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Abstract

It is shown that the injective tensor product of positive vector measures in certain Banach lattices is jointly
continuous with respect to the weak convergence of vector measures. This result is obtained by a diagonal
convergence theorem for injective tensor integrals. Our approach to this problem is based on Bartle's
bilinear integration theory.
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1. Introduction

In 1967, Duchon and Kluvanek [8] introduced the notion of tensor products of vector

measures which we describe in our setting: Let (£2, £?) and (F, SB) be measurable

spaces. Let X and Y be Banach spaces, and X <g> Y the injective tensor product of X

and Y (see [7, Chapter VIII]). For any vector measures /x : $4 —> X and v : SB —> Y,

there always exists a unique vector measure n§>v:£/x&—*X§>Y, which is called

the injective tensor product of/x and v, such that (/z §> v)(A x B) = /z(A)<g>v(fi) for all

A e srf and B 6 SB. On the other hand, Dekiert [6] recently introduced the notion of

weak convergence of Banach space-valued measures, which is a natural generalization

of the weak convergence of probability measures, and studied its properties (see

also [19, 22]).
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186 JunKawabe [2]

Let 5 and T be topological spaces. In this paper, we prove that if nets {fia} and

{va} of positive vector measures on S and T with values in Banach lattices X and Y

converge weakly to /x and v, respectively, then the injective tensor product fj,a <g> va

converges weakly to yu. <g> v under some additional assumptions.

The injective tensor product of two probability measures is just the usual product

measure, so that its joint continuity is well known in the case that 5 and T are

separable metric spaces [3, Theorem 3.2], and more generally completely regular

spaces [24, Proposition 1.4.1]. It was also shown in [5, Corollary to Theorem 1] that

the convolution of probability measures on an arbitrary topological group is jointly

continuous.

In a recent paper [14], we studied this kind of problem for vector measures with

values in certain nuclear spaces. It is shown in [14, Theorems 5 and 7] that the

weak convergence of a net of injective tensor products of uniformly bounded nuclear

space-valued vector measures follows from that of the corresponding net of real

product measures. The way of proving the above result is essentially based on a finite

dimensional feature of nuclear spaces, that is, the weak topology coincides with the

original topology on every bounded subset of any barreled, quasi-complete nuclear

space. Therefore, the same method may not apply to the case of vector measures

with values in Banach spaces. The purpose of this paper is to show that this type of

joint continuity of product measures remains true for the injective tensor products of

positive vector measures in certain Banach lattices; see Theorem 5.4. Our approach

to this problem is based on the Bartle bilinear vector integration [1].

In Section 2, we formulate some notation and results which are needed in the sequel.

In Section 3, we give some technical results of the injective tensor integrals, which are

the Bartle bilinear integrals with respect to the injective tensor product. In Section 4,

we give a diagonal convergence theorem for the injective tensor integrals, which is

not only crucial to prove our main result, but seems to be of some interest. Using

this diagonal convergence theorem, it is shown in Section 5 that the joint continuity

of the injective tensor products remains true for positive vector measures with values

in Banach lattices under some additional assumptions.

All the topological spaces and uniform spaces in this paper are Hausdorff, and the

scalar fields of Banach spaces are taken to be the field R of all real numbers. Denote

by N the set of all natural numbers.

2. Preliminaries

Let X be a Banach space with norm || • || and X* the topological dual of X. Let BX'

denote the closed unit ball of X*. Let (£2, &/) be a measurable space. A a -additive

set function /x : srf —>• X is called a vector measure. The semivariation of (x is the set
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[3] Joint continuity of tensor products 187

function ||/Li|| (A) = sup{\x*(i\(A) : x* € Bx.}, where \x*/x\(-) is the total variation of
x*fi. Then ||/x|l(f2) < oo [2, Lemma 2.2].

Let fx : srf -> X be a vector measure. Denote by x^ the indicator function of
a set A. A fi-null set is a set E e &/ for which ||ju.||(E) = 0; the term fi-almost
everywhere refers to the complement of a /x-null set. Given an ^-simple function
of the form / = £™=1

 akXAk with ax am e R, Au... ,Am e s/, m e N,
define its integral fAf d/j, over a set A e &/ by fAf dfj, — Yl"=i akV-(Ak DA).
An ^/-measurable function / : £2 -> IR is said to be /x-integrable if there exists a
sequence {/„} of .E^-simple functions converging /n-almost everywhere t o / such that
the sequence [fA fn c?/x} converges in the norm of X for each A € £/. This limit
J^ / dju, does not depend on the choice of such simple functions /„ , n e N. By
the Orlicz-Pettis theorem [7, Corollary 1.4.4], the indefinite integral A i->- fA f d/x is
<T-additive. Every bounded, ^/-measurable function / : fi —> R is /x-integrable, and
1 fAf dfij < sup^^ | / M | • || Ai || (A) for each A e ^ [2, Theorem 2.6]. For further
properties of this integral see [2, 10, 17, 18].

