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Abstract

Background. Different electrophysiological (EEG) indices have been investigated as possible
biomarkers of schizophrenia. However, these indices have a very limited use in clinical practice,
as their associations with clinical and functional outcomes remain unclear. This study aimed to
investigate the associations of multiple EEG markers with clinical variables and functional
outcomes in subjects with schizophrenia (SCZs).
Methods. Resting-state EEGs (frequency bands and microstates) and auditory event-related
potentials (MMN-P3a andN100-P3b) were recorded in 113 SCZs and 57 healthy controls (HCs)
at baseline. Illness- and functioning-related variables were assessed both at baseline and at 4-year
follow-up in 61 SCZs. We generated a machine-learning classifier for each EEG parameter
(frequency bands, microstates, N100-P300 task, and MMN-P3a task) to identify potential
markers discriminating SCZs from HCs, and a global classifier. Associations of the classifiers’
decision scores with illness- and functioning-related variables at baseline and follow-up were
then investigated.
Results. The global classifier discriminated SCZs from HCs with an accuracy of 75.4% and its
decision scores significantly correlated with negative symptoms, depression, neurocognition,
and real-life functioning at 4-year follow-up.
Conclusions. These results suggest that a combination of multiple EEG alterations is associated
with poor functional outcomes and its clinical and cognitive determinants in SCZs. These
findings need replication, possibly looking at different illness stages in order to implement EEG
as a possible tool for the prediction of poor functional outcome.

Introduction

Despite the continuous advances in pharmacological and psychosocial treatments, schizophrenia
still remains one of the most severe mental disorders, characterized by a chronic relapsing course
and marked disability in a substantial proportion of patients [1]. Although the reduction of
symptoms severity contributes to functional recovery, several studies revealed that subjects with
schizophrenia (SCZs) in a chronic stage, with remission of psychotic symptoms, still have serious
impairment in different areas of real-life functioning, including independent living, work
activities and social relationships [2, 3]. In fact, the functional recovery is influenced by the
interaction of multiple factors, which represent major determinants of impairment in the
aforementioned real-life functioning areas, beyond psychotic symptoms [4–10].

The identification of objective neurophysiological indices associated with the determinants of
functional outcome might represent a crucial step towards the implementation of personalized
treatments and the identification of new treatment strategies, aiming at improving the functional
recovery of SCZs [11–14]. Indeed, so far, we are not able to predict individual’s outcome across
different stages of the illness [15, 16]. In addition,most studies investigating determinants of poor
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functional outcomes, such as negative symptoms and cognitive
impairment, did not contribute to any increase in knowledge
concerning the underlying neurobiological processes [17–19].

Identifying biological markers of factors associated with func-
tional outcome, and of the outcome itself, may contribute to the
generation of detailed and specific pathophysiological models,
resulting in more accurate predictions, as well as to the develop-
ment of innovative treatment interventions [20].

Electrophysiological (EEG) indices have been largely investi-
gated as possible biomarkers of schizophrenia [21–24].

Several quantitative resting-state EEG and event-related poten-
tials (ERP) alterations have been reported in SCZs in different
stages of the illness and many of them are associated with psycho-
pathology, cognitive impairment, and functional outcome [25–29].

In particular, different studies showed that gamma band activity
and mismatch negativity (MMN) are associated with functional
impairment and may predict the course of the illness in chronic
[30–32] and in first-episode psychosis patients, as well as in subjects
at clinical high-risk of psychosis [28, 33, 34]. Conflicting evidence
has been reported for other EEG bands and ERPs [35, 36]. As to
determinants of functional outcome, cognitive impairment was
found to be associated with alterations in multiple resting-state
frequency bands [29, 37], abnormalities of P300 amplitude and
latency [27, 37, 38], deficit in both N100 amplitude and sensory
gating [29, 37, 39], and lower MMN amplitude [29, 37, 40–42]. As
regard psychopathology, the severity of negative symptoms was
found to be related to increased slower rhythms in resting-state
recordings and reduced N100 amplitude [25, 43, 44]. Conflicting
findings were reported about the relationship between negative
symptoms and other ERPs [44].

However, none of these EEG indices has been implemented in
clinical practice, probably due to the variability of the methodology
across studies (sample size, illness phase, and experimental para-
digms) and the paucity of relevant studies investigating several
outcome determinants and multiple EEG indices.

Indeed, the majority of the studies focused only on the associ-
ations between EEG indices and specific clinical or functional
outcome measures, rarely assessing more than one or a few out-
come determinants. This represents an important obstacle to the
comprehension of the neurobiological mechanisms associated with
the outcome of schizophrenia [45]. In fact, as previously reported,
the pathways to functional recovery are extremely complex, involv-
ing different factors which directly and indirectly influence the real-
life functioning of SCZs [4–8]. Recent studies considering candi-
date EEG biomarkers of schizophrenia and several disease-related
variables, such as cognitive impairment and negative symptoms,
demonstrated multiple contributions of different EEG indices to
cognitive deficits and negative symptoms, leading to poor func-
tional outcomes [45]. In addition, considering that schizophrenia
presents a high rate of variability also in terms of pathophysiology
[46, 47], the investigation of one or only a few EEG indices, instead
of a combination of them, is to limiting for the evaluation of the
prognostic value of EEG in schizophrenia. Therefore, the associ-
ation of these potential EEG markers of schizophrenia with the
functional outcome still remains unclear [48]. Lastly, the possibility
of implementing EEG indices in clinical routine as prognostic
markers of schizophrenia is also related to the ability of formulating
outcome predictions beyond group-level prognostication [15, 49].

