2

3γ νe
= p0H2

3µe
. (3.14)

It is found that because χ ∼ δ, the first term in (3.13) balances with the second term.
For a moderate temperature gradient, the third term is also of the same order as the
second term. If the temperature dependence of the shear viscosity is neglected, then αe
is a constant independent of x. Equation (3.13) is the same as the one derived from
the thermoacoustic wave equation for a thick diffusion layer (Sugimoto 2010). This
equation means that p′ is not only diffused by the second term but also is propagated
by the third term with a velocity (αe/Te) dTe/dx.

The explicit form of v′ is obtained by integrating (3.4) with respect to y as

v′ =− ∂
∂t

(
p′

p0

)
y+

[
∂

∂x

(
1
µe

∂p′

∂x

)
− 1
µeTe

dTe

dx
∂p′

∂x

]
(3H2 − y2)y

6
, (3.15)

where (3.13) has been used. Thanks to this, it is confirmed that v′ satisfies the
boundary conditions v′= 0 at y=±H. Furthermore v′ is expressed in a compact form
as

v′ = 1
2p0H2

∂p′

∂t
(H2 − y2)y, (3.16)

where v′ is odd in y and |v′| has peaks at y = ±H/
√

3. Although u′ has the same
profile as that of Poiseuille flow of incompressible fluids, note that v′ exists due to
the compressibility of the gas. It is verified by (3.15) that v′ is of order εωH and
is smaller than u′ by the first order of H/L. What is also to be noted is that u′ is
determined by the spatial pressure gradient as expected, whereas v′ is determined by
the temporal pressure gradient.

With all lowest-order terms available, we check the relations among them. The
acoustic Mach number Ma of the axial velocity relative to the local adiabatic sound
speed ae is defined by

Ma= u′

ae
∼ εωL

ae
∼ ε

χ
. (3.17)

Thus the acoustic Mach number is much smaller than ε. The quantity p′/u′
defines an acoustic impedance, and this is found to be of order χρeae. Hence the
characteristic acoustic impedance is much larger than ρeae for a travelling wave in a
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lossless medium. Next we check the Reynolds number Re. Taking a typical speed
and length to be εωL and H, respectively, it is given by

Re= εωLH
νe
= ε

δ2

L
H
. (3.18)

Hence the Reynolds number is determined by the competition among the three small
parameters 1/δ, ε and H/L.

Finally, we evaluate the components of the rate of strain tensor e. These are
calculated straightforwardly as

exx ≡ ∂u′

∂x
=− 3

2p0H2

∂

∂x

(
αe
∂p′

∂x

)
(H2 − y2)∼ εω, (3.19a)

eyy ≡ ∂v′

∂y
= 1

2p0H2

∂p′

∂t
(H2 − 3y2)∼ εω, (3.19b)

exy = eyx ≡ 1
2

(
∂u′

∂y
+ ∂v

′

∂x

)
= 1

2p0H2

[
3αe

∂p′

∂x
+ 1

2
∂2p′

∂x∂t
(H2 − y2)

]
y∼ L

H
εω. (3.19c)

It is confirmed from these that the shear components exy and eyx are much larger than
the other components and that the divergence of the velocity vector is smaller than
them by the factor H/L because

exx + eyy =− 1
p0

∂p′

∂t
− 1

2µeTe

dTe

dx
∂p′

∂x
(H2 − y2). (3.20)

Since this is equivalent to the last two terms of (3.4), (3.20) is consistent with (3.4)
for an isothermal process with ρ ′/ρe = p′/p0.

3.3. Higher-order approximation

We now proceed to take account of the finiteness of the small parameters δ−1, χ−1

and ε. We start with the y-component of the equation of motion and see how the
uniformity of pressure over the channel width is affected. The equation is given by
reviving the neglected terms in (A 2) in appendix A as

∂p′

∂y
=µe

∂2v′

∂y2
+ dµe

dx
∂u′

∂y
+
(µe

3
+µve

) ∂

∂y

(
∂u′

∂x
+ ∂v

′

∂y

)
, (3.21)

where µ and µv are expanded around Te as

µ=µe

(
1+ βT ′

Te
+ · · ·

)
and µv =µve

(
1+ βT ′

Te
+ · · ·

)
, (3.22a,b)

but since T ′ vanishes to the lowest order, µ and µv have been set equal to µe and
µve, respectively. The term (∂/∂x)(µ∂v/∂x) in (A 2) is small, of order (H/L)2, relative
to the first term on the right-hand side of (3.21), while the inertial term ρe∂v

′/∂t is
smaller by 1/δ2 and the nonlinear advection terms are even smaller by ε/δ2.
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With the right-hand side of (3.21) evaluated using the lowest-order expressions
available, it is solved for p′. Its solution, denoted by p′2, is given by

p′2 = p′ − 3µe

p0H2

∂p′

∂t
y2

2
+
(

1
3
+ β + µve

µe

)
1
Te

dTe

dx
∂p′

∂x
y2

2
, (3.23)

where p′(x, t), which is an arbitrary integration constant and uniform over a
cross-section, corresponds to the lowest-order solution. It is found from (3.23) that
the pressure becomes non-uniform spanwise and exhibits a parabolic distribution in
y. The second term is estimated relative to p′ to be

3µe

p0H2p′
∂p′

∂t
y2

2
∼ νeω

a2
e

∼ ν/ω
H2

(
ωL
a

)2 (H
L

)2

∼ δ2

χ 2

(
H
L

)2

. (3.24)

The third term is obviously of order (H/L)2. Hence, as long as the ratio (H/L)2 is
negligible, p′2 is regarded as being uniform over the channel. In the following analysis,
we still maintain this assumption as the narrow-tube approximation that the pressure
is uniform over the cross-section.

Next we look into the x-component of (A 1) to revive neglected terms in (3.5).
Among these, terms next to be included are given as follows:

∂

∂y

(
µe
∂u′

∂y

)
= ∂p′

∂x
+ ρe

∂u′

∂t
+ ρ ′ ∂u′

∂t
+ ρeu′

∂u′

∂x
+ ρev

′ ∂u′

∂y

− ∂

∂x

(
µe
∂u′

∂x

)
+ dµe

dx
∂v′

∂y
− ∂

∂x

[(µe

3
+µve

)(∂u′

∂x
+ ∂v

′

∂y

)]
.

(3.25)

With the lowest-order expressions of u′ and v′ and with T ′ = 0, the right-hand side
is evaluated in terms of these and (3.25) is solved for u′. On the first line of the
right-hand side of (3.25), the second term is estimated to be of order 1/δ2 relative to
the first pressure gradient, while the three nonlinear terms due to inertia are evaluated
to be small, of order of ε/δ2 or ε/χ 2, relative to it. All terms on the second line are
neglected because they are of order (H/L)2 relative to the left-hand side. It is noted
that, although the bulk viscosity is often neglected from the outset, it does not come
into play even if included. When the nonlinear terms are included, whereas the second
line is ignored, this means that

δ2

(
H
L

)2

∼ χ 2

(
H
L

)2

� ε. (3.26)

Since (H/L)2 is neglected, the relation is satisfied. In actual situations this will be
fulfilled because ε is of 10−2–10−1, while H/L is of 10−2–10−3 and δ of 10–102.

Under such a condition, (3.25) is solved for u′ with the boundary conditions u′= 0
at y=±H. It then follows straightforwardly that

u′ = − 1
µe

∂p′

∂x
φ2 + 1

ρeν2
e

∂2p′

∂t∂x
φ4

+ 1
ρeν2

e

[
p′

p0

∂2p′

∂t∂x
φ4 − ∂p′

∂x
∂

∂x

(
1
µe

∂p′

∂x

)
φ6 − 1

p0H2

∂p′

∂t
∂p′

∂x
φ64

]
, (3.27)
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with φi (i= 2, 4, 6) defined, respectively, by

φ2(y)= 1
2(H

2 − y2), (3.28a)

φ4(y)= 1
24(5H2 − y2)(H2 − y2), (3.28b)

φ6(y)= 1
120(11H4 − 4H2y2 + y4)(H2 − y2), (3.28c)

where φi satisfy d2φi/dy2=−φi/2−1
2 with φi(±H)= 0, and φ64 is given by H2φ4− 2φ6

as

φ64(y)= 1
120(3H4 + 3H2y2 − 2y4)(H2 − y2), (3.29)

which is determined by the solution of d2φ64/dy2=−(H2− y2)y2/2 with φ64(±H)= 0.
Using (3.27), we estimate the order of each term relative to the leading term. The

second term on the first line is due to inertia and is of order 1/δ2. This reflects the
finite effect of the span length, The terms on the second line are due to nonlinear
advection and small, of ε/δ2 or εχ 2/δ4. Thus it is found that the nonlinear effect
remains secondary in (3.27) in comparison with the finite effect of span length. From
the standpoint of the asymptotic expansion, this implies that the expressions of the
nonlinear terms may be inaccurate. If the lowest-order approximation is regarded as
the zeroth-order approximation, the second term in (3.27) belongs to the first-order one
but the nonlinear terms belong to the second-order one. To validate them, therefore,
we must proceed to the second-order approximation. This will be discussed later.