We define several notions of regularity for vector measures on a topological space.
Let 5 be a topological space and £8{S) the a -algebra of all Borel subsets of S. Let
/x : 98{S) -*• X be a vector measure. We say that n is Radon if for every £ > 0
and A e 38{S) there exists a compact subset K of A such that ||/x||(A — K) < e,
and it is tight if this condition is satisfied for A = S. We say that /x. is r -smooth
if, for any increasing net [Ga] of open subsets of 5 with G = (Ja Ga, we have
lima Ilyu-IKG — Ga) = 0. It follows that /LA is Radon (respectively tight, r-smooth)
if and only if, for each x* e X*, the real measure x*fi is Radon (respectively tight,
r-smooth). In fact, this is a consequence of the Rybakov theorem [7, Theorem IX.2.2],
which ensures that there exists XQ € X* for which x^fj, and /LA are mutually absolutely
continuous.

The following result can be proved as in the case of scalar measures; see for
example [24, Proposition 1.3.2].

PROPOSITION 2.1. Let S be a topological space and X a Banach space. Let
/x : S8(S) -*• X be a x-smooth vector measure. Let {fa} be a uniformly bounded
decreasing net of upper semicontinuous non-negative functions on S. Iff = lima/a

is the pointwise limit of fa, then fa 's and f are all (i-integrable and lima /5/a d\i. =

3. Some properties of injective tensor integrals

In this section, we define the Bartle bilinear integration in our setting: Let X and
Y be Banach spaces. Denote by X ® Y the injective tensor product of X and Y;
see [7, Chapter VIII]. Let (£2, s/) be a measurable space. Let (p : Q -> X be a vector
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function and v : s/ -*• Y a vector measure. Given an X-valued simple function

<p = Y^=\xkXAk with j c j , . . . ,xm e X,Ai,... ,Am e s/,m e N, define its integral

fA<P§> dv over a set A e s/ by fA <p <g> dv = Yl"k=\ ** ® v(Ak ("I A) . We say that q> is

v-measurable if there exists a sequence {^n} of X-valued simple functions converging

v-almost everywhere to <p. The function <p is said to be v-integrable in the sense

of Bartle if there exists a sequence {<pn} of X-valued simple functions converging

v-almost everywhere to <p such that the sequence {fA (pn§> dv) converges in the norm

of X §> Y for each A e &f. This limit JA(p® dv does not depend on the choice of

such X-valued simple functions <pn, n e N, and the indefinite integral A —>• fA<p® dv

is an X <§> Y-valued vector measure on s/.

For simplicity, we say that the <p is v-integrable if it is v-integrable in the sense of

Bartle. The integral fA<p®dv is called the injective tensor integral of<p over A with
respect to v. See a recent paper [11] for further properties of injective tensor integrals
such as some characterizations of integrable functions and the general Fubini theorem.

In the following, we prepare some technical properties of injective tensor integrals
which will be used in Section 4. The proof of the following lemma is obvious and
will be omitted.

LEMMA 3.1. Let {Q., s/) be a measurable space. Let X and Y be Banach spaces.
Let v : sif —>• Y be a vector measure and f : £2 —• K a v-integrable, si -measurable
function. Then, given x 6 X, the vector function f x : Q -> X defined by (fx)(co) =
f (w)x for co 6 £2 is v-integrable and fA (fx) ® dv = x <g> fAf dv for each A e £/.

When the Banach space X is equipped with the additional structure of a Banach
lattice, we may introduce the notion of positivity for vector measures. We say that
a vector measure /x : &/ —*• X is positive if [i(A) > 0 for every A e si. By [22,
Lemma 1.1], for every positive vector measure fi, we have ||/x||(A) = ||/u,(A)|| for
all A 6 s/. Further, it is easy to verify that for any /z-integrable, ^-measurable real
functions / and g with \f | < g yn-almost everywhere, we have

\[fdii<[\f\dtM<lgdn and
\Jn Jn Jn

ffdfx
Jn

< flfldfj.
Jn

<

These facts greatly facilitate the analysis of positive vector measures and are used
frequently without saying these explicitly in this paper. For further properties of
positive vector measures on metric spaces, see [19, 22]. For other applications of
positivity of vector measures, see [15]. We refer the reader to the book of Schaefer [20]
for the basic theory of Banach lattices.