In order to achieve this goal, in the last decade, different
approaches, such as machine learning, deep learning or “multiverse”
approaches, were adopted to identify combinations of neurophysio-
logical indices associated with different characteristics of the disease,

accounting for the complexity and the heterogeneity of the patho-
physiological pathways towards the functional outcome of schizo-
phrenia [21, 50–52]. The multiverse approach indicated no
associations among multiple EEG features discriminating patients
from controls, suggesting that each feature might subtend a different
aspect, thus reflecting the heterogeneity of the syndrome at the
phenomenological and pathophysiological level [51]. As a matter
of fact, even in the same illness phase, e.g., chronic stage, schizo-
phrenia is characterized by heterogeneity as to the course and
functional outcome [5–11].

In light of these observations, our study aimed to identify
patterns of EEG indices, among those discriminating SCZs from
controls, whichmight predict the functional outcome of the disease.
Therefore, we first identified the EEG markers which best discrim-
inated SCZs from controls, without preselection of the parameters,
and thenwe investigated the relationships of these patterns with the
functional outcome and the psychopathological and neuropsycho-
logical determinants of the functional outcome, for example,
negative symptoms and neurocognitive deficits. We decided to
use machine-learning techniques which are able to learn statistical
functions frommultidimensional data, recognize data patterns, and
use those identified patterns to make predictions about individuals
[49, 53].

To these aims, we analyzed a well-characterized population of
community-dwelling chronic and clinically stable SCZs and
matched healthy controls (HCs).

EEGs were recorded in resting-state conditions and during two
different tasks, in order to obtain different neurophysiological
measures. The EEG indices to analyze as possible prognostic mark-
ers of schizophrenia were chosen according to the literature on the
topic [23, 29, 37, 54]. Indeed, we selected the neurophysiological
indices which have been found to be frequently altered in SCZs and
those showing the strongest association with the functional out-
come [23, 29, 37, 54]. Therefore, multiple frequency bands and
microstates parameters were obtained from the resting-state EEG
recording; MMN and P3a were obtained from the EEG recorded
during a passive auditory paradigm (in which the subjects had no
task), and N100 and P3b were obtained from the EEG recorded
during an auditory oddball task. We used a machine-learning
approach to identify the EEG patterns which better discriminated
SCZs form HCs and we assessed the associations of these patterns
with symptom dimensions, cognitive impairment, and real-life
functioning in SCZs.

Materials and methods

Study participants

The study has been conducted as part of the add-on EEG study of
the Italian Network for Research on Psychoses [4–8]. One hundred
and forty-eight SCZs and 70 HCs were recruited for the cross-
sectional study, at five research sites in Naples, Foggia, Rome “Tor
Vergata,” Rome “Sapienza” and Salerno. All 148 SCZs recruited for
the cross-sectional study were asked to participate in the longitu-
dinal study, after 4 years of follow-up.

Baseline
The group composed of SCZs included individuals consecutively
seen at the outpatient units of the five mentioned Italian university
psychiatric clinics. Inclusion criteria for SCZs were a diagnosis of
schizophrenia according to Diagnostic and Statistical Manual of
Mental Disorders, fourth edition (DSM-IV), confirmed with the
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Structured Clinical Interview for DSM IV – Patient version (SCID-
I-P), and an age between 18 and 65 years. HCs were recruited from
the community at the same sites mentioned above. The inclusion
criterion for HCswas the absence of a current or lifetime Axis I or II
psychiatric diagnosis. Exclusion criteria for both groups were:
(a) history of head trauma with loss of consciousness; (b) history
of moderate to severe mental retardation or neurological diseases;
(c) history of alcohol and/or substance abuse in the last 6 months;
(d) current pregnancy or lactation; (e) inability to provide informed
consent. Other exclusion criteria for SCZs were treatment modifi-
cations and/or hospitalization due to symptom exacerbation in the
last 3 months. The electrophysiological add-on EEG study was
approved by the Ethics Committee of the involved institutions
and the study was performed in accordance with the ethical stand-
ards laid down in the 1964 Declaration of Helsinki. All participants
signed a written informed consent to participate after receiving a
detailed explanation of the study procedures and goals.

Follow-up
Only SCZs participated in the 4-year longitudinal study. The
inclusion criterion of the study was a diagnosis of schizophrenia
according to DSM‐IV, confirmed by the SCID‐I‐P. The exclusion
criteria of the study were as follows: (a) history of head trauma with
loss of consciousness in the 4-year interval between baseline and
follow-up; (b) progressive cognitive deterioration possibly due to
dementia or other neurological illness diagnosed in the last 4 years;
(c) history of alcohol and/or substance abuse in the last 6 months;
(d) current pregnancy or lactation; I inability to provide informed
consent; (f) treatment modifications and/or hospitalization due to
symptom exacerbation in the last 3 months. The longitudinal study
was approved by the Local Ethics Committees of the participating
centers. All patients signed a written informed consent to partici-
pate, after receiving a comprehensive explanation of the study
procedures and goals.