Next we examine the equation of energy to specify a small temperature variation
by taking higher-order terms into account. Noting that T ′ vanishes at the lowest order,
quadratic terms neglected in (3.8) are revived as

∂

∂y

(
ke
∂T ′

∂y

)
= ρecpu′

dTe

dx
+ cpρ

′u′
dTe

dx
− ∂p′

∂t
− u′

∂p′

∂x
−Φ. (3.30)

On the right-hand side, the leading terms in magnitude are ρecpu′ dTe/dx and −∂p′/∂t,
while ρecp∂T ′/∂t is neglected because it is smaller than the left-hand side by
1/δ2 and T ′ vanishes to the lowest order. Also neglected are (d/dx)(ke dTe/dx)
and (∂/∂x)(ke∂T ′/∂x), which are smaller than the terms retained by (H/L)2. The
nonlinear terms arise from cpρ

′u′ dTe/dx due to the density change advected under
the temperature gradient, the advective term of pressure u′∂p′/∂x and the viscous
dissipation function Φ. The latter two terms are free from the temperature gradient.
The function Φ is evaluated in terms of the components (2.4) and is contributed to
mainly by exy and eyx. It is given by (3.19c) as

Φ ≈ 2µe(e2
xy + e2

yx)≈µe

(
∂u′

∂y

)2

= 1
µe

(
∂p′

∂x

)2

y2, (3.31)

to the lowest order.
Substituting the lowest-order relations in (3.30) and solving for T ′, it follows that

T ′ = 1
ke

∂p′

∂t
φ2 + Pr

ρeν2
e

dTe

dx
∂p′

∂x
φ4 + Pr

ρeν2
e

dTe

dx
p′

p0

∂p′

∂x
φ4 − 1

2keµe

(
∂p′

∂x

)2

φ2
2, (3.32)
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where ρecp/keµe = Pr/ρeν
2
e with Pr = νe/κe, κe being ke/ρecp and where Pr is

independent of Te. Here we check the order of T ′ relative to Te. The first term is
estimated to be

1
keTe

∂p′

∂t
φ2 ∼ (γ − 1)Pr

a2
eµe

ωp′H2 ∼ (γ − 1)Pr
γ δ2

p′

p0
∼ ε

δ2
, (3.33)

where 1/keTe = (γ − 1)Pr/a2
eµe = [(γ − 1)Pr/γ ]/νep0, while the second term is

estimated to be

Pr
ρeν2

e Te

dTe

dx
∂p′

∂x
φ4 ∼ Pr

ρeν2
e L

p′

L
H4 ∼ εχ

2

δ4
. (3.34)

For δ ∼ χ , the second term in (3.32) is comparable with the first term. In a similar
fashion, both the third and fourth terms are estimated to be of order ε2χ 2/δ4. Hence
it is found that the first two terms are comparably small, of order ε/δ2, relative to Te,
which confirms that T ′ vanishes at the lowest order, and that the temperature shows a
parabolic distribution plus a quartic one in y. The third term in (3.32) results from
the second term on the right-hand side of (3.30), while the last term results from
the third and fourth terms. The last term in (3.32) is independent of the temperature
gradient and is always negative. Because Φ is positive and T ′ vanishes at y = ±H,
−Φ contributes in (3.30) to making T ′ positive, whereas because the advective term
u′∂p′/∂x is negative, it cancels Φ to make T ′ negative in the form of the last term.
With the sign of the third term in (3.32) unknown yet, these nonlinear terms are of
higher order than the first two terms by ε. As in the case of u′, the nonlinear terms
must be validated by evaluating higher-order terms.

To facilitate further reduction of equations in proceeding to the second-order
approximation, the order of magnitude of all variables is summarized. On the basis
of p′/p0 of order ε, it follows that

p′

p0
∼ ρ

′

ρe
∼ u′

ωL
∼ ε, v′

ωL
∼ u′

ωL
H
L
∼ εH

L
and

T ′

Te
∼ ε

δ2
∼ εχ

2

δ4
. (3.35a−c)

Now that T ′ has been specified, we reconsider (3.25) to the second order and check by
using (3.27) and (3.32) (up to the first two terms) whether or not there are any other
terms missing, but comparable with the terms taken. Because of the finite temperature
disturbance, the temperature dependence of the viscosity should be included so that
µe on the left-hand side of (3.25) should be modified. From (A 1) with (3.22), it is
taken into account as

∂

∂y

(
µe
∂u′

∂y
+ βµe

T ′

Te

∂u′

∂y

)
. (3.36)

The second term is comparable with the advection terms. This term is evaluated by
using u′ in (3.7) and the lowest-order terms of T ′ in (3.32). In addition, there arises
a linear term of higher order emerging from the second term of (3.25) by taking u′

in (3.27) up to the second term. Thus u′ in (3.27) is corrected to include the second-
order terms as
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u′ = − 1
µe

∂p′

∂x
φ2 + 1

ρeν2
e

∂2p′

∂t∂x
φ4 − 1

ρeν3
e

∂3p′

∂t2∂x
φ60

+ 1
ρeν2

e

[
p′

p0

∂2p′

∂t∂x
φ4 − ∂p′

∂x
∂

∂x

(
1
µe

∂p′

∂x

)
φ6 − 1

p0H2

∂p′

∂t
∂p′

∂x
φ64

]
+ β

µe

[
1

keTe

∂p′

∂t
∂p′

∂x
φ2

2

2
+ Pr
ρeν2

e

1
Te

dTe

dx

(
∂p′

∂x

)2

φ62

]
, (3.37)

where φ60 is defined by a solution to d2φ60/dy2 =−φ4 with φ60(±H)= 0 and given
by (5H2φ4−φ64)/12, while φ62 is defined through d2φ62/dy2= (d/dy)(φ4 dφ2/dy) with
φ62(±H)= 0, and they are given, respectively, by

φ60(y)= 1
720(61H4 − 14H2y2 + y4)(H2 − y2), (3.38a)

φ62(y)= 1
144(7H2 − y2)(H2 − y2)2. (3.38b)

The third line in (3.37) reflects the thermomechanical coupling due to the temperature
dependence of the viscosity. Thus u′ is specified correctly up to the order of 1/δ4, ε/δ2

and εχ 2/δ4 relative to the first term.
Next to be checked is the equation of energy (3.30). Because the heat conductivity

also changes with the temperature, k is also expanded in the form of (3.22). Then
there comes a term βke(T ′/Te)∂T ′/∂y into the parentheses on the left-hand side
of (3.30). Yet it is found that this term is smaller than the nonlinear terms taken
and is negligible. On the right-hand side, however, ρecp∂T ′/∂t must be revived, and
u′ in the first term should be taken up to the second term in (3.27). Then (3.32) is
corrected as

T ′ = 1
ke

∂p′

∂t
φ2 + Pr

ρeν2
e

dTe

dx
∂p′

∂x
φ4 + Pr

ρeν2
e

dTe

dx
p′

p0

∂p′

∂x
φ4 − 1

2keµe

(
∂p′

∂x

)2

φ2
2

− Pr
keνe

∂2p′

∂t2
φ4 − (1+ Pr)Pr

ρeν3
e

dTe

dx
∂2p′

∂t∂x
φ60. (3.39)

The second line gives the second-order corrections to the two linear terms on the first
line. Thus T ′ is specified correctly up to the order of ε/δ4, εχ 2/δ6 and ε2χ 2/δ4 relative
to Te.

With u′ and T ′ specified, we finally consider the equation of continuity expressed
in the form of (2.8). Noting that p′ is spanwise uniform and the nonlinear advection
terms of T ′ are smaller than u′ dTe/dx, (2.8) is approximated to include the nonlinear
terms of the lowest order as

1
(p0 + p′)

(
∂p′

∂t
+ u′

∂p′

∂x

)
− 1
(Te + T ′)

(
∂T ′

∂t
+ u′

dTe

dx

)
+ ∂u′

∂x
+ ∂v

′

∂y
= 0. (3.40)

Expanding 1/(p0 + p′) and 1/(Te + T ′) with respect to the disturbances, and taking
the mean of (3.40) over the channel width, it follows that

1
p0

(
∂p′

∂t
+ u′

∂p′

∂x

)
− p′

p2
0

∂p′

∂t
− 1

Te

(
∂T ′

∂t
+ u′

dTe

dx

)
+ ∂u′

∂x
= 0, (3.41)

to quadratic order in the disturbances. Here (u′/p0)∂p′/∂x and (p′/p2
0)∂p′/∂t

are comparable in magnitude of the lowest order, whereas (T ′/T2
e )∂T ′/∂t and
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(T ′/T2
e )u
′ dTe/dx have been neglected because they are smaller than the lowest-order

ones by 1/δ2 and 1/δ4, respectively.
To close this equation for p′, u′ and T ′ are necessary. They are calculated by (3.37)

and (3.39) and using the averages: φ2 = H2/3, φ4 = 2H4/15, φ2
2 = 2H4/15, φ6 =

2H6/35, φ64 = 2H6/105, φ60 = 17H6/315 and φ62 = 8H6/315 as

u′ = − H2

3µe

∂p′

∂x
+ 2

15
H4

ρeν2
e

∂2p′

∂t∂x
− 17

315
H6

ρeν3
e

∂3p′

∂t2∂x

+ H4

105ρeν2
e p0

[
14p′

∂2p′

∂t∂x
− 18

∂p′

∂x
∂

∂x

(
αe
∂p′

∂x

)
− 2

∂p′

∂t
∂p′

∂x

]
+ βPr H4

105ρeν2
e p0

[
7(γ − 1)

γ

∂p′

∂t
∂p′

∂x
+ 8αe

Te

dTe

dx

(
∂p′

∂x

)2
]
, (3.42)

and

T ′ = H2

3ke

∂p′

∂t
+ 2

15
PrH4

ρeν2
e

dTe

dx
∂p′

∂x
+ 2

15
PrH4

ρeν2
e

dTe

dx
p′

p0

∂p′

∂x
− H4

15keµe

(
∂p′

∂x

)2

− 2
15

PrH4

keνe

∂2p′

∂t2
− 17

315
(1+ Pr)PrH6

ρeν3
e

dTe

dx
∂2p′

∂t∂x
. (3.43)

Substituting these into (3.41), it is found that the nonlinear terms involved in (3.42)
and (3.43) make smaller contributions than the leading nonlinear terms by 1/δ2

or χ 2/δ4. Although inclusion of these terms is straightforward, we retain only the
nonlinear terms of the lowest order to derive the equation higher in order than (3.13)
as

∂p′

∂t
− ∂

∂x

(
αe
∂p′

∂x

)
+ αe

Te

dTe

dx
∂p′

∂x
− (γ − 1)Prαe

a2
e

∂2p′

∂t2

+ 2
5

[
∂

∂x

(
αeH2

νe

∂2p′

∂t∂x

)
− (1+ Pr)αeH2

νeTe

dTe

dx
∂2p′

∂t∂x

]
− p′

p0

∂p′

∂t
− αe

p0

(
∂p′

∂x

)2

= 0.