PROPOSITION 3.2. Let (Q, s/) be a measurable space. Let X be a Banach space
and Y a Banach lattice. Let v : s/ —> Y be a positive vector measure. If an
&f-measurable function f : Q -> R is v-integrable and a vector function (p :
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Q -> X is bounded and v-measurable, then the vector function f cp : £1 —> X
defined by (f (p){co) = f (co)<p(co),a> e £2, is v-integrable, and lfA(f<p)® dv\\ <
suPa,en ||^(a>)|| • \\fA | / | dv\ for each A e /

PROOF. The function <p is v-integrable by [1, Theorem 4], and hence we can find
a sequence {(pn) of X-valued simple functions on Q. converging v-almost everywhere
to <p such that ||^n(<u)|| < ||<p(<w)|| for all co e Q and n e H (see, for instance, [25,
Theorem 2.6]).

Fix A 6 £/ and n e M and put ||<p||oo = supmen ||^>(o;)||. The f u n c t i o n / ^ which
is v-integrable by Lemma 3.1 satisfies

(3.1) I = sup I f -(x*<pn)dv

see [11, page 327]. Since \f (co)(x*<pn)(,co)\ < \\cp\U\f (<w)| for all x* e Bx., the
positive measure v satisfies \fAf- (x*<pn) dv\ < \\<p\\oofA 1/ I dv, which implies that

(3.2) f ^z IIVII oo \f\dv\

Since f <pn converges v-almost everywhere to f<p, it follows from (3.1), (3.2)
and [1, Theorem 10] that /<p is v-integrable and fA(f<pn)<8 dv —> fA(f<p)® dv.
This together with (3.1) and (3.2) gives the required inequality. •

Let T be a topological space and 3B{T) the a-algebra of all Borel subsets of T. Let
C(T, X) denotes the Banach space of all bounded continuous functions <p : T -> X
with the norm IMU = sup,€T \\<p(t)\\. We write C(T) = C{T, R).

PROPOSITION 3.3 ([26, Theorem 1.6]). Let T be a topological space. Let X and Y
be Banach spaces. Let v : 38{T) -+ Y be a tight vector measure and <p € C(7, X).
Then, <p is v-integrable, and \\fA<p® dv\ < sup(Ol | |^(r)| | • ||v\\(A)forallA e 9S{T).

PROOF. By [1, Theorem 4] we have only to prove that <p is v-measurable. Take an
increasing sequence [Kn}™=l of compact subsets of T such that T — \J^=\ K» *s v-null.
Since <p(Kn) is compact for all n e N, the set cp( (J^li ^n) is cr-compact, and hence
separable. Apply the Pettis measurability theorem [7, Theorem II. 1.2] to conclude
that <p is /z-measurable. •

4. A diagonal convergence theorem for injective tensor integrals

Let T be a uniform space with the uniformity fyT. Let X be a Banach space.
Denote by U(T, X) the Banach space of all bounded uniformly continuous functions
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<p : T -> X with the norm IMloo = sup,€r \\<p(t)\\. We write U(T) = U(T, R). Let
V be a Banach lattice. Denote by Jt+(T, Y) the set of all positive vector measures
v : SS{J) ->• Y, and denote by J??(T, Y) the set of all v e J(+(T, Y) which are
tight.

In this section, we give a diagonal convergence theorem for injective tensor integrals
with respect to positive vector measures. The following theorem is not only crucial to
prove our main results, that is Theorem 5.3 and Theorem 5.4, but seems to be of some
interest.

THEOREM 4.1. Let Tbea uniform space with the uniformity ̂ /T. Let Xbea Banach
space and Y a Banach lattice. Consider a net {<pa} C U(T, X) and <p e U(T, X)
satisfying the following conditions:

(i) <Pa(t) -> <p(t)for every t e T;

(ii) {<pa} is uniformly bounded, that is, supo ||^0||oo < oo; and
(iii) {(pa] is uniformly equicontinuous on T, that is, for any e > 0, there exists

V e&T such that supo \\<pa(t) - <pa(t')\\ < e whenever (t, t') 6 V.