Assessment instruments

Baseline
At baseline, all subjects were evaluated for socio-demographic
variables such as age, education, and gender, through a clinical
form filled out using every available source of information. The
Positive andNegative Syndrome Scale (PANSS) was used to rate the
severity of positive, negative, and disorganization symptoms in
SCZs [55]. Scores for these dimensions were calculated based on
the consensus 5-factor solution proposed by Wallwork et al.
(for negative dimension we use the Wallwork criteria except for
the item “G7––motor retardation,” which was excluded from the
calculation of this dimension) [56]. A semi-structured interview,
the Brief Negative Symptom Scale (BNSS) was used to assess
negative symptoms in SCZs [57]. According to literature [57, 58],
the domains evaluated by this instrument loaded on two factors:
“experiential domain,” consisting of anhedonia, asociality, and
avolition, and “expressive deficit,” including blunted affect and
alogia. We also assessed depressive symptoms using the Calgary
Depression Scale for Schizophrenia (CDSS) [59] and extrapyram-
idal symptoms using the St. Hans Rating Scale (SHRS) for Extra-
pyramidal Syndromes [60]. Neurocognitive functions were rated
using the Measurement and Treatment Research to Improve Cog-
nition in Schizophrenia (MATRICS) Consensus Cognitive Battery
(MCCB) [61]. This battery assesses seven distinct cognitive
domains: processing speed, attention/vigilance, working memory,
verbal learning, visual learning, social cognition, and reasoning

and problem-solving. Raw scores on the MCCB were standardized
to T-scores, corrected for age and gender, based on the Italian
normative sample of community participants. For a summary
score of cognitive domains including more than one measure
and for Neurocognitive and Overall composite scores, we calcu-
lated T-score by summing the T-scores of the tests included in each
domain and then standardizing the sum to a T-score [62].

We assessed real-life functioning using the Specific Level of
Functioning Scale (SLOF), a hybrid instrument that evaluatesmany
aspects of functioning and is based on the key caregiver’s judgment
on the behavior and functioning of the patient [63]. It is composed
of 43 items and includes the following domains: physical efficiency,
skills in self-care, interpersonal relationships, social acceptability,
community activities (e.g., shopping, using public transportation),
and working abilities. In our study we interviewed the key relative,
usually the individual most frequently and closely in contact with
the patient.

Follow-up
At follow-up, a clinical formwas filled with data about the course of
the disease and treatment information during the previous 4 years,
using every available source of information (patients, relatives,
medical records, and mental health workers). All the variables
which had been measured at baseline were tested also at follow-
up, using the same assessment tools.

EEG recording procedures

EEGs were recorded only at baseline, using two highly comparable
EEG recording systems: EASYS2 (Brainscape, Prague) and Galileo
MIZAR-Sirius (EBNeuro, Florence). Before starting the study, a
harmonization of the amplifier settings and recording procedure
was performed to ensure the same recording settings in all the
centers. EEGs were recorded using a cap electrode system with
29 unipolar leads (Fpz, Fz, Cz, Pz, Oz, F3, F4, C3, C4, FC5,
FC6, P3, P4, O1, O2, Fp1, Fp2, F7, F8, T3, T4, T5, T6, AF3, AF4,
PO7, PO8, Right Mastoid, and Left Mastoid), placed following
the 10–20 system. All the leads were referenced to linked earlobes
(a resistor of 10 kΩ was interposed between the earlobe leads).
A ground electrode was placed on the forehead. The following
neurophysiological indices were analyzed: frequency bands
activity and microstates extracted from the resting-state EEG
recording, four ERP components registered during the two differ-
ent auditory tasks (MMN, P3a and N100, P3b). Further details on
the recording procedure and data preprocessing are provided in
the Supplementary materials.

Statistical analyses

Two sample t-test and χ2 test were used for group comparisons
(SCZs vs HCs). The same analyses were conducted to compare
subjects who took part in the longitudinal study with subjects who
did not. For the SCZs sample, within-subject comparisons at base-
line and follow-up were performed using paired-sample t-test and
χ2 test. Bonferroni-Holm correction was applied to comparisons in
order to control for type-I error inflation.

Matlab release 2019b was used for all the above-described
analyses.

In order to discriminate SCZs from HCs we generated four
different machine-learning classifiers, one for each EEG parameter
(frequency bands, microstates, N100-P300 and MMN-P3a) and a
global classifier resulting from the combination of the four unimodal
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classifiers’ output. The machine-learning platform NeuroMiner
version 1.0 (https://github.com/neurominer-git; MATLAB release
2019b), was employed to set up a machine-learning strategy for
testing the classification performance (SCZs vs HCs) of the four
EEG unimodal classifiers and, later, of the global classifier (Figure 1).

The goal of this approach was to investigate whether, using all
the information coming from classifiers using different EEG fea-
tures, could lead to a higher classification accuracy, compared to the
single classifiers’ ones. Statistical significance (p < 0.05) of individ-
ual and global classifiers was assessed with permutation testing,
using 1000 permutations of the labels.

The detailed machine-learning pipeline is reported in
Supplementary materials and is synthesized in Figure 1.

A post hoc analysis was conducted to compare the individual
classifier with the best accuracy and the global classifier (McNemar
test). t-Tests for independent samples were performed for the 10%
most frequently selected features of each individual classifier
according to the parameter “selection probability,” and Person’s
correlations were performed on the same EEG indices to estimate
the amount of shared information contained in the variables that
were used to distinguish SCZs and HCs. Moreover, we performed a
Pearson’s correlation between the chlorpromazine equivalent doses
and the output of the global classifier, the classifier’s decision scores,
in order to account for the possible impact of antipsychotic medi-
cations on the patients’ EEG.

In order to investigate the correlations of the classifiers’ decision
scores with illness-related variables and real-life functioning in
SCZs at baseline and follow-up, we first projected baseline variables
to four factors using a Non-Negative Matrix Factorization
(NNMF). We chose NNMF instead of other dimensionality

reduction methods because it produces clearly separated and
well-defined variance components, enhancing results’ interpret-
ability [64]. The number of factors was chosen to select the optimal
dimension that allowed the encoding of data variability while
discarding noise. In order to do this, we calculated the variation
of the residual error of the data approximation with the variation of
the number of estimated components, determining the optimal
number of factors by detecting the inflection point of the slope of
the reconstruction error [65]. The resulting sparse factor matrices
were inspected, and the factors were interpreted according to the
variables showing nonnegative loadings on a given factor. After
that, we projected the same illness-related variables and real-life
functioning indices, measured at 4 years of follow-up, to four
factors using the same NNMF algorithm, in order to confirm if
the obtained baseline latent variables remained stable from baseline
to follow-up. The obtained factor scores were used to compute
factor trajectories from baseline to follow-up and paired-sample t-
test was used to assess the significance of the changes. Pearson’s
correlations were performed between classifiers’ decision scores
and the scores of each of the four factors resulting from NNMF
at baseline and follow-up. All the correlation analyses were cor-
rected for multiple comparisons. Matlab release 2019b was used for
NNMF and Pearson’s correlation analysis.

Results

Sociodemographic and clinical characteristics
of the study sample

One hundred and forty-eight SCZs and 70 HCs were originally
enrolled in the baseline study. Thirty-three SCZs and 13 HCs were

Figure 1. Experimental design of the machine-learning pipelines used to train and cross-validate the unimodal and stacked classifiers.
We used nested, repeated cross-validation to train and validate the four individual machine-learning classifiers, consisting of an outer 10-fold cross-validation cycle (CV2),
which provided validation participants for computing an unbiased estimate of predictor generalisability to new patients, and an inner 10-fold cross-validation cycle (CV1),
which delivered training participants to themultivariate pattern analysis pipeline as well as test participants for features and parameters optimisation. The same nested cross-
validation structure was applied to the stacked machine-learning classifier, obtained by combining unimodal classifiers’ outputs within the machine-learning environment.
CV, cross-validation; NN, nearest neighbor; SVM, support vector machine.
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excluded because they were found to have more than 25% of
missing values in at least one modality data (frequency bands,
microstates, MMN & P3a, and N100 & P300). Two subjects from
the SCZs group were excluded after visual inspection of the EEG
recordings for an excess of artifacts. Therefore, 113 SCZs and
57HCswere included in the analysis. As regard the EEG recording
systems, the EEGs of 88 SCZs (77.9%) and 40 HCs (70.2%) were
recorded using the Galileo MIZAR-Sirius system, while the EEGs
of the remaining subjects were recorded using the Easys2 system.
There was no group difference in the percentage of subjects
recorded with the Galileo MIZAR or the Easys2 system
(χ2 = 1.21; p = 0.27). Demographic characteristics and illness-
related variables are provided in Table 1. We did not find signifi-
cant group differences for age (t = 1.05; p = 0.30). Gender distri-
bution significantly differed between groups (χ2 = 7.02; p < 0.01),
with a higher percentage of males in the patient compared to the
control group. Patients had significantly lower education levels
than controls (t =�3.49; p < 0.01). The average duration of illness
in the patient group was 12.75 ± 8.29 years. SCZs were character-
ized by absent to mild positive and disorganization symptom
severity (PANSS mean score < 9 for both dimensions) and mild
to moderate negative symptom severity (PANSS negative dimen-
sion mean score of 15.58 and BNSS total score of 34.88). They had
a low mean level of depression (CDSS total score < 4) and
Parkinsonism (SHRS Parkinsonism score < 1). SCZs, compared
to HCs, showed worse performance on cognitive tests (neurocog-
nitive composite score: t =�10.13 and p < 0.001 overall composite

score including social cognition: t = �9.53 and p < 0.001) and
worse functioning (SLOF-Personal care skills: t = �5.40 and
p < 0.001; SLOF-Interpersonal relationships: t = �12.84 and
p < 0.001; SLOF-Social acceptability: t = �5.32 and p < 0.001;
SLOF-Everyday life skills: t = �8.44 and p < 0.001; SLOF-Work
skills:�9.47 and p < 0.001). Sixty-one SCZs from the 113 patients
who had taken part in the baseline study, participated in the 4-year
follow-up study. Table 2 shows comparisons of demographic
characteristics and illness-related variables between follow-up
participants (N = 61) and the rest of the original SCZs (N = 52)
sample. Patients who participated in the follow-up study did not
significantly differ from the rest of the sample on baseline socio-
demographic characteristics and illness-related variables, except
for global Parkinsonism (t = 3.15; p = 0.002) (Table 2). This mean
difference in Parkinsonism was relatively small and not clinically
significant; thus, the 61 patients participating in the follow-up
study can be considered representative of the original sample. The
mean values and SDs of all variables included in the analysis at
baseline and follow-up are reported in Table 3. In the overall
sample of 61 subjects participating in the follow-up study,
improvements in the severity of disorganization, the experiential
domain of BNSS negative symptoms, and global Parkinsonism
were found. Neurocognition was stable, while overall cognitive
performance improved after 4 years. We did not find significant
changes in real-life functioning from baseline to follow-up. The
NNMF analysis showed four stable factors during different time
point (baseline and follow-up): one factor captured functioning

Table 1. Socio-demographic, illness-related and real-life functioning variables at baseline.