(3.44)

This is the desired higher-order equation next to (3.13). Here it is noted that, as
far as (3.44) is concerned, the higher-order expressions of (3.37) and (3.39) are
unnecessary. However, it will turn out that they are required when mean values over
one period of oscillations are discussed for the acoustic and thermoacoustic streaming
in § 5.

As the first three terms of (3.44) represent the lowest-order equation, the fourth
and fifth terms represent the finite effect of the span length of 1/δ2 relative to the
lowest-order terms, while the last two terms represent the finite (nonlinear) effect of
the pressure disturbance of ε or (χ 2/δ2)ε. Using the lowest-order balance, the first
term in the square bracket may be replaced by

∂

∂x

(
αeH2

νe

∂2p′

∂t∂x

)
= H2

νe

∂2p′

∂t2
− βαeH2

νeTe

dTe

dx
∂2p′

∂t∂x
, (3.45)
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to the approximation concerned. Then (3.44) is expressed as

∂p′

∂t
− ∂

∂x

(
αe
∂p′

∂x

)
+ αe

Te

dTe

dx
∂p′

∂x
+
[

6
5
γ − (γ − 1)Pr

]
αe

a2
e

∂2p′

∂t2

− 2
5
(1+ β + Pr)

αeH2

νeTe

dTe

dx
∂2p′

∂t∂x
− p′

p0

∂p′

∂t
− αe

p0

(
∂p′

∂x

)2

= 0. (3.46)

It is noted that the nonlinear terms are independent of the temperature gradient
dTe/dx, and also of the temperature, if αe were taken as constant for β = 0. Hence
it is revealed that the temperature and its gradient do not impact nonlinear terms in
evolution of the pressure, and that the temperature dependence of the viscosity and
heat conductivity appear only through αe and the coefficient β.

With the higher-order relations available, v′ is specified to the next higher order
than (3.16) by integrating (3.40) with respect to y from y= 0. Executing the integrals
of the functions in y involved, i.e. 1, φ2 and φ4, it follows that

v′ = −
(

1− p′

p0

)
∂

∂t

(
p′

p0

)
y

+
[
∂

∂x

(
1
µe

∂p′

∂x

)
− 1
µeTe

dTe

dx
∂p′

∂x
+ 1

keTe

∂2p′

∂t2
+ 1
µep0

(
∂p′

∂x

)2
]
(3H2 − y2)y

6

−
[
∂

∂x

(
1
ρeν2

e

∂2p′

∂t∂x

)
− (1+ Pr)

ρeν2
e Te

dTe

dx
∂2p′

∂t∂x

]
(5H2 − y2)2y

120
, (3.47)

where v′ vanishes at y=±H owing to (3.44). Here it should be noted that for ∂u′/∂x
in (3.40), only the first two terms in (3.37) have been used because v′ is smaller than
u′ by H/L. Using (3.44), (3.47) may be expressed in an alternative form as

v′ =
(

1− p′

p0

)
∂

∂t

(
p′

p0

)
φ2

H2
y

− 1
νep0

[
∂2p′

∂t2
− (1+ β + Pr)

αe

Te

dTe

dx
∂2p′

∂t∂x

]
φ2

2

10H2
y. (3.48)

We have demonstrated a way to carry the theory up to higher order in ε. As was
seen, the leading nonlinear terms result from p−1Dp/Dt in (2.8) so that the first term
and the nonlinear terms in (3.41) may be expressed without expansion with respect
to p′/p0 as (

∂

∂t
+ u′

∂

∂x

)
log
(

1+ p′

p0

)
. (3.49)

This form may be useful if a higher-order equation than (3.46) is required. In taking
the average of v′ · ∇ log(1 + p′/p0) over the channel width, u′ should be replaced
by (3.42), and p′ is assumed to be independent of y. On top of these, nonlinear terms
arise from T−1DT/Dt written as(

∂

∂t
+ v′ · ∇

)
log(Te + T ′). (3.50)

On taking the average, (3.43) is useful but spanwise variations in T ′ need to be
included together with v′. The calculations are expected to be complicated but
higher-order theory could be developed step-by-step without any difficulties in
principle.
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4. Case of a circular pore
For a circular pore of radius R, the analysis can be made in parallel with that

presented for the channel. Thus its description is discussed briefly. Assuming
axisymmetry, the x-axis is taken along the pore, while the radial coordinate r is
used instead of y (figure 1). The x- and r-components of the velocity vector v′ are
denoted by u′ and v′, respectively, which depend on x, r and t. The results for the
channel are basically applicable if y and H are replaced by r and R, respectively, but
there occur differences in the coefficients.

Equation (3.4) is replaced by

∂

∂t

(
ρ ′

ρe

)
− u′

Te

dTe

dx
+ ∂u′

∂x
+ 1

r
∂

∂r
(rv′)= 0. (4.1)

By the narrow-tube approximation, the pressure is uniform radially and (3.5) is
replaced to the lowest-order approximation by (see (A 3))

0=−∂p′

∂x
+ 1

r
∂

∂r

(
µer

∂u′

∂r

)
. (4.2)

Thus u′ is given by

u′ =− 1
4µe

∂p′

∂x
(R2 − r2), (4.3)

where u′ = 0 at r = R. The equation of energy is similarly replaced, and the main
points are the same: T ′ vanishes by the boundary condition at r=R and the isothermal
relation (3.9) holds.

Defining the average over the cross-section, for example, for u′ by

u′ ≡ 1
πR2

∫ R

0
2πru′ dr, (4.4)

(3.11) holds and the same form of equation as (3.13) for p′ is derived, but αe is
replaced by

αe = a2
eR2

8γ νe
= p0R2

8µe
. (4.5)

Then v′ is obtained from (4.1) as

v′ = 1
2p0R2

∂p′

∂t
(R2 − r2)r. (4.6)

The components of the rate of strain tensor are given as follows:

exx ≡ ∂u′

∂x
=− 2

p0R2

∂

∂x

(
αe
∂p′

∂x

)
(R2 − r2), (4.7a)

err ≡ ∂v
′

∂r
= 1

2p0R2

∂p′

∂t
(R2 − 3r2), (4.7b)

eθθ ≡ v
′

r
= 1

2p0R2

∂p′

∂t
(R2 − r2), (4.7c)

exr = erx ≡ 1
2

(
∂u′

∂r
+ ∂v

′

∂x

)
= 1

2p0R2

[
4αe

∂p′

∂x
+ 1

2
∂2p′

∂t∂x
(R2 − r2)

]
r, (4.7d)
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where eθθ denotes the rate of the circumferential strain. The divergence of the velocity
vector is given by

exx + err + eθθ =− 1
p0

∂p′

∂t
− 1

4µeTe

dTe

dx
∂p′

∂x
(R2 − r2). (4.8)

We proceed to higher-order approximation. From (A 4), ∂p′/∂r is evaluated similarly
by (3.21). Then (3.23) is modified with y2/2 replaced by r2/4, while as 3µe/p0H2 is
the inverse of αe, it is replaced by the inverse of (4.5). As long as (R/L)2 is neglected,
the pressure is uniform over the cross-section. From (A 3), (3.25) is replaced by

1
r
∂

∂r

(
µer

∂u′

∂r

)
= ∂p′

∂x
+ ρe

∂u′

∂t
+ ρ ′ ∂u′

∂t
+ ρeu′

∂u′

∂x
+ ρev

′ ∂u′

∂r
− ∂

∂x

(
µe
∂u′

∂x

)
+ dµe

dx

(
∂v′

∂r
+ v

′

r

)
− ∂

∂x

[(µe

3
+µve

)(∂u′

∂x
+ ∂v

′

∂r
+ v

′

r

)]
. (4.9)

This is solved for u′, which corresponds to (3.27). Carrying the expansion to the
second order in similar fashion to the case of the channel, u′ is obtained as

u′ = − 1
µe

∂p′

∂x
ψ2 + 1

ρeν2
e

∂2p′

∂t∂x
ψ4 − 1

ρeν3
e

∂3p′

∂t2∂x
ψ60

+ 1
ρeν2

e

[
p′

p0

∂2p′

∂t∂x
ψ4 − ∂p′

∂x
∂

∂x

(
1
µe

∂p′

∂x

)
ψ6 − 1

p0R2

∂p′

∂t
∂p′

∂x
ψ64

]
+ β

µe

[
1

keTe

∂p′

∂t
∂p′

∂x
ψ2

2

2
+ Pr
ρeν2

e

1
Te

dTe

dx

(
∂p′

∂x

)2

ψ62

]
, (4.10)

with ψi (i= 2, 4, 6) defined, respectively, by

ψ2(r)= 1
4(R

2 − r2), (4.11a)

ψ4(r)= 1
64(3R2 − r2)(R2 − r2), (4.11b)

ψ6(r)= 1
1152(11R4 − 7R2r2 + 2r4)(R2 − r2), (4.11c)

where ψi satisfy r−1(d/dr)(r dψi/dr)=−ψ i/2−1
2 with ψi(R)= 0 and |ψi(0)|<∞, and

ψ64 is given by R2ψ4 − 4ψ6 as

ψ64(r)= 1
576(5R4 + 5R2r2 − 4r4)(R2 − r2), (4.12)

which is determined by the solution to r−1(d/dr)(r dψ64/dr) = −(R2 − r2)r2/4 with
ψ64(R)= 0 and |ψ64(0)|<∞; ψ60 is defined by a solution to r−1(d/dr)(r dψ60/dr)=
−ψ4 with ψ60(R)= 0 and |ψ60(0)|<∞, and is given by (3R2ψ4−ψ64)/16, while ψ62

is defined by dψ62/dr=ψ4 dψ2/dr with ψ62(R)= 0, and they are given, respectively,
as
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ψ60(r)= 1
2304(19R4 − 8R2r2 + r4)(R2 − r2), (4.13a)