Given a net {va} C J?,+ (T, Y) and a x-smooth measure v e J?,+(T, Y), if
lin^ fTgdva = fTgdvfor every g € U(T), then lim,, fT<pa ® dva= fT<p® dv.

To prove Theorem 4.1, we need several auxiliary results. In what follows, for any
V 6 WT and t € 7, put V(t) = {t' e T : (t, f) e V).

LEMMA 4.2. Let T be a uniform space with the uniformity ^T. Let Y be a Banach
space. Assume that v e S?(T, Y) is r-smooth. Then, for each e > 0 and V e ^/T, we
can find a finite subset {t\, t2,... ,tn}ofT and he U(T) with 0 < h < 1 satisfying
the following conditions:

(i) h(tj) = Ofor all i = 1, 2 , . . . , n; h(t) = I for all t i (JLi v'(/<)> and

(ii) |

PROOF. Let V e "&V and fix e > 0. Then, for each a e T, we can find da e U(T)
satisfying 0 < da < 1, da(a) = 0, and da(t) = 1 if t & V(a) (the existence of such a
function da follows from a proof of Uniformizable Theorem [13, Proposition 11.5]).

Let a range over the finite subsets of T and for a = {tx, t2,... , tn}, put ha(t) =
min!<,-<„ dh(t) for t e T. Then, {ha} is a decreasing net in U(T) converging pointwise
to 0 (the ordering for the a's being the set-theoretical inclusion). Since v is r-smooth,
by Proposition 2.1, we have \\fThadv\ < e for some a = [ty,t2,... , tn}, and this
function ha is a required one. •

PROPOSITION 4.3. Let T be a uniform space with the uniformity <fyT. Let Xbea Ba-
nach space and Y a Banach lattice. Let[va}beanetinJ?+(T, Y)andv 6 ^+(T, Y).
Assume that v is tight. Then the following two conditions are equivalent:
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(i) For every g e U(T), we have

(4.1)

(ii) For every <p e U(T, X), we have

f gdva^ f gdv.
JT JT

(4.2) sup / x*<pdva — I x*<pdv
JT JT

0.

PROOF. It is routine to prove that (ii) implies (i), and hence we prove (i) implies
(ii).

Fix q> € U(T, X), and we may assume that ||#>||oo < 1 without loss of generality,
since we obtain the result for a general <p by considering ^/||<p||oo in place of (p.

Given e > 0, the tight measure v satisfies | |v| |(7 — K) < £ for some compact
subset K of T. We first claim that there exists an open set V e ^T such that the
inequality

(4.3) sup \u*<p{t) - v*<p(t)\ < 3e
t€K(V)

holds for all u*,v* e Bx- satisfying

(4.4) sup \u*<p(t) - v*<p(t)\ < e,
teK

where K(V) = {t e T : (t, t') e V for some t' e K}. In fact, there exists an open
set V e <&Y such that s u p ^ ^ . \x*<p(t) - x*<p(t')\ = \\<p(t) - (p(t')\\ < s whenever
(r, t') e V. Take elements «*, v* e BX' such that (4.4) holds. Let t e K{ V) and take
t' e K satisfying (r, t') e V. Then, we have

- v*<p(t)\ < \u*<p{t) - i i>(r ')l + I«V(O - u X O I

which implies (4.3).
Next we claim that

(4.5)
a

Indeed, since K{V) is an open subset containing the compact set K, there exists
g e {/(7) vanishing on A: such that 0 < g < land g = Ion T-K(V) (adapt the proof
of [13, Proposition 11.5]). The positive measures va and v satisfy \\va\\(T — K(V)) <
I / r g J v a | and I fTgdi>\\ < \\v\\(T — K). It follows from assumption (i) applied
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to g e U(T) that I fTgdva\\ -* | fTgdv\\. Hence, limsupa ||vB||(r - K(V)) <
IM|(T - K) <e, which establishes (4.5).