HCs (N = 57) SCZs (N = 113) t/X2 p

Age (mean ± SD) 34.56 ± 12.58 36.34 ± 9.16 1.05 0.30

Gender (M/F) 28/29 80/33 7.02 0.008*

Education (mean ± SD) 14.14 ± 4.15 12.18 ± 3.04 �3.49 <0.001*

Duration of illness (mean ± SD) 12.75 ± 8.29

PANSS positive (mean ± SD) 7.88 ± 4.31

PANSS negative (mean ± SD) 15.58 ± 5.96

PANSS disorganization (mean ± SD) 8.56 ± 3.52

BNSS total score (mean ± SD) 34.88 ± 16.21

BNSS—experiential domain (mean ± SD) 21.17 ± 8.81

BNSS—expressive deficit (mean ± SD) 11.41 ± 7.39

CDSS total score (mean ± SD) 3.31 ± 4.00

SHRS—Parkinsonism (mean ± SD) 0.79 ± 1.13

Neurocognitive composite score (mean ± SD) 51.17 ± 9.98 29.85 ± 12.04 �10.13 <0.001*

Overall composite score (mean ± SD) 49.28 ± 9.29 27.94 ± 11.93 �9.53 <0.001*

SLOF—physical functioning (mean ± SD) 24.85 ± 0.40 24.48 ± 1.08 �2.51 0.01

SLOF—personal care skills (mean ± SD) 34.98 ± 0.13 32.44 ± 3.49 �5.40 <0.001*

SLOF—interpersonal relationships (mean ± SD) 33.87 ± 2.14 23.35 ± 5.88 �12.84 <0.001*

SLOF—social acceptability (mean ± SD) 34.91 ± 0.40 32.27 ± 3.67 �5.32 <0.001*

SLOF—everyday life skills (mean ± SD) 54.80 ± 0.66 46.89 ± 6.86 �8.44 <0.001*

SLOF—work skills
(mean ± SD)

28.71 ± 2.10 20.86 ± 5.96 �9.47 <0.001*

Abbreviations: BNSS, Brief Negative SymptomScale; CDSS, Calgary Depression Scale for Schizophrenia; HCs, healthy controls; PANSS, Positive and Negative Syndrome Scale; SCZs, patients with
schizophrenia; SHRS, St. Hans rating scale; SLOF, Specific Level of Functioning Scale.
*Significant t‐test after Bonferroni–Holm correction.
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Table 2. Differences in baseline variables between subjects included and not included in follow-up study.

FU included (N = 61) FU not-included (N = 52) t/X2 p

Age (mean ± SD) 36.70 ± 9.16 35.90 ± 9.24 0.46 0.65

Gender (M/F) 43/18 37/15 5.82 0.02

Education (mean ± SD) 12.31 ± 3.00 12.02 ± 3.11 0.50 0.61

Duration of illness (mean ± SD) 12.95 ± 8.58 12.45 ± 7.94 0.30 0.77

PANSS positive (mean ± SD) 8.07 ± 4.80 7.66 ± 3.67 0.49 0.62

PANSS negative (mean ± SD) 15.70 ± 5.57 15.42 ± 6.47 0.25 0.80

PANSS disorganization (mean ± SD) 8.48 ± 3.40 8.66 ± 3.68 �0.27 0.78

BNSS total score (mean ± SD) 34.75 ± 16.22 35.04 ± 16.37 �0.09 0.93

BNSS—experiential domain (mean ± SD) 21.11 ± 9.16 21.24 ± 8.44 �0.08 0.94

BNSS—expressive deficit (mean ± SD) 11.21 ± 7.07 11.65 ± 7.84 �0.31 0.76

CDSS total score (mean ± SD) 3.70 ± 4.07 2.82 ± 3.90 1.16 0.25

SHRS—Parkinsonism (mean ± SD) 1.08 ± 1.26 0.43 ± 0.82 3.15 0.0021*

Neurocognitive composite score (mean ± SD) 29.98 ± 12.88 29.67 ± 10.91 0.13 0.90

Overall composite score (mean ± SD) 28.13 ± 12.36 27.41 ± 10.91 0.24 0.81

SLOF—physical functioning (mean ± SD) 24.61 ± 0.74 24.31 ± 1.39 1.42 0.16

SLOF—personal care skills (mean ± SD) 32.51 ± 3.77 32.35 ± 3.15 0.24 0.81

SLOF—interpersonal relationships (mean ± SD) 23.23 ± 5.71 23.50 ± 6.13 �0.24 0.81

SLOF—social acceptability (mean ± SD) 32.15 ± 3.74 32.42 ± 3.61 �0.39 0.70

SLOF—everyday life skills (mean ± SD) 47.13 ± 6.73 46.60 ± 7.07 0.40 0.69

SLOF—work skills
(mean ± SD)

20.26 ± 6.24 21.58 ± 5.57 �1.16 0.25

Abbreviations: BNSS, Brief Negative SymptomScale; CDSS, Calgary Depression Scale for Schizophrenia; HCs, healthy controls; PANSS, Positive and Negative Syndrome Scale; SCZs, patients with
schizophrenia; SHRS, St. Hans rating scale; SLOF, Specific Level of Functioning Scale.
*Significant t‐test after Bonferroni–Holm correction.