ψ62(r)= 1
768(4R2 − r2)(R2 − r2)2. (4.13b)

On the other hand, (3.30) is modified with ∂2T ′/∂y2 replaced by ∂2T ′/∂r2 +
r−1∂T ′/∂r, but the right-hand side remains the same. Here u′ is given by (4.3) and
Φ is given by exr and erx as

Φ ≈ 2µe(e2
xr + e2

rx)≈µe

(
∂u′

∂r

)2

≈ 1
4µe

(
∂p′

∂x

)2

r2. (4.14)

In a similar fashion to the case of the channel, T ′ is expressed up to the second order
as

T ′ = 1
ke

∂p′

∂t
ψ2 + Pr

ρeν2
e

dTe

dx
∂p′

∂x
ψ4 + Pr

ρeν2
e

dTe

dx
p′

p0

∂p′

∂x
ψ4 − 1

2keµe

(
∂p′

∂x

)2

ψ2
2

− Pr
keνe

∂2p′

∂t2
ψ4 − (1+ Pr)Pr

ρeν3
e

dTe

dx
∂2p′

∂t∂x
ψ60. (4.15)

To derive the higher-order equation for p′, the procedure is the same as was used.
The mean velocity and temperature are given, respectively, as

u′ = − R2

8µe

∂p′

∂x
+ R4

48ρeν2
e

∂2p′

∂t∂x
− 11

3072
R6

ρeν3
e

∂2p′

∂t2∂x

+ R4

192ρeν2
e p0

[
4p′

∂2p′

∂t∂x
− 6

∂p′

∂x
∂

∂x

(
αe
∂p′

∂x

)
− ∂p′

∂t
∂p′

∂x

]
+ β PrR4

384ρeν2
e p0

[
4(γ − 1)

γ

∂p′

∂t
∂p′

∂x
+ 5αe

Te

dTe

dx

(
∂p′

∂x

)2
]
, (4.16)

and

T ′ = R2

8ke

∂p′

∂t
+ PrR4

48ρeν2
e

dTe

dx
∂p′

∂x
+ PrR4

48ρeν2
e

dTe

dx
p′

p0

∂p′

∂x
− 1

96keµe

(
∂p′

∂x

)2

− PrR4

48keνe

∂2p′

∂t2
− 11

3072
(1+ Pr)PrR6

ρeν3
e

dTe

dx
∂2p′

∂t∂x
, (4.17)

where use has been made of the following averages: ψ2 = R2/8, ψ4 = R4/48, ψ2
2 =

R4/48, ψ6 = R6/256, ψ64 = R6/192, ψ60 = 11R6/3072 and ψ62 = 5R6/3072.
Substituting these into (3.41), the higher-order equation for p′ is derived as

∂p′

∂t
− ∂

∂x

(
αe
∂p′

∂x

)
+ αe

Te

dTe

dx
∂p′

∂x
− (γ − 1)Prαe

a2
e

∂2p′

∂t2

+ 1
6

[
∂

∂x

(
αeR2

νe

∂2p′

∂t∂x

)
− (1+ Pr)αeR2

νeTe

dTe

dx
∂2p′

∂t∂x

]
− p′

p0

∂p′

∂t
− αe

p0

(
∂p′

∂x

)2

= 0.

(4.18)
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The only difference from (3.44) lies, besides the definition of αe, in the coefficient in
the square bracket on the second line. Using the lowest-order approximation, (4.18) is
expressed in the form of

∂p′

∂t
− ∂

∂x

(
αe
∂p′

∂x

)
+ αe

Te

dTe

dx
∂p′

∂x
+
[

8
6
γ − (γ − 1)Pr

]
αe

a2
e

∂2p′

∂t2

− 1
6
(1+ β + Pr)

αeR2

νeTe

dTe

dx
∂2p′

∂t∂x
− p′

p0

∂p′

∂t
− αe

p0

(
∂p′

∂x

)2

= 0, (4.19)

with αe given by (4.5).
Finally v′ is obtained from (3.40) in which the last term ∂v′/∂y is replaced with

r−1∂(rv′)/∂r. It is given in the same form as (3.48) by replacing y, (3H2− y2)y/6 and
(5H2 − y2)2y/120 with r/2, (2R2 − r2)r/16 and (3R2 − r2)2r/384, respectively. These
replacement functions are the integrals of the functions r, rψ2 and rψ4 with respect
to r, respectively, divided by r. Using (4.18), v′ is then expressed as

v′ =
(

1− p′

p0

)
∂

∂t

(
p′

p0

)
2ψ2

R2
r

− 1
νep0

[
∂2p′

∂t2
− (1+ β + Pr)

αe

Te

dTe

dx
∂2p′

∂t∂x

]
ψ2

2

3R2
r. (4.20)

5. General relations for means of time-periodic oscillations

This section is devoted to discussion of general relations derived from (3.46)
and (4.19). In application to thermoacoustic devices, they describe the nonlinear
behaviour of a gas in regenerators and should be solved together with other equations
valid in the domains outside of the regenerators. In this sense, it is not relevant to
seek specific solutions to the equations alone. Because self-excited oscillations are
generated in real devices, it is expected that the nonlinear equations (3.46) and (4.19)
will be able to support time-periodic solutions. In the linear case, in fact, it is shown
by Hyodo & Sugimoto (2014) that the linearised versions of those equations describe
a marginal state of instability and yield a periodic oscillation, though infinitesimally
small in amplitude. On the basis of an a priori assumption based on the existence
of periodic solutions, general relations among mean values over one period are
considered.

To discuss the two cases for the channel and the pore simultaneously, (3.46)
and (4.19) are written as

∂p′

∂t
− ∂

∂x

(
αe
∂p′

∂x

)
+ αe

Te

dTe

dx
∂p′

∂x
+ [nγ − (γ − 1)Pr

] αe

a2
e

∂2p′

∂t2

−m(1+ β + Pr)
αeH2

νeTe

dTe

dx
∂2p′

∂t∂x
− p′

p0

∂p′

∂t
− αe

p0

(
∂p′

∂x

)2

= 0, (5.1)

where the pairs of fractions (m, n) are (2/5, 6/5) and (1/6, 8/6) for the channel and
for the pore, respectively and αe is defined by ma2

eH2/nγ νe (=mp0H2/nµe), H being
replaced with R for the pore.
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5.1. Relations for mean values
Denoting a time period of the oscillations in p′ by τ , i.e. p′(x, t) [= p′(x, t + τ)], a
mean value of p′ is defined by attaching a tilde as

p̃′ ≡ 1
τ

∫ t+τ

t
p′(x, θ) dθ. (5.2)

It is then straightforward to show that

∂̃p′

∂x
= ∂ p̃′

∂x
and p̃′

∂p′

∂x
= ∂

∂x

(
p̃′2

2

)
. (5.3a,b)

Taking the mean of (5.1), it follows that

− ∂

∂x

(
αe
∂̃p′

∂x

)
+ αe

Te

dTe

dx
∂̃p′

∂x
− αe

p0

(̃
∂p′

∂x

)2

= 0, (5.4)

where the terms associated with differentiation with respect to t drop out because of
the periodicity. This relates the spatial derivatives of the mean pressure p̃′ to the mean
of the pressure gradient squared. Note that the finite effect of the span length does not
contribute to (5.4). Because (5.4) is written as

αe

Te

(̃
∂p′

∂x

)2

=− ∂
∂x

(
αe

Te

∂̃p′

∂x

)
p0, (5.5)

the mean of the pressure gradient squared and multiplied with αe/Te on the left-hand
side is expressed in terms of the spatial derivative of the mean pressure gradient
multiplied with −αep0/Te. Alternatively this implies that the gradient of the mean
pressure is small, of quadratic order. In fact, ∂ p̃′/∂x is expressed as

∂ p̃′

∂x
=−Te

αe

∫ x αe

p0Te

(̃
∂p′

∂x

)2

dx. (5.6)

When the nonlinear terms are neglected, the mean pressure gradient vanishes so that
p̃′ is taken to be zero. However, when the nonlinear terms are taken into account, it
is obvious that the mean pressure decreases with x.

Next multiplying (5.1) with p′ and taking the mean, it follows that

− ∂

∂x

(
αep̃′

∂p′

∂x

)
+ αe

(̃
∂p′

∂x

)2

+ αe

Te

dTe

dx
p̃′
∂p′

∂x
+ P̃ = 0, (5.7)

where P̃(x) stands for the higher-order terms given by

P̃ = −[nγ − (γ − 1)Pr]αe

a2
e

(̃
∂p′

∂t

)2

+m(1+ β + Pr)
αeH2

νeTe

dTe

dx
∂̃p′

∂t
∂p′

∂x

− αe

p0

˜
p′
(
∂p′

∂x

)2

, (5.8)
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where the tilde over the last term is effective with p′ inclusive. The first three terms
in (5.7) are of the same order and each term in P̃ is small, of the order of 1/χ 2,
1/δ2 and ε relative to the leading terms. Elimination of the second term in (5.7) by
use of (5.4) and rearrangement of the terms yield

∂

∂x

[
αe

Te

(
∂̃p′

∂x
+ p̃′

p0

∂p′

∂x

)]
= P̃

p0Te
. (5.9)

When the right-hand side is neglected, it follows that

p̃′ + p̃′2

2p0
= c1

∫ x Te

αe
dx+ c2, (5.10)

where c1 and c2 are arbitrary constants in x. Because the right-hand side is
independent of p′, and is present even in the linear case, it is reasonable to take
c1 and c2 to vanish. Then it is found that the mean pressure p̃′ is negative and small,
of order ε2p0. The terms neglected in (5.10) (due to P̃) are even smaller, of order
ε2/χ 2, ε2/δ2 and ε3 relative to p0.