Now, the set of functions {x*<p : x* e Bx.) restricted to K is uniformly bounded
and uniformly equicontinuous in C(K), so that it is a relatively compact subset of
C(K) by the Arzela-Ascoli theorem. In other words, there exists a finite subset Bo of
Bx. such that for any x* e Bx- there is x£ e Bo with sup/ejr \x*cp(t) — x^<p(t)\ < e,
and hence we have sup(eK(V) \x*<p(t) — XQ<p(t)\ < 3e by (4.3). Let** e BX' and take
x£ e BQ as above. Then

(4.6)

JT

max
we Bo

I u*<pdva — I u*(pdv
JT JT

<p\dv

Further, we have

(4.7) / \x*<p-x*Q<p\dva < / \x*<p-x£(p\dva
JT JT-K(V)

f \x*<p-x*0
JK(V)

<p\dva

and

(4.8) \j \x*0<p-x*<p\dv - K) + e\\v(T)\\ < 2e + s\\v(T)\\.

It follows from (4.6)-(4.8) that

(4.9) sup I x*<pdva — I x*<pdv

T - K(V)) + l£\\va(J)\\

I u*<pdva — I u*<pdv

< 2 K H ( 7 - A : ( V ) )

+ max

Now an appeal to (4.1) gives ||vo(T)\\ = | / r

max / u*<pdva — / u*<pdv

e\\v(T)\\

/ r l r f v | = \\v{T)\\ and

0,
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and hence by (4.5) and (4.9) we have

l imsup | sup / x*<pdva — I x*<pdv \
a [x'£Bx. \JT JT IJ

193

< 21imsup || vB
a

3e\\v(T)\\ +2e + e\\v(T)\\

which establishes (4.2). •
PROPOSITION 4.4. Let T be a uniform space. Let X be a Banach space and Y

a Banach lattice. Let {va) be a net in Jt?(T, Y) and v e Jt+(J, Y). Then the
following two conditions are equivalent:

(i) For every g e U(T), we have fT g dva —> fT g dv.
(ii) For every cp e U{T, X), we have fT<f>® dva -> JT(p® dv.

PROOF. It is obvious that (ii) implies (i), and hence we prove (i) implies (ii).
Fix (p e U(T,X). Then, s u p , . ^ , \jTx*<pdva - JTx*<pdv\\ - • 0 by Proposi-

tion 4.3. It follows from Proposition 3.3 that <p is integrable with respect to both va

and v. Hence, by [11, page 327] we have

<p®dva- <p® dv = sup I x*<pd(y*va) - [ x*<pd(y*v)
JT JT

= sup f x*<pdva- I
JT JT

x*<pdv 0,

which establishes (ii). D

PROOF OF THEOREM 4.1. Fix e > 0. By assumption (iii) we can find V e <fyT such
that

(4.10) sup \\<pa(t) - <pa(t')\\ < £ and \\<p(t) - (p(t')\\ < s

whenever (/, t') € V. Then, Proposition 3.3 allows us to define continuous linear
operators La, L : U(T, X) -+ X § Y by La\[r = fT \j/ ® dva and Lf = fT\jr® dv,
f 6 U(T, X). Then the equality La<pa — La(p + La(<ptt - <p) holds.

We first prove that

(4.11) \\La(<pa - <p)\\ ^ 0.
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To this end, take a finite subset {tu t2 tn] of T and he U(T) with 0 < h < 1
satisfying (i) and (ii) of Lemma 4.2. Then, assumption (i) of Theorem 4.1 ensures that

l immax ||<pa(r,-) - ?>(*,•) || = 0.
a l<i<n

(4.12)

We claim that

(4.13)

In fact, let / € |J"=1 V(tt). Then, there exists i0 with 1 < i0 < n such that (t^, t) e V.
Hence, by (4.10) we have s u p , , ^ V(li) \\<pa(t)-<p(t)\\ < 2e+max1<,<n \\(pa(ti)-<p(ti)\\
for each or. Thus, by (4.12) we have limsupa sup,€y« V(/() \\(pa{t) — <p(t)\\ < 2s. On
the other hand, since the function h satisfies (i) of Lemma 4.2, we have

- h)(<pa - < sup

for all a, which implies (4.13).
Now, observe that \\La(<pa - <p)\\ < \\La{h{<pa - <p))\\ + | |La((l - h)(<pa - <p))\\ for

each a. Recalling assumption (ii), we put M = supa ||^a||oo < oo. It follows from
Proposition 3.2 that

\\La(h((pa — (p))\\ < \\<pa — Vlloo - / hdvc

JT

On the other hand, it follows from [1, Theorem 4] that

| | L B ( ( 1 - h)(<pa - <p))\\ < l i d - h)(<pa -

Consequently, for each a we have

o) \Lhd»-

(4.14) hdva
JT

By the assumption of Theorem 4.1, we have linv fT h dva = fThdv and

limHuJKD = limlMDH = \\v(T)\\ = \\v\\(T).
a a

Thus, it follows from (4.13) and (4.14) that

hdvl i m s u p \\La(<pa -<P)\\<(M

which establishes (4.11).
By Proposition 4.4 and assumptions of Theorem 4.1 we have \\Latp — Lcp\\ -> 0.