Table 3. Differences in variables measured at baseline and follow‐up.

Baseline (N = 61) Follow-up (N = 61) t/X2 p

PANSS positive (mean ± SD) 8.07 ± 4.80 6.54 ± 3.51 2.69 0.009

PANSS negative (mean ± SD) 15.70 ± 5.57 12.74 ± 6.79 2.86 0.006

PANSS disorganization (mean ± SD) 8.48 ± 3.40 6.31 ± 3.30 4.22 <0.001*

BNSS total score (mean ± SD) 34.75 ± 16.22 24.05 ± 16.98 4.21 <0.001*

BNSS––experiential domain (mean ± SD) 21.11 ± 9.16 14.23 ± 9.20 4.77 <0.001*

BNSS––expressive deficit (mean ± SD) 11.21 ± 7.07 8.52 ± 7.38 2.42 0.019

CDSS total score (mean ± SD) 3.70 ± 4.07 2.11 ± 3.31 2.38 0.02

Parkinsonism (mean ± SD) 1.08 ± 1.26 0.52 ± 1.06 3.39 0.001*

Neurocognitive composite score (mean ± SD) 29.98 ± 12.88 33.93 ± 14.80 �2.82 0.07

Overall composite score (mean ± SD) 28.13 ± 12.36 33.66 ± 14.25 �4.14 <0.001*

SLOF––physical functioning (mean ± SD) 24.61 ± 0.74 24.56 ± 0.92 0.32 0.75

SLOF––personal care skills (mean ± SD) 32.51 ± 3.77 32.39 ± 3.45 0.22 0.82

SLOF––interpersonal relationships (mean ± SD) 23.23 ± 5.71 22.48 ± 6.85 0.74 0.46

SLOF––social acceptability (mean ± SD) 32.15 ± 3.74 31.23 ± 4.09 1.45 0.15

SLOF––everyday life skills (mean ± SD) 47.13 ± 6.73 48.31 ± 7.91 �1.23 0.23

SLOF––work skills
(mean ± SD)

20.26 ± 6.24 20.85 ± 6.23 �0.67 0.51

Abbreviations: BNSS, Brief Negative SymptomScale; CDSS, Calgary Depression Scale for Schizophrenia; HCs, healthy controls; PANSS, Positive and Negative Syndrome Scale; SCZs, patients with
schizophrenia; SHRS, St. Hans rating scale; SLOF, Specific Level of Functioning Scale.
*Significant t‐test after Bonferroni–Holm correction.
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and cognitive impairments, a second-factor positive symptoms
and parkinsonism, a third factor captured negative symptoms, in
particular the “expressive deficit” subdomain, and the fourth
factor captured depression (Figure 2). Exploring the NNMF fac-
tors trajectories, only the factor capturing functioning and cogni-
tive impairment significantly changed (p = 0.005) from baseline to
follow-up (Supplementary Table S1).

SCZs vs HCs classification performance

Since there was a gender imbalance between the two sample groups
(SCZs and HCs), in order to control for the possible confounding
effect of this factor, we created a gender classifier, using EEG
variables as predictors. We found that this classifier correctly
discriminated males from females with a balanced accuracy of

52.6% and was not significant (p = 0.25). Moreover, we created
a EEG classifier with all the features together entered as input in
the algorithm independently from the data modality, including
gender among predictors. Thus, we compared this model with
an identical classifier without gender among predictors. We found
no significant differences in the accuracy of the two classifier
(Supplementary Table S2). So, we concluded that EEG indices
are not influenced by the gender, and we did not correct the other
analyses for this variable. Also education was different between
SCZs and HCs, but we did not use it as a covariate in the analyses
because lower education level is a well-known consequence of
schizophrenia.

As regard to EEG classifiers, detailed statistics of all classifiers
are reported in Table 4. The balanced accuracy was highest for
the frequency bands classifier and lowest for the microstate one.

Figure 2. Projection of illness-related and functioning variables, measured at baseline (left) and follow-up (right), to four factors, using Non-Negative Matrix Factorization.
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Figure 3 shows the 10% most frequently selected features for
each classifier. The results of the group comparisons on these
EEG features and the correlations among these same indices are
reported in the Supplementary materials (Supplementary Table S3;
Supplementary Figure S1). The global classifier discriminated SCZs
from HCs with a balanced accuracy of 75.4% (p < 0.01), which was

statistically different from the frequency band classifier’s accuracy
(χ2 = 7.111; p = 0.008). As expected, the decisions generated by
frequency bands classifier (ρ = 0.54) were the most important for
the final classification, followed byN100-P3b (ρ = 0.46) andMMN-
P3a (ρ = 0.44). The decision generated by microstates classifier was
less important for the classification (ρ = 0.21) (Figure 4).

We did not find a significant correlation between the chlorpro-
mazine equivalent doses of antipsychotic medications and the
global classifier’s decision scores (r = 0.160; p = 0.171).