When (5.1) is multiplied with αe∂p′/∂x and the mean is taken, the mean of the
product of the temporal gradient of p′ and its spatial gradient is expressed in terms
of the spatial derivative of the spatial gradient squared and multiplied with α2

e/2T2
e as

αe

T2
e

∂̃p′

∂t
∂p′

∂x
= ∂

∂x

 α2
e

2T2
e

(̃
∂p′

∂x

)2
 , (5.11)

to the lowest order. Similarly when (5.1) is multiplied with ∂p′/∂t and the mean is
taken, it follows that

(̃
∂p′

∂t

)2

= ∂

∂x

(
αe
∂̃p′

∂t
∂p′

∂x

)
− αe

Te

dTe

dx
∂̃p′

∂t
∂p′

∂x
. (5.12)

This is rewritten as

1
T2

e

(̃
∂p′

∂t

)2

= 1
Te

∂

∂x

(
αe

Te

∂̃p′

∂t
∂p′

∂x

)
= 1

Te

∂

∂x

Te
∂

∂x

 α2
e

2T2
e

(̃
∂p′

∂x

)2
 . (5.13)

Here it should be remembered that the relations (5.11) to (5.13) hold to the lowest
order only, whereas (5.5) is derived rigorously from (5.1). It is found from (5.11)
that the mean of the product of the spatial and temporal gradients of p′ is expressed,
besides the factors αe and Te, in terms of the spatial derivative of the mean of
the pressure gradient squared, which is related to the gradient of the mean excess
pressure through (5.5). Similarly, it is found from (5.13) that the mean of the temporal
gradient squared is expressed in terms of the second-order derivative of the mean of
the pressure gradient squared. Hence the means of the products of the spatial and/or
temporal gradients of p′ are related to each other through spatial differentiation and
ultimately they are reduced to the spatial derivatives of the mean pressure p̃′ by (5.5).
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5.2. Mean shear stress and mean heat flux on walls
Knowing the relations among the mean values, we now consider mean values of the
shear stress s acting on the gas and of the heat flux q flowing into the gas on the walls.
Noting that the shear viscosity and the heat conductivity on the wall are, respectively,
µe and ke because T ′ vanishes there, s and q are defined for the channel by

s= 2µe
∂u′

∂y

∣∣∣∣
y=H

and q= 2ke
∂T ′

∂y

∣∣∣∣
y=H

, (5.14a,b)

where the factor 2 reflects the contribution from the lower wall by using even
functions of u′ and T ′ in y, and defined for the pore by

s=µe
∂u′

∂r

∣∣∣∣
r=R

and q= ke
∂T ′

∂r

∣∣∣∣
r=R

. (5.15)

Substituting into these expressions u′ and T ′ obtained in §§ 3 and 4, s and q are
expressed in terms of p′. For the channel, u′ and T ′ are given, respectively, by (3.37)
and (3.39), while for the pore, they are given, respectively, by (4.10) and (4.15).

By doing this and taking the mean, s̃ and q̃ are obtained for the respective cases
as follows:

s̃
2H
= ∂̃p′

∂x
+ mH2

νep0

2
∂̃p′

∂t
∂p′

∂x
+ αe

Te

dTe

dx

(̃
∂p′

∂x

)2
 , (5.16)

and

q̃
2H
=−

(
γ

γ − 1

)
αe

Te

dTe

dx

(
∂̃p′

∂x
+ p̃′

p0

∂p′

∂x

)
, (5.17)

where note that mPrkeH2/nρeν
2
e =[γ /(γ −1)]αe/Te and γ /(γ −1)= cp/R= cpρeTe/p0.

For the case of the pore, 2H on the left-hand sides of (5.16) and (5.17) is replaced
by R/2, whereas H on the right-hand side is replaced by R. The quantities on the
left-hand sides of (5.16) and (5.17) represent, respectively, the total shear force and
the heat flux along the wetted perimeter divided by the cross-sectional area. For a
channel of unit depth perpendicular to the (x, y)-plane, the wetted perimeter in contact
with the gas is 2 (which has already been included in (5.14)) and the cross-sectional
area is 2H.

It is found that the mean shear stress is contributed to not only by the gradient of
the mean pressure but also by the means of the products of the spatial and/or temporal
pressure gradients. However, using (5.11) and (3.7) (or (4.3) in the case of the pore),
(5.16) is rewritten as

s̃
2H
= ∂̃p′

∂x
+ mH2

p0

∂

∂x

αe

νe

(̃
∂p′

∂x

)2
= ∂̃p′

∂x
+ ∂

∂x
(ρeũ′2), (5.18)

where u′2= (m2H4/nµ2
e)(∂p′/∂x)2 to the lowest-order approximation. The first and last

terms represent, to quadratic order, the balance of the x component of the momentum
flux density vector averaged over the span length. This form is rather more obvious
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788 N. Sugimoto

physically than (5.16). Because of (5.10), the gradient of the mean pressure is small
and comparable with ˜(p′∂p′/∂x)/p0, yet the remaining nonlinear terms are smaller than
this term by 1/δ2 and χ 2/δ4. This means that the shear stress is mainly caused by the
pressure gradient and the contribution from ρeu′2 remains small.

On the other hand, (5.17) is derived directly by averaging (2.3) over the span length.
The terms on the right-hand side stem from the advection under the temperature
gradient, cp(ρe + ρ ′)u′ dTe/dx, while the sum u′∂p′/∂x + Φ vanishes on averaging.
The relation (5.17) shows that the mean heat flux flows only when the gradient is
present. To examine this, we start with the lowest-order approximation. Because p̃′
vanishes and so does the mean pressure gradient, there is no mean heat flux. This
result is reasonable because T ′ vanishes everywhere. Hence the mean heat flux is
brought about by the finite effects of 1/δ, 1/χ and ε in the presence of a temperature
gradient.

When the higher-order terms in (5.9) are taken into account, it is integrated as

∂̃p′

∂x
+ p̃′

p0

∂p′

∂x
= Te

αe

∫ x P̃

p0Te
dx. (5.19)

Hence q̃ in (5.17) is rewritten as

q̃
2H
=−

(
γ

γ − 1

)
dTe

dx

∫ x P̃

p0Te
dx. (5.20)

The mean heat flux is thus available after integration of the right-hand side. Taking a
reference heat flux to be p0ωH, it is estimated from (5.20) that q̃ is of order ε2/δ2,
(χ 2/δ4)ε2 and (χ 2/δ2)ε3 relative to the reference value. No further reduction appears
to be possible at this stage, but integration of P̃/Te is possible in special cases. This
will be discussed later.

5.3. Mean mass flux
Next we consider a mean mass flux due to the periodic oscillations, which gives
rise to the acoustic streaming. (Strictly speaking, the mass flux in the present context
should accompany with the term ‘density vector’ as the mass flux density vector, but
this will be omitted below for brevity not only for the mass flux but also for the
energy flux.) The mass flux ρv is split into

ρv = ρev
′ + ρ ′v′. (5.21)

The excess density ρ ′ is expressed by using the equation of state (2.7), i.e. p′/p0 =
ρ ′/ρe + T ′/Te + ρ ′T ′/ρeTe, as

ρ ′v′ = ρe

(
p′

p0
− T ′

Te
− ρ

′

ρe

T ′

Te

)
v′ = ρe

p′

p0
v′ − h′

he
ρv′, (5.22)

with a specific enthalpy designated by h (= cpT), where he (= cpTe) and h′ (=h−he=
cpT ′) denote, respectively, a local specific enthalpy in the quiescent state and an excess
specific enthalpy from it. Note that since h′/he (=T ′/Te) is smaller than p′/p0, the first
term dominates on the right-hand side of (5.22). At any rate, it is found from this that
ρ ′v′ is related to the acoustic energy flux p′v′ and the excess enthalpy flux ρh′v′.
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For the case of the channel, the x-component of the steady mass flux is calculated
by using (3.37) and (3.39) as

ρ̃u′ = − 1
νe

(
∂̃p′

∂x
+ p̃′

p0

∂p′

∂x

)
φ2 − 1

ν2
e p0

 ∂̃p′

∂t
∂p′

∂x
φ46 + αe

Te

dTe

dx

(̃
∂p′

∂x

)2 nφ6

mH2


+ Pr
ν2

e p0

(γ − 1)
γ

∂̃p′

∂t
∂p′

∂x
φ2

2 +
αe

Te

dTe

dx

(̃
∂p′

∂x

)2 nφ2φ4

mH2


+ βPr
ν2

e p0

(γ − 1)
γ

∂̃p′

∂t
∂p′

∂x
φ2

2

2
+ αe

Te

dTe

dx

(̃
∂p′

∂x

)2 nφ62

mH2

 , (5.23)

with n/m = 3 and φ46 = 2φ4 + [(n/m)φ6 + φ64]/H2 = (86H4 − 19H2y2 + y4)(H2 −
y2)/120H2 where the lowest-order relation (3.13) has been used. Here the second and
third lines with Pr and βPr are contributed to, respectively, by the excess enthalpy
flux and the temperature dependence of the viscosity. For the case of the pore with
n/m= 8 and n= 8/6, H and φ in (5.23) are replaced by R and ψ , respectively, and
ψ46 = 2ψ4 + (8ψ6 +ψ64)/R2 = (103R4 − 41R2r2 + 4r4)(R2 − r2)/576R2.

On the other hand, however, the y-component is not calculated by (3.48) accurately,
because v′ has not been specified up to the approximation consistent with (3.37).
To do this, it is necessary to derive the higher-order equation than (3.44) by taking
account of the nonlinear advection terms (the second and third lines in (3.42))
in (3.41) and to obtain the expression of v′ higher than (3.48) from (3.40). The
procedure is the same as was used and is simple in principle but becomes very
awkward. To circumvent this, it is helpful to note that the mean mass flux satisfies
the divergence-free condition i.e. ∇ · (̃ρv′) = 0. Noting that the integral of ρ̃u′ over
the span length is constant in x,

d
dx

∫ H

−H
ρ̃u′ dy= 0, (5.24)

ρ̃v′ is calculated by the following integral of (5.23) as

ρ̃v′ =− ∂
∂x

∫ y

0
ρ̃u′ dy, (5.25)

where, since ρ̃u′ is even in y, while ρ̃v′ is odd so that it vanishes at y = 0, (5.25)
satisfies the boundary conditions ρ̃v′ = 0 at y=±H owing to (5.24). For the case of
the pore, ρ̃u′ and ρ̃v′ are replaced, respectively, by rρ̃u′ and rρ̃v′, while y and H are
replaced, respectively, by r and R. In any case, it is found that ρ̃v′ contains the spatial
derivatives of the terms with the tilde in (5.23).

Here we estimate the order of the mass flux. It is noted that the sum in the first
parentheses in (5.23) which is proportional to φ2 vanishes to the lowest order as in the
case of the mean heat flux, and therefore it must be evaluated by using (5.9). Taking
a reference magnitude of the mass flux to be ρeωL, and using (5.19) with (5.8), it is
found that

1
νe

(
∂̃p′

∂x
+ p̃′

p0

∂p′

∂x

)
φ2 ∼ ρ0ωL

(
ε2

δ2
,
ε2χ 2

δ4
,
ε3χ 2

δ2

)
, (5.26)
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since φ2∼H2. Next, the first terms in the three square brackets of (5.23) are estimated
to be

1
ν2

e p0

∂̃p′

∂t
∂p′

∂x
H4 ∼ ρ0ωL

ε2χ 2

δ4
, (5.27)

since φ46 ∼ φ2
2 ∼ H4, and the second terms are of the same order as the first terms,

i.e. χ 2/δ2 relative to the first ones. Hence ρ̃u′ is found to be of order

ρ̃u′

ρ0ωL
∼ ε

2

δ2

(
1,
χ 2

δ2
,
χ 4

δ4
, εχ 2

)
. (5.28)

For ρ̃v′ given by (5.25), on the other hand, the integration of ρ̃u′ with respect to
y and then differentiation with respect to x lowers the order by H/L. Thus ρ̃v′ is
estimated to be

ρ̃v′ ∼ ρ̃u′
H
L
. (5.29)

It is noted that ρ̃v′ includes the spatial derivatives of the factors with the tilde in (5.23)
by differentiation with respect to x.

Hence when the three parameters 1/δ2, 1/χ 2 and ε are regarded as being
comparably small, the magnitude of the x-component of the mass flux is of order
ε3ρ0ωL, while the y-component is smaller than it by H/L. If the mean pressure
gradient is known by any means, it is straightforward to evaluate the means of the
spatial and/or temporal gradients by (5.11) and (5.13). Then the vector field of the
mean of the mass flux can be analysed by (5.23) and (5.25).

5.4. Mean energy flux
It has been revealed that the mean acoustic energy flux and excess enthalpy flux
are engaged in the mean mass flux. Here we consider the mean energy flux. While
the energy equation is given by (2.3), it is originally derived from the following
conservation form:

∂E

∂t
+∇ ·H = 0, (5.30)

where E stands for the total energy density ρ(e+ v · v/2), e being a specific internal
energy cvT and H stands for the energy flux density vector given by

H = ρ( 1
2v · v + h)v − k∇T − v · σ . (5.31)

Taking the mean of (5.30) over one period, it follows that ∇ · H̃ = 0. As H consists
of four terms, we look at the magnitude of each term.

The first term ρ(v · v)v/2 is due to transfer of the kinetic energy. This may be
approximated by ρeu′2v′/2 because the contribution from v′2/2 is smaller by the order
H2/L2 relative to u′2/2. Taking a typical magnitude of the energy flux to be ρ0h0ωL
and noting that h0 = cpT0 = a2

0/(γ − 1), the transfer of kinetic energy is estimated to
be of order ε3χ 4/δ6 relative to the typical one. Because we are concerned with the
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energy flux at the same level of approximation as the mass flux relative to ρ0ωL, the
transfer of the kinetic energy is neglected.

The second term represents the enthalpy flux ρhv′, which is transported substantially
with the mass flux. It may be viewed as the sum of the flux carrying the local value
he and the excess enthalpy h′. Thus it is broken into

ρhv = heρv′ + h′ρv′ = he(ρev
′ + ρ ′v′)+ h′ρv′. (5.32)

Using (5.22) to eliminate ρ ′v′, the enthalpy flux is written as

ρhv = heρev
′ + heρe

p′

p0
v′. (5.33)

Comparing this with the mass flux (5.21) (with (5.22)) multiplied with he, the only
difference is due to the term h′ρv′.

The third term in (5.31) represents the heat conduction and the leading term is given
by the spanwise component. Using (3.39) and noticing that the linear terms associated
with differentiation with respect to t drop out on taking the mean and the sum of the
second and third terms becomes smaller than the fourth term by (5.26), it follows that

− k
∂T̃ ′

∂y
≈µe

∂

∂y

(
ũ′2

2

)
, (5.34)

where for the case of the pore, y is replaced with r. The term (5.34) is estimated to
be of order ε2δ2H/χ 2L relative to ρ0h0ωL and is found to be smaller.

The fourth term represents the flux due to the viscous power. Because the leading
term is due to the y- or r-component, it is given for the case of the channel by

− ṽ · σ |y ≈−u′σxy ≈−µe
∂

∂y

(
ũ′2

2

)
, (5.35)

and for the case of the pore, y is replaced by r. Hence it is found that the fourth term
cancels the third term.

The mean energy flux is thus given by

H̃ = he

(
ρeṽ′ + ρe

p0
p̃′v′
)
. (5.36)

Designating H̃ by (H̃x, H̃y), the x-component takes the form

H̃x = −he

νe

(
∂̃p′

∂x
+ p̃′

p0

∂p′

∂x

)
φ2 − he

ν2
e p0

 ∂̃p′

∂t
∂p′

∂x
φ46 + αe

Te

dTe

dx

(̃
∂p′

∂x

)2 nφ6

mH2


+ βPrhe

ν2
e p0

(γ − 1)
γ

∂̃p′

∂t
∂p′

∂x
φ2

2

2
+ αe

Te

dTe

dx

(̃
∂p′

∂x

)2 nφ62

mH2

 . (5.37)

On the other hand, the y-component must also be obtained by the divergence-free
condition of the mean energy flux ∇ ·H̃ =0. The integral of H̃x over the span yields

d
dx

∫ H

−H
H̃x dy= q̃, (5.38)
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where q is given by (5.14). Noting that H̃x is even in y, while H̃y is odd so that it
vanishes at y= 0, H̃y is obtained by

H̃y = − ∂
∂x

∫ y

0
H̃x dy. (5.39)

for the case of the channel, where H̃y takes −q̃/2 at y=H. For the case of the pore,
Hx and Hy are replaced, respectively, by rHx and rHy, while y and H are replaced,
respectively, by r and R. Comparing (5.37) with (5.23), the difference is the second
line in (5.23), which results from −h′ρv/he in (5.22). As in the case of the mass flux,
the vector field of the mean energy flux can be analysed by (5.37) and (5.39).

Finally, the magnitude of the mean energy flux is summarized. Referring to the
typical magnitude ρ0h0ωL, H̃x is found to be of order

H̃x

ρ0h0ωL
∼ ε

2

δ2

(
1,
χ 2

δ2
,
χ 4

δ4
, εχ 2

)
, (5.40)

while H̃y is found to be of order

H̃y ∼ H̃x
H
L
. (5.41)

5.5. Integration of (5.9)
It has been revealed that the mean values of the shear stress and heat flux on the wall
and the mean vector fields of the mass and energy fluxes are expressed in terms of
the mean values of the products of the spatial and/or temporal gradients of the excess
pressure, i.e. (5.5), (5.11) and (5.13). These are expressed through (5.5) by the spatial
derivatives of the mean pressure gradient. Among them, the heat flux (5.17) and the
mass and energy fluxes given, respectively, by (5.23) and (5.37) involve the integration
of (5.9). We consider how to evaluate them.

The right-hand side of (5.9) is of higher-order terms and may be rewritten by using
the lowest-order approximation for p′. Noticing that (5.1) is expressed as

αe

T2
e

∂p′

∂t
− αe

Te

∂

∂x

(
αe

Te

∂p′

∂x

)
= 0, (5.42)

to the lowest order, a new variable ξ is introduced instead of x through the following
relation as

dξ
dx
= Te

αe
i.e.

αe

Te

∂p′

∂x
= ∂p′

∂ξ
. (5.43)

Note that ξ has a physical dimension of m−1 s K. To make ξ have the dimension of
length, the right-hand side might better be multiplied with a reference value α0/T0.
Using ξ , (5.42) is written simply as the diffusion equation in the ξ -space as

αe

T2
e

∂p′

∂t
− ∂

2p′

∂ξ 2
= 0. (5.44)
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Similarly (5.5) may be written as

(̃
∂p′

∂ξ

)2

=−∂
2p̃′

∂ξ 2
p0. (5.45)

The relation (5.11) is written as

αe

T2
e

∂̃p′

∂t
∂p′

∂ξ
= 1

2
∂

∂ξ

(̃
∂p′

∂ξ

)2

, (5.46)

and (5.13) is written as

αe

T2
e

(̃
∂p′

∂t

)2

= ∂

∂ξ

(
∂̃p′

∂t
∂p′

∂ξ

)
. (5.47)

Multiplying both sides of (5.9) with αe/Te, it follows that

∂

∂ξ

(
∂̃p′

∂ξ
+ p̃′

p0

∂p′

∂ξ

)
= αe

p0T2
e

P̃. (5.48)

Setting (
∂p′

∂ξ

)2

=G, (5.49)

the right-hand side of (5.48) is written as

− X
2γRp0

[
∂

∂ξ

(
Te
∂G̃
∂ξ

)
+ (1+ β)dTe

dξ
∂G̃
∂ξ

]
+ nY

2mRp0

dTe

dξ
∂G̃
∂ξ
− 1

p2
0
p̃′G, (5.50)

with dTe/dξ = (αe/Te) dTe/dx, where X and Y denote, respectively, the coefficients
nγ − (γ − 1)Pr and m(1+ β + Pr) involved in (5.1), and use has been made of the
relations a2

e = γRTe and H2Te/αeνe = n/mR. The term p′G in (5.50) is written by
using (5.44) as

p′

p2
0

(
∂p′

∂ξ

)2

= 1
2p2

0

∂

∂ξ

(
p′2
∂p′

∂ξ

)
− αe

6T2
e p2

0

∂p′3

∂t
. (5.51)

Taking the mean, the second term vanishes so that the last term in (5.50) is equivalent
to the mean of the first term of (5.51). With the right-hand side of (5.48) specified,
however, (5.48) is generally not integrated.

If we consider a special case that dTe/dξ is constant, then (5.48) may be integrated
once. Such a case occurs when the temperature distribution obeys

Te

T0
=
(

1− x
x∞

)−1/β

, (5.52)
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for a finite value of β, with Te(0)=T0 where x∞ is arbitrary and dTe/dξ =αe(0)/βx∞.
If β is taken to vanish so that αe is independent of x, then Te obeys an exponential
distribution as

Te

T0
= exp

(x
l

)
, (5.53)

where l is arbitrary and dTe/dξ = α0/l, αe being equal to α0. This case may be
regarded as the limiting case of (5.52) as β tends to zero with βx∞ fixed to be the
constant l. Both distributions appear to be plausible if x∞ in (5.52) were located
outside of a domain concerned.

For such distributions, (5.48) is integrated by making use of the mean of (5.51) to
yield

∂̃p′

∂ξ
+ p̃′

p0

∂p′

∂ξ
= − Te

2γRp0

X
∂

∂ξ

(̃
∂p′

∂ξ

)2

+ (1+ β)X − nγY/m
Te

dTe

dξ

(̃
∂p′

∂ξ

)2


− 1
6p2

0

∂ p̃′3

∂ξ
+ const., (5.54)

where const. is an arbitrary constant to be determined. Reverting ξ in (5.54) to x, it
follows that

∂̃p′

∂x
+ p̃′

p0

∂p′

∂x
= − H2

νep0

mX
nγ

∂̃p′

∂t
∂p′

∂x
+ 1

2

[
m
n
(1+ β)
γ

X − Y
]
αe

Te

dTe

dx

(̃
∂p′

∂x

)2


− 1
6p2

0

∂ p̃′3

∂x
+ const.× Te

αe
, (5.55)

where (5.43) and (5.46) have been used. We remark that this relation is valid only
when (αe/Te) dTe/dx is constant, which includes the case without a temperature
gradient. When (5.55) is introduced into (5.17), (5.23) and (5.37), respectively, for
the heat, mass and energy fluxes, these mean values are expressed in terms of the
products of the spatial and/or temporal pressure gradients. In addition, the presence of
the cubic term in p′ should be noted. For the mean heat flux, however, it yields a term
proportional to (HT−1

e dTe/dx)2, which is negligible by the narrow-tube approximation.
Because X and Y in (5.55) are associated with the finite effect of span length, this
effect appears only through (5.55).

The constant involved in (5.55) should be determined by a boundary or a matching
condition. If the channel or the pore is closed by a flat plate, then the mean of the
axial velocity vanishes over the cross-section. This will determine the constant. If the
channel or the pore is open, the constant should be determined by matching conditions
at both ends.

For reference, the numerical values of X and Y are given for the case of γ = 1.4,
Pr= 0.72 and β = 0.5. Letting the factor [m(1+ β)X/nγ − Y]/2 in (5.55) be Z, X =
1.4, Y = 0.89 and Z=−0.19 for the case of the channel, while X= 1.6, Y = 0.37 and
Z =−0.076 for the case of the pore.
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6. Discussion
6.1. Mean mass and energy fluxes in the channel

We now consider the mean values of the mass and energy fluxes in the channel free
from the temperature gradient. For brevity, no temperature dependence of the shear
viscosity and the heat conductivity is assumed to set β = 0. The case of the pore will
be discussed in parallel.

The x-component of the mean mass flux vector is given by (5.23) generally.
Ignoring the terms with a temperature gradient and using (5.55), this is reduced to

ρ̃u′ = 1
ν2

0 p0

∂̃p′

∂t
∂p′

∂x

[
X

3γ
H2φ2 − φ46 + (γ − 1)Pr

γ
φ2

2

]
+ 1

6ν0p2
0

∂ p̃′3

∂x
φ2 +Cφ2, (6.1)

where C is an arbitrary constant to be determined by a boundary condition with
respect to x. The total mass flux over the span is given by∫ H

−H
ρ̃u′ dy = 1

ν2
0 p0

∂̃p′

∂t
∂p′

∂x

[
2X
9γ
− 32

35
+ 4

15
(γ − 1)Pr

γ

]
H5

+
(

1
6ν0p2

0

∂ p̃′3

∂x
+C

)
2H3

3
, (6.2)

which should be constant in x. Using (5.25) with (6.1), the y-component is obtained
as

ρ̃v′ = − 1
ν2

0 p0

∂

∂x

(
∂̃p′

∂t
∂p′

∂x

)[
X

3γ
H2(3H2 − y2)y

6

− (602H6 − 245H4y2 + 28H2y4 − y6)y
840H2

+ (γ − 1)Pr
γ

(15H4 − 10H2y2 + 3y4)y
60

]
− 1

6ν0p2
0

∂2p̃′3

∂x2

(3H2 − y2)y
6

, (6.3)

where ρ̃v′ vanishes at y=±H owing to (6.2) constant in x.
Using (5.13), it is found that ρ̃v′ is related to the mean of the temporal pressure

gradient squared and also to the second-order derivative of the mean of the cubic
term in the excess pressure. For the mean energy flux, similarly, the x-component is
given by (6.1) multiplied with h0 but without the term proportional to φ2

2 . Likewise
the y-component is also available from (6.3) and it vanishes at y = ±H. Because
H̃y degenerates to −q̃/2 on the wall, no mean heat flux appears in accordance
with (5.17) in the absence of a temperature gradient. Since the mass and energy
fluxes are associated with ∂p′/∂t, they are rooted in the temperature variation. Hence
it may be said that whenever the mean mass and energy fluxes are concerned, the
temperature variation cannot be disregarded.

When the temperature gradient is present, there are additional terms proportional to
(αe/Te) dTe/dx. Because ∇ · (ρ̃v′)= 0 and v′ vanishes at y=±H, the mean over the
cross-section satisfies

d
dx
(̃ρu′)= 0, (6.4)
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and the mean mass flux ρ̃u′ is constant in x. If the channel is closed by a flat plate
somewhere, it must vanish everywhere. However if it is open axially, the steady mass
flux may appear. This is the case in a looped tube.

From the equation of energy, similarly, it follows that

dH̃x

dx
≈ d

dx
(̃ρhu′)= q̃

2H
, (6.5)

where q is the heat flux on the wall given by (5.14). When h is broken into he+h′, the

mean enthalpy flux is expressed by the sum of he(̃ρu′)+ ρ̃h′u′. The former represents
the mean energy flux transported by the mean mass flux and the latter represents the
mean excess enthalpy flux. If the channel is closed, the former vanishes everywhere.

Within the lowest-order approximation, h′ is taken to vanish because T ′ = 0. Then
the excess enthalpy flux ρh′u′ is written as

ρh′u′ ≈ ρeh′u′ = p′u′ + ρeTeS′u′ = 0, (6.6)

by using the thermodynamic relation h′≈p′/ρe+TeS′, S′ being an excess entropy from
its local value Se in the quiescent state. Hence the energy flux consists of the acoustic
energy flux p′u′ and the entropy flux times Te, i.e. ρeTeS′u′. The former is often called
a work flow in the field of thermoacoustics, while the latter is the so-called heat flow.

In the higher-order approximation, no such decomposition can be made because h′
does not vanish. The acoustic energy flux averaged over the cross-section may be
obtained by using (3.42) as

p̃′u′ = − H2

3µe
p̃′
∂p′

∂x
− 2

15
H4

ρeν2
e

∂̃p′

∂t
∂p′

∂x
+ 17

630
H6

ρeν3
e

∂

∂x

(̃
∂p′

∂t

)2

− H4

105ρeν2
e p0

24
∂̃p′2

∂t
∂p′

∂x
+ 18

αe

Te

dTe

dx

˜
p′
(
∂p′

∂x

)2
 , (6.7)

where the tilde on the last term is over p′ inclusive. The first term on the first
line represents the acoustic energy flux in the lowest-order approximation. Then the
integral of ρeTeS′u′ is given by the first term with its sign reversed. This is the result

in the lowest-order approximation. In the higher-order approximation, H̃ x− p̃′u′ may
be defined to be a heat flow in the axial direction.

6.2. Evaluation of the mean values by experiments
We have seen that all the mean values are expressed in terms of the mean values of
the products of the spatial and/or temporal pressure gradients. They are obtained after
a periodic solution to (3.46) or (4.19) is available. While this task is not easy but
worth challenging, we consider a way of obtaining the mean values experimentally
by utilizing the theoretical results derived. To do this, at first sight it may appear
to suffice to measure the pressure along the flow passage. This requires an array
of pressure sensors which are flush-mounted along the flow passage and capable
of measuring pressure at high temperature. Because the spatial derivatives of the
pressure are involved in the mean values, many sensors would be necessary for a
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precise measurement of them. In this sense, the measurement of the spatial gradient
would be difficult.

As suggested by the theory, however, we know that the spatial gradient gives rise to
the axial velocity. Because velocity measurements may be available relatively easily
by techniques of hot-wire anemometry and LDV, the spatial gradient is available
by measuring the axial velocity. Furthermore, if the maximum spanwise component
of the velocity can be measured, it bears relation to the temporal gradient of the
pressure. However, because the spanwise component is much smaller, it seems to
be less practical. Rather the temporal gradient is available if the temperature can be
measured. Therefore if the axial velocity and the temperature are measured pointwise
so that the means of the products of the spatial and/or temporal pressure gradients are
available, then the mean values may be obtained according to the formulae given in
§§ 5.2–5.5. This will be described briefly below. For the measurement of the pressure,
in passing, it may be available via the density measured optically. Since the density is
uniform spanwise thanks to the isothermal process to the lowest-order approximation,
the measurement of the density may provide a complementary means to that of the
pressure.

Let temporal fluctuations of the axial velocity and the gas temperature averaged over
the span be available pointwise in the axial direction. Then the averaged value of u′
is evaluated approximately by (3.42) or (4.16) as

u′ =−mH2

nµe

∂p′

∂x
, (6.8)

to the lowest order, while the one of T ′ is evaluated similarly by (3.43) or (4.17) in
the case without temperature gradient as

T ′ = mH2

nke

∂p′

∂t
, (6.9)

where H is replaced by R for the case of pore. Making use of these, the temporal
mean values of the products of the spatial and/or temporal pressure gradients may be
given by

(̃
∂p′

∂x

)2

= n2µ2
e

m2H4
(̃u′)2, (6.10a)

∂̃p′

∂t
∂p′

∂x
=−n2µeke

m2H4
ũ′ T ′, (6.10b)(̃

∂p′

∂t

)2

= n2k2
e

m2H4
(̃T ′)2, (6.10c)

where ke/µe= cp/Pr. Hence if the temporal mean values of the averaged axial velocity
and temperature over the span were measured, then it would be possible to determine
approximately all the vector fields of the mean mass and energy fluxes. Here it is
emphasized that because the temperature fluctuation is associated with the mean fluxes,
the lowest isothermal approximation fails to determine them.

In the case that no spanwise averaged values were available, but maximum values
over the cross-section were available experimentally, (6.10) is modified. Designating
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the maximum value by attaching an asterisk, the maximum value of u′ is given for
the case of the channel by

u′∗ =− H2

2µe

∂p′

∂x
, (6.11)

to the lowest order, while the one of T ′ is given by

T ′∗ = H2

2ke

∂p′

∂t
. (6.12)

For the case of the pore, H2 is replaced by R2/2. Then the relations (6.10) are
replaced by the following ones:

(̃
∂p′

∂x

)2

= 4µ2
e

H4
(̃u′∗)2, (6.13a)

∂̃p′

∂t
∂p′

∂x
=−4µeke

H4
ũ′∗T ′∗, (6.13b)(̃

∂p′

∂t

)2

= 4k2
e

H4
(̃T ′∗)2. (6.13c)

If the means of the products of the spatial and/or temporal gradients of p′ were
evaluated via the relations above by measured data of the axial velocity and
temperature, all the mean values of not only the shear stress and heat flux on
the wall but also those of the vector fields of the mass and energy fluxes would be
available.

When the temperature gradient is present, the above relations are modified
because (6.9) and (6.12) are given, respectively by

T ′ = mH2

3ke

∂p′

∂t
+ 2

15
PrH4

ρeν2
e

dTe

dx
∂p′

∂x
, (6.14a)

T ′∗ = H2

2ke

∂p′

∂t
+ 5

24
PrH4

ρeν2
e

dTe

dx
∂p′

∂x
, (6.14b)

in the case of the channel. Since the respective second terms are written in terms of
u′ or u′∗, the means of the products of the spatial and/or temporal pressure gradients
are expressed in terms of the means of the axial velocity and/or the temperature.

7. Conclusion
A nonlinear theory for thermoacoustic waves in a gas-filled, narrow channel and

pore subjected to a temperature gradient has been developed on the basis of the
fluid dynamical equations for an ideal gas. No thermal interaction between the
gas and the wall is taken into account by assuming that the heat capacity of the
wall is so large that the wall temperature is fixed. The theory is asymptotic in
the three small parameters 1/δ, 1/χ and ε defined by (3.2) on the basis of the
narrow-tube approximation such that the terms of order (H/L)2 are negligible so
that the pressure may be regarded as being uniform spanwise. Starting with the
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lowest-order approximation that the pressure gradient balances with the wall friction
and the isothermal process takes place everywhere locally, the fluid dynamical
equations are approximated asymptotically and successively by the three parameters
so as to satisfy the boundary conditions on the wall.

In the limiting case that 1/δ, 1/χ and ε tend to zero, the lowest-order approximation
yields the linear diffusion wave equation for the excess pressure. The axial velocity
of the gas is simply equal to that of Poiseuille flow as in incompressible fluids,
though the spanwise velocity is present because of the compressibility. When the
mean velocity averaged over the flow passage is concerned, it is proportional to
the pressure gradient with the sign reversed. This result endorses the validity of the
empirical Darcy’s law for the mean velocity. On the other hand, the local temperature
disturbance remains zero so that the gas temperature is equal locally to the wall
temperature. Such a picture would be applicable to complicated cases of tortuous
flow passage in regenerators, provided that the span length and the magnitude of the
pressure disturbances are extremely small. In these cases, the diffusivity αe must be
determined experimentally.

For finite values of the parameters, all field variables have been determined
consistently on the basis of the lowest, i.e. zeroth-order approximation, in terms
of the excess pressure up to the higher-order terms. When the three parameters
satisfy the relation 1/δ2 ∼ 1/χ 2 ∼ ε, the finite effect of span length first manifests
in the axial velocity and the temperature. Because of the latter disturbance, the local
isothermal process is no longer valid. To first-order approximation, the finite effect of
the magnitude arises from the density change ρ−1Dρ/Dt in the equation of continuity,
especially through the pressure change p−1Dp/Dt. Taking the lowest-order nonlinear
terms, the single nonlinear diffusion wave equations (3.46) and (4.19) are derived
from the consistency condition with the boundary conditions on the wall.

The linear terms in the nonlinear diffusion wave equation agree with those
derived from the approximation of the thermoacoustic wave equation for a thick
diffusion layer at low frequency (Sugimoto 2010). The other nonlinear terms in
the velocity and temperature due to the advection terms in inertia, the temperature
dependence of the viscosity and the heat conductivity in the equation of motion and
the viscous dissipation function in the equation of energy remain secondary in the
equations derived. To discuss the temporal mean values for time-periodic oscillations,
however, the axial velocity and the temperature have been specified to second-order
approximation. To the extent of the present approximation, it is found that the bulk
viscosity does not come in to play even if included, though usually neglected without
any reasonable arguments in spite of its being comparable with the shear viscosity.

When the theory is applied to the analysis of thermoacoustic devices, the equation
derived is to be solved in conjunction with other wave equations describing nonlinear
propagation in a buffer tube and a tube with uniform temperature. As a consequence
of this, it is expected that self-excited, periodic oscillations would be obtained.
Supposing the existence of time-periodic solutions to the nonlinear diffusion wave
equation, the temporal means of the shear stress and the heat flux on the wall, and
the vector fields of the mass and energy fluxes over one period of oscillation, have
been expressed in terms of the means of the products of the spatial and/or temporal
gradients of the excess pressure.

As the mean pressure gradient vanishes in the linear case, it is found to be small,
of quadratic order, and to decrease monotonically in the axial direction. Because
the order of the mean pressure gradient is thus lowered, the nonlinear terms which
are secondary in the nonlinear diffusion wave equation come up in to play in the
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mean mass and energy fluxes. It has been revealed that the means of the products of
the spatial and/or temporal pressure gradients are reduced to the spatial derivatives
of the mean pressure gradient. This is an interesting outcome because acoustic and
thermoacoustic streaming are determined in terms of the mean pressure gradient
and its spatial derivatives only. This result is expected to provide a method to
determine the streaming by measuring the means of the products of the axial velocity
and/or temperature rapidly changing, and further to illuminate a clue to suppress the
undesired streaming.
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Appendix A. Equations of motion in Cartesian and cylindrical coordinates
In Cartesian coordinates, the x- and y-components of the equation of motion are

given, respectively, by

ρ

(
∂u
∂t
+ u

∂u
∂x
+ v ∂u

∂y

)
=−∂p

∂x
+ ∂

∂x

(
µ
∂u
∂x

)
+ ∂

∂y

(
µ
∂u
∂y

)
− ∂µ
∂x
∂v

∂y
+ ∂µ
∂y
∂v

∂x
+ ∂

∂x

[(µ
3
+µv

)(∂u
∂x
+ ∂v
∂y

)]
, (A 1)

and

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v ∂v

∂y

)
=−∂p

∂y
+ ∂

∂x

(
µ
∂v

∂x

)
+ ∂

∂y

(
µ
∂v

∂y

)
+ ∂µ
∂x
∂u
∂y
− ∂µ
∂y
∂u
∂x
+ ∂

∂y

[(µ
3
+µv

)(∂u
∂x
+ ∂v
∂y

)]
. (A 2)

In cylindrical coordinates, the divergence of the viscous stress tensor needs a remark.
This is given not only by replacing the differentiation ∂/∂y with ∂/∂r+ 1/r but also
by adding a contribution of the circumferential stress −σθθ/r to the radial component.
For details, see Malvern (1969). Hence the x- and r-components of the equation of
motion are given, respectively, by

ρ

(
∂u
∂t
+ u

∂u
∂x
+ v ∂u

∂r

)
=−∂p

∂x
+ ∂

∂x

(
µ
∂u
∂x

)
+ ∂

∂r

(
µ
∂u
∂r

)
+ µ

r
∂u
∂r

− ∂µ
∂x

(
∂v

∂r
+ v

r

)
+ ∂µ
∂r
∂v

∂x
+ ∂

∂x

[(µ
3
+µv

)(∂u
∂x
+ ∂v
∂r
+ v

r

)]
, (A 3)

and

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v ∂v

∂r

)
=−∂p

∂r
+ ∂

∂x

(
µ
∂v

∂x

)
+ ∂

∂r

(
µ
∂v

∂r

)
+ µ

r
∂v

∂r

−
(
∂µ

∂r
+ µ

r

)
v

r
+ ∂µ
∂x
∂u
∂r
− ∂µ
∂r
∂u
∂x
+ ∂

∂r

[(µ
3
+µv

)(∂u
∂x
+ ∂v
∂r
+ v

r

)]
.

(A 4)
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