This together with (4.11) implies \\La<pa — L<p\\ —> 0 and the proof is complete. •
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5. Weak convergence of injective tensor product measures

We first recall the definition of weak convergence of vector measures. Let 5 be
a topological space and X a Banach space. Let {/xa} be a net in Jt{S, X) and
ju- e -#(S, X). We say that [fj,a] converges weakly to /z, and write fxa

 J-^> /z, if for
each / 6 C(S) we have lima fsf d[ia = fsf d\x in the norm of X; see [6, 22].

The following proposition asserts that in the case of positive vector measures, weak
convergence follows from the validity of the above convergence for only bounded
uniformly continuous functions / on 5; see for example [23, Theorem 8.1 (the Port-
manteau Theorem)].

PROPOSITION 5.1. Let S be a uniform space with the uniformity <fys. Let X be a
Banach lattice. Let [fia] be a net in ^+(S, X) and \x 6 ^f+(S, X). Assume that \x
is tight. Then the following two conditions are equivalent:

(i) For every f e U(S), we have fsf d\xa -> fsf dfx.
(ii) For every f e C(S), we have fsf d(Ma -*• fsf dfj,.

PROOF. It is obvious that (ii) implies (i), and hence we prove (i) implies (ii).
Fix e > 0 and / e C(S). Then, the tight measure /u. satisfies HA<.||(S — K) < e

for some compact subset K of S, and it follows from [21, Lemma V.I, page 250] that
there exists an open, symmetric set V € ^s satisfying

(5.1) | / {s) -f(s')\ < s whenever (s, s') 6 V and s' e K.

Further, there is a function g e U(S) such that g(s) = / (s) for all s e K and
||g||oo = supie/f | / (s)\; see [4, Chapter IX, Exercises, Section 1, no. 22]. Then, there
exists an open, symmetric set V" e ^/s such that

(5.2) \g(s) - g(s')\ < e whenever (s, s') e V.

Put W = Vn V. Then, W is also an open, symmetric subset of Ws, and (5.1) and
(5.2) remain true for the set W instead of V and V", respectively.

Put K( W) = [s e S : (s, s') e W for some s' e K}. Then, by similar arguments
as in the proof of (4.3) and (4.5) of Proposition 4.3, it follows from (5.1), (5.2), the
positivity of /x and assumption (i) that

(5.3) sup \f(s)-g(s)\<2s and limsup \\^J(S - K( W)) < s.

Now, for each a we have

(5.4) I / dixa - I f dfi < if dixa - gd/j,
Js Js Js Js

Igdn- ffd,
Js Js

/ gdna- /
Js Js
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By the first inequality of (5.3), for each a we have

[12]

(5.5) fdfi. -I.
1
/
JS-K(W)

<l l / l l oo l lM

f d\xa

(S —

| +

1
/ gdfXa

JS-K(W)

l^)) + | U | | o o II"

+

||(5-
J K(W)

Similarly, noting that \\(i\\(S — K) < e and g = / on K, for each a we have

(5.6) -I,gdfi- If

On the other hand, it follows from assumption (i) that lin^ ||/zo||(5) = lirria ||/xo(5)|| =
\\fi(S)\\ = ||Mil(5) and lin\, fs gdna = fsgdfi. This together with (5.3H5.6) im-
plies limsupa | j / s / dfxa - Jsf dn\\ < 2s (||/ Ho, + Ĥ Hoo + ||/x||(5)), which estab-
lishes (ii). •

LEMMA 5.2. Let S and T be uniform spaces with the uniformities % and *&T,
respectively. Let X be a Banach space. Assume that a net [fxa] in M{S, X) is
uniformly bounded, that is, supa H/AJKS) < oo. Let h € U(S x T) and put <pa{t) —
fs h(s, t)/j,a(ds)for all a and t € T. Then, {(pa) satisfies assumptions (ii) and (iii) of
Theorem 4.1.

PROOF. The uniform boundedness of {<pa} follows from [2, Theorem 2.6].
Put M = supo H/ZallCS) < