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Mean Curvature Comparison with
L'-norms of Ricci Curvature

Jong-Gug Yun

Abstract. 'We prove an analogue of mean curvature comparison theorem in the case where the Ricci
curvature below a positive constant is small in L' -norm.

1 Introduction

The comparison geometry is a branch of Riemannian geometry that is related with
investigating the structure of spaces satisfying some curvature conditions. Starting
with the success of the Rauch comparison theorem, much developments have been
made up to now and produced many applications such as sphere theorem, com-
pactness theorem, finiteness theorem and so on. In particular, the mean curvature
comparison theorem has played an important role in such theorems and it is deeply
related to the volume comparison theorem, which is also an important result in the
comparison geometry.

In 1998, P. Petersen and C. Sprouse [PS] generalized the classical Heinze-Karcher
volume comparison result for hypersurfaces to a situation where one has an integral
bound for the part of the Ricci curvature which lies below a given positive number.
To obtain this result, they first generalized the classical mean curvature comparison
theorem. In order to state these specifically, we need some notation as follows.

(M, g) is a complete Riemannian manifold with metric g. At each point x in this
manifold, we denote by Ric_ (x) the lowest eigenvalue for the Ricci tensor at x. Let
Sx C TM denote the space of unit tangent vectors at x and d(f) be the distance from
x to the cut point in the direction § € S, = S"~! C T, M.

Then we define w(r, §) by pulling back the volume form dvol of M to U, =
{(,0) e TM:0<r<d@),0 €S}, ie,

dvol = w(r, 0) dt do,

where d0 is the standard volume form on S, = S"~!.

For convenience, we define w(r, 8) to be zero for r > d(6).

Let wi(r, 0) be the w(r, 0) of the space form S of dimension n with constant cur-
vature k > 0. We then know that w’ = hw (resp. w] = hwy), where h (resp. hy) is
the mean curvature of the level sets of distance function on (M, g) (resp. S}).
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Recall that the classical mean curvature comparison theorem says that if Ric_ >
(n — 1)k, then h(r, 0) < hi(r).
In order to generalize this, the following are defined.

Ui(r,0) = (h(r,0) — hi(r)) X
pr(r,0) = ((n — 1)k — Ric_(r, 6))

+ b
where u; = max(0, u) is the positive part of the function u.

With these notations, P. Petersen and C. Sprouse proved the desired mean curva-
ture estimates as follows.

Theorem 1.1 (PS) Foralln >2,p > %, k>0,r+r < %, we have an estimate of
the form

/w,ﬁp(t,e)wdtgcm,p,k,r)/ ph(t, 0)w dt,
0 0

where C(n, p, k, r) is an explicit constant depending only on the variables indicated and
0 is fixed.

The above theorem shows that the classical mean curvature comparison can be
generalized to a situation where the amount of Ricci curvature which lies below
(n — 1)k is small in L?-sense for p > 7.

For some analytic reason, the condition p > g(z 1) in the above theorem is
essential and the proof of the above theorem strongly relies on the condition that
p > 5, where the case p = 1 is excluded.

Generally, the geometry of manifolds with bounded Ricci curvature in L!-sense is
known to be not so interesting.

Indeed, S. Gallot [G] showed several examples that the geometry of manifolds
which has small I_c(p, k,R) = SUP, e m fB(x’R) pf dvol, for any p < g, R>0
does not give any interesting results.

Recently, C. Sprouse however managed to show that if one assumes that the man-
ifold has Ric_ > —(n — 1)k (k > 0), then it suffices to assume that the amount of
Ricci curvature which lies below (n— 1) in L!-norm is small in order to get a diameter
bound close to 7. The precise statement of this theorem is as follows.

Theorem 1.2 (S) Assume (M, g) is a complete Riemannian n-manifold with Ric_ >
—(n — 1)k (k > 0). Then for given € > 0, R > 0 there exists an 6 = (¢, R, k, n) such
that if

1
sup ———— n—1)—Ric_) dvol < d(e, R, k, n),
xGJ\F/’I VOIB(X, R) \/B:(x,R)(( ) )+ ( )

then (M, g) is compact with diam(M) < 7 + €.

Motivated by this result, we investigate in this paper that if one assumes the mani-
fold has Ric_ > —(n — 1)k (k > 0), then we can generalize the classical mean curva-

ture comparison to a situation where we have Ricci curvature bounded in L!-norm.
Let’s mention our main result.

https://doi.org/10.4153/CMB-2004-030-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2004-030-0

316 Jong-Gug Yun

Theorem 1.3 Assume (M, g) is a complete Riemannian n-manifold with Ric_ >
—(n—1)k (k > 0). Then for given e > 0 and R € (0, 7), there existsa d = d(¢, R, k, n)
such that iffB(x r P1d Vol < 0, then fB(x‘R) Y dvol < e.

Note that Theorem 1.2 gives a diameter structure for manifolds in the case where
Ricci curvature below a positive constant is small in L' -sense averaged over the metric
balls. Here, averaging the ‘bad’ part of Ric _ over metric balls is reasonable, since one
can have small |, B(x.R) ((n—1)—Ric_)4 dvol by simply having small volume of B(x, R).

In fact, it is shown in [CK] that for any complete Riemannian manifold with non-
negative Ricci curvature, inf, vol B(x, 1) can be zero.

As a corollary of Theorem 1.3, we can however provide a corresponding volume
structure of the space in the Theorem 1.2, where the requirement of averaging the
‘bad’ part of Ric_ over metric balls is not necessary.

Corollary 1.4 For given R > m, € > 0, k > 0, and an integer n, there exists a
6 = 0(¢, R, k,n) such that if M is a complete n-manifold with fB(x_R) prdvol < 6,

Ric_ > —(n— 1)k (k > 0), then vol (B(x, R) — B(x, 7r)) < eforallx € M.

2 Proof of Theorem 1.3

For the proof of Theorem 1.3, we will use the Paeng’s method in [P]. Consider a
sequence (M;, gi,x;) of Riemannian n-manifolds with metrics g; and x; € M; such
that Ricpy, > —(n — 1)k (k > 0).

Let ¢;(r, 0) and p;(r, 0) be the ¢;(r,8) and p,(r,0) of (M;, g;) respectively. Then
it suffices to show that if || B(x,.R) Pi d Vol converges to zero, then J BG.R) Vi dvol also
converges to zero.

Note that for any 6 > 0, vol (Eg) := vol {x € B(x;,R) : pi(x) > J} converges to
zero, since

/ pidvol>/ pidvol > [ &§dvol = §vol (E).
B(x;,R) E

i i
5 E§

Consider now a sequence {d;(> 0)} such thatw_x(8;) = /e, where ¢; := vol (E}).
Let i be the measure on 'yé(t) = exp,. t6 and d'(6) be the distance from x; to the cut

point in the direction € S"~! C T,.M;.
We also write {~}(t) : a < t < b} as v} ([a, b]). Then we define

Syes(0) =inf{s:s>6;, (0 € By ), u( (6,51 NE;) > ei},
where

B s = {9 € S C Ty M; : pu(~(16;, min(R, &(0))]) N E}) < \E}

We first show the following lemma.
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Lemma 2.1

lim Vol{expx t0 : 66(@\4/6—5) 5%5(9)<t<m1n(R dl(ﬁ))}

1—00

If vol (® 4z 5,)° converges to zero, then there is nothing to prove.
So we may assume that lim; oo vol (P y.5,)° > 0. Let

Uyms = {0 € @yms) s / wir0)dr > /e }

V5 ([8.d (O)DNE;

Then we have ¢; = vol (Efs) > (/€ vol (V7 5,), which implies that vol (¥ oz s,)
converges to zero.
Thus we may assume that for every direction 6 € (P 47.5.)",

/ w(r, 0)dr < /€.
(05, O))NE,

We then know that there exists a ¢; > §; such that

w(ci,e) < \/a/\ya: \76_1'

and
(79([5”51 ) ﬂE(s) < \f

From this fact, we also know that ¢; < Sz 5,(6).
Now since Ricy;, > —(n — 1)k, we have for any r with Sy 5,(0) < r < 7 and
0 € (Pyzs)5

k() —k(m)
179 —
o) = TG

CL)(T, 9) S \VE_l = W—k(ﬂ-)\ye_iv

which converges to zero.
Thus we obtain the desired result. [ |

Now we consider

/ 77/},‘ dvol = / 77/},‘0)1‘ drdf
B(x;,R) B(x;,0:)

min(R,d' (9))
(2.1) + / / w,w,- drdo
[0} 451"6,- (5,-
min(R,d' (0
/ / z/J,wl drd0.
\4/(_6

Note that we can without loss of generality assume that 6; < d'(6) and lim; .
di(0) > 0forallf € S" Lin (2.1).
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We will estimate each term of the above sum in (2.1) as below.

First, we know that the first term in the above sum tends to zero as i — oo, since
Ricy;, > —(n—1)kand §; — 0.

Now let’s estimate the second term in the above sum as follows.

Note first that in (Efs)c, we have (n — 1) — Ricy, (9,, 0,) < 8, where 9, = /0, is
the radial unit vector, since p;(x) < 4.

Thus Ricy, (0,,0,) > (n — 1)(1 - 7'((5)) for some 7(9) which tends to zero as
6 — 0.

So we have the following inequality for any § € ® 4 5,

h;

(-*5)’
‘ S dr < -1 dr.
SisRDEY (1= 7(8)) + (525) (16, RDN(ED ¢

0

On the other hand, from the inequality

hi
n—1

h! + < —Ricy (0r,0,) < (n— 1)k,

we know that

hi H;
= k— o1y k

(1= @) + 5P~ (1-70) + (2~ 1-70)°

Consequently, we have

r (%)/ 4 . 4
S e rren LR TR (1= ) G+ v@

= —r+C(0; +/e),

whereC =1+ 1_—’;(6) > 1 forsmall § and r < R.
The above inequality shows that

hi(1,0) < (n—1)y/1 = 7(8) cot /1 — 7(8) (r — C(6; + /&)
=hi_5)(r — C(0i + /&),

for C(d; + /e) <r < min(di(G),R) .
Now if we put 7; := C(; + /€;), then we can write as follows.

hi(t,0) — hi(t) = hi(t,0) = hi—7(5)(t = 73) + hi—r(5) (£ — 73) — Iy ().

Noting that hy(t,6) ~ “ ast — 0 forany A € R, it is easy to check that

hl*T((s)(t - Ti) - hl(t) < 77(7—(5)) )
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which converges to 0 as 7(§) — 0.

Since h;(t, ) — hi_,(5)(t — 73) is negative, we can conclude that (hi (t,0)—h (t)) .
can arbitrarily be small on [/7;, min(d*(0), R)] for sufficiently large i.

We now write
/ Yiw; dr df

min(R,d' (9))
/ / ’(/)io.),' drdf = /
Py i P 45, Vi
min(R,d' (0))
+ / / w,wi drdf.
P yers VT

Then we can see that the first and second terms of the above sum converge to zero
asi — 00.
Now let’s estimate the third term of (2.1) similarly as above.

min(R,d' (9)) Séﬁo
/ / Yiw; dr db —/ / wlwl drdf

min(R,d' (0
/ z/J,w, drd0.

5%5

(@ yers,)°

.

We know that the second term of the above sum converges to zero by Lemma 2.1
which was shown previously.

For the first term of the above sum, we assume that Sz 5,(6) > 0 for all i and
6 € S"~1. We can then split the first term of the above sum as

S wers, (0)
/ / iw; drdf + / / iw; drdb.
(@ yers,) J b B 45 )

0; Y6

(P yes;)°

;)

Clearly the first term of the above sum converges to zero.

Since u(’yé( [0i, S .5, (9)]) N Ef;) = /€, we can apply the same mean curvature
estimates as for § € @ 4z 5, to the second term of the above sum. So we see that the
second term of the above sum also converges to zero. Now we have arrived at the
desired result.

3 Proof of Corollary 1.4

Consider a sequence (M;, g;, x;) of Riemannian n-manifolds with metrics g; such that
fB(th) pi dvol converges to zero and Ricy, > —(n — 1)k (k > 0).

We use the same notation as in the proof of Theorem 1.3.

Let 7 < r < Rand lim;_,o, d'(0) > .

We first estimate w;(r, 0) for 6 € @ a5

Note that w;(r, §) < —2=R0

mwi(w — «, 0) for any small @ > 0, since Ricpy, >
—(n— 1Dk (k> 0).
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From the proof of Theorem 1.3, we know that ( hi(t,0)—h, (t)) , can be arbitrarily
small on [/7;, ™ — «] for sufficiently large .

So we may let h;(t,0) < hi(t) +n; on [/7;, ™ — o] for sufficiently small n; > 0,
which implies that (log )" < 7.

Integrating both sides from /7; to m — «, we obtain

wi(m —a, 6) 1 w;(/7i,0)

g =

<ni(m —a — /7).

So we have

wi(y/7i,0)
wl(ﬁ)

which can be arbitrarily small if we choose o > 0 suitably. This again means that
wi(r, 0) can be arbitrarily small for € ¢ Ve by the above inequality for w;(r, 6).

Next, estimate w;(r, 8) for 6 € (@\%15{)5.

If lim; o Syz.5(0) < 7, the proof of Lemma 2.1 says that w;(m — «, f) can be
arbitrarily small for &« > 0 with Sz 5,(6) < 7 — . So the above argument also holds
for this case.

On the other hand, if lim; .o Syg.5,(f) > 7, then the same mean curvature esti-
mates as for the case 0 € @ e in the above holds for \/7; < r < 7 — a, which leads
the same estimates for w;(r, 8) as above.

Consequently, we arrive at the conclusion that w;(r, #) can be arbitrarily small for
all7withm <r<Rand§ € S" L.

Corollary 1.4 now follows immediately.

wilm — a,0) < exp{ni(m — a — J/1)}

Wl(ﬂ- - Oé),
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