Association of classifiers’ output with illness-related variables
and real-life functioning

No significant association was found between the classifiers’ deci-
sion scores and the NNMF factors obtained from illness-related
variables and real-life functioning measured at baseline. On the
contrary, our results showed significant correlations of the global
classifier output with depression, negative symptoms, functioning,
and cognitive impairment at 4 years of follow-up (Table 5). The
direction of the correlations indicated that higher global classifier’s
decision score at baseline was associated with more severe negative
symptoms, depression and cognitive impairment, and lower real-
life functioning at follow-up. The results of the Pearson’s correl-
ations between the individual classifiers’ output and the NNMF
factors’ scores at follow-up are reported in Table 5.

Table 4. Classification performance (SCZs vs HCs) of machine-learning models.

Classification SCZs vs HC
Number of
variables TN TP FN FP Sensitivity Specificity

Balanced
accuracy PPV NPV NND PLR

Diagnostic
odds ratio p-value

Frequency bands 290 40 82 31 17 72.6 70.2 71.4 82.8 56.3 2.3 2.4 5.9 <0.001

Microstates 43 29 73 40 28 64.6 50.9 57.7 72.3 42.0 6.5 1.3 1.7 0.03

MMN––P3a 40 33 85 28 24 75.2 57.9 66.6 78.0 54.1 3.0 1.8 3.2 0.03

N100––P300 24 38 85 28 19 75.2 66.7 70.9 81.7 57.6 2.4 2.3 5.1 <0.001

Stacking-based classifier / 40 91 22 17 80.5 70.2 75.4 84.3 64.5 2.0 2.7 7.3 <0.001

Abbreviations: FN, false negative; FP, false positive; NND, number needed to diagnosis; NTN, true negative; PLR, positive likelihood ratio; PPV, positive predictive value; TP, true positive.

Figure 3. Composition of predictive variable sets selected by the unimodal machine-
learning classifiers: frequency bands (A), microstates (B), MMN-P3a (C), and N100-P3b
(D). The features were first ranked according to the selection probability measured
across all inner-cycle training partitions. Variables ranking among the top 10% of
selected features were marked with red and listed with their selection probability
(psel) and correlation with the classifier’s outcome (Spearman’s ρ).

Figure 4. Contribution (Spearman’s ρ) of each individual EEG data modality to the
global classifier’s decisions.
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Discussion

Our results showed that each classifier, using different EEG indices,
can identify patterns of neural alterations which are able to signifi-
cantly distinguish SCZs from HCs at individual level. Combining
those patterns of EEG indices recorded under different conditions
the classification accuracy significantly increases up to 75.4%. The
resulting combination of EEG alterations, in chronic patients with
schizophrenia, was associated with real-life functioning and with
illness-related variables which have an impact on functional out-
comes, such as cognitive impairment, depression, and negative
symptoms, at 4-year follow-up [4, 6]. Previous research identified
alterations of several EEG indices in SCZs, which are related to
different brain functions and associated with different illness fea-
tures influencing the outcome or with the outcome itself [25–
29]. However, despite the results of these studies, no EEG index
has been implemented in clinical practice.

In this study, we evaluated multiple EEG indices, recorded
under different conditions, and we used a machine-learning
approach in order to identify patterns of EEG alterations which
could better predict illness outcomes. Using this strategy we tried to
improve the precision in detecting the relationships of EEG alter-
ations with clinical features, and the knowledge of the pathophysio-
logical pathways involved in schizophrenia outcome. Indeed,
schizophrenia is a heterogeneous syndrome with a high variability
in brain structure influenced by gene–environment interactions
[66–68]. Moreover, the pathways towards the outcome are
extremely complex, with several factors influencing real-life func-
tioning of people with schizophrenia [4–6, 8, 69]. A combination of
factors more than any single of them is probably involved in
determining individual subject’s outcome, and the identification
of reproducible, objective indicators might facilitate the implemen-
tation of translational studies results, improving the knowledge
about the relative pathophysiological mechanisms. Previous studies
used different approaches to investigate multiple EEG alterations in
schizophrenia and the correlations between these neurophysio-
logical alterations and illness-related variables [51, 70, 71]. The
majority of these studies demonstrated that a weighted combin-
ation of EEG features provides better information about the char-
acteristics of the disorder than any single index. However, only a
limited number of parameters for each EEG index were included
and varied among studies. Within this framework, machine-
learning methods have the advantage of learning statistical func-
tions from multidimensional data in order to make prediction
about individuals. Therefore, in this study they allowed us to
recognize, among a huge amount of parameters (e.g., band activity
or ERP amplitude at multiple electrode sites) of different markers,
an EEG pattern that was able to discriminate single SCZs from

controls. Furthermore, the summary index of this EEG pattern,
represented by the decision scores of the global classifier, could be
used to investigate the association of such specific combination
of neurophysiological markers with the functional outcome, as
well as with the clinical and neuropsychological determinants of
functional outcome. Indeed, we found that the most selected fea-
tures by each classifier were poorly correlated to each other, except
for the microstates parameters which were significantly associated
with theta and alpha activity. These results, in line with those
obtained with the multiverse approach [51] demonstrate that com-
bining multiple EEG parameters associated with different charac-
teristics of the disease could lead to a better recognition of the
heterogeneous pathophysiological mechanisms, allowing more
accurate predictions of the SCZs outcome.

Among the different EEG indices investigated in this study,
resting-state frequency bands activity turned out to be the most
important feature for the classification of SCZs and HCs, while
microstates parameters seem to be redundant with the frequency
bands oscillations, adding very little information to the global
classifier. According to previous findings, we found that slower
band activity alterations were the most specific of schizophrenia,
and, in particular, decreased alpha 2 activity and increased theta
1 and theta 2 activity [23]. The alterations in theta and alpha activity
are associated with gray and white matter volume reduction in
SCZs. Theta activity is associated with learning and its alterations
are present in first-degree relatives of SCZs, are independent of
antipsychotic medications, and are associated with biological vul-
nerability to schizophrenia [72, 73]. Genetic analyses showed that
theta activity is correlated with two different genetic components,
comprising genes participating extensively in brain development,
neurogenesis, and synaptogenesis [74]. Theta abnormalities were
also mediated by gene clusters involved in glutamic acid pathways,
cadherin, and synaptic contact-based cell adhesion processes.
Alpha rhythm is functionally related to memory and attention
[75], and is associated with the default mode network activity,
involved in cognitive functioning [18]. Some genome-wide and
positional gene-based analyses showed correlations between alpha
activity and tissue-specific single nucleotide polymorphism (SNP),
codifying for protein involved in signal transmission, inflamma-
tion, and other biological functions [76]. These associations were
found principally at the cortical level (hippocampus, frontal cortex,
anterior cingulate cortex) and in putamen [76]. According to these
findings, it is possible to assume that slower band activity in SCZs
reflects alterations of cortical functions linked to specific genetic
patterns.

Correlation analyses revealed that the global classifier’s decision
scores were associated with real-life functioning and different

Table 5. Correlations between classifier decision scores and Non-Negative Matrix Factorization factor scores at follow-up in SCZs.

Classifier’s’ decision scores
Positive symptoms and

parkinsonism (r;p)
Negative symptoms

(r;p)
Depression

(r;p)
Functioning and

cognitive disturbances (r;p)

Global classifier 0.014; 0.937 0.399; 0.002* 0.429; <0.001* �0.332; 0.009*

Frequency bands classifier �0.018; 0.890 0.271; 0.034* 0.435; <0.001* �0.229; 0.077

Microstates classifier �0.132; 0.311 0.092; 0.479 0.282; 0.028 �0.020; 0.880

MMN-P3a classifier 0.120; 0.361 0.341; 0.011* 0.110; 0.399 �0.262; 0.041

N100-P3b classifier �0.007; 0.955 0.210; 0.104 0.082; 0.530 �0.179; 0.168

Abbreviation: NNMF, Non-Negative Matrix Factorization.
*p-value survived correction for multiple tests (p < 0.013).
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illness-related variables (cognitive impairment, depression, and
negative symptoms) at follow-up. On the opposite, we did not find
any association between positive symptoms and disorganization.
Negative symptoms and cognitive impairment are core features of
schizophrenia, and are present, respectively, in more than 50 and
80% of patients [77, 78].

Available evidence indicates that, differently from positive
symptoms and disorganization, they are largely present at the
onset of the disorder and during the prodromal stages of the
disease [77, 79]. Moreover, in more than half of the cases, negative
symptoms have a continuous or relapsing course and the cognitive
deficit is relatively stable throughout the course of the illness,
unlike positive symptoms, which usually have variable severity
[77, 80]. Both cognitive dysfunction and negative symptoms
are associated in chronic patients with poor functional outcome
[4–8, 81].

No correlations were found with the same features measured at
baseline. Our hypothesis is that neurophysiological alterations
occur before their related clinical manifestations and reflect the
severity of these manifestations measured months or years after the
neurophysiological findings.

The study has a number of limitations. The first one is the
sample size, which is larger compared to previous EEG studies, but
relatively small considering the complexity of the machine-
learning structure. Moreover, in order to make our findings more
generalizable, the above-reported classifiers should be applied to
an independent sample. Additionally, the study sample is com-
posed only of SCZs and HCs. In order to improve the specificity of
the EEG model, it is necessary to include also patients with other
psychiatric syndromes. Moreover, our sample is composed of
chronic patients, with an average duration of illness of 12.75 years
and a median age of 36.34 years. Schizophrenia is particularly
prevalent in young adults between 20 and 30 years of age and the
onset follows years of prodromal symptoms and leads to disability
in about half of the patients [82]. Furthermore, different studies
demonstrated that the early intervention leads to a better prog-
nosis [83, 84]. Therefore, the main goal of any prognostic tool
should be the early recognition of the illness and the possibility to
make outcome predictions at the onset of the syndrome. To do
this, our model needs to be tested also in first-episode psychotic
and at-risk subjects. Furthermore, the prognostic information
obtained from the analysis does not allow making predictions
about individuals, but it only describes the associations between
electroencephalographic patterns and outcome measures at a
group level.

These results suggest that a combination of different EEG
alterations found in SCZs and associated with the main determin-
ants of functional outcome and the outcome itself could be able to
predict the course of schizophrenia. To assess whether this neuro-
physiological pattern can be implemented as a prognosticmarker of
schizophrenia in clinical practice, further studies are required
including validation samples and subjects at different stages of
the disorder.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1192/j.eurpsy.2023.2410.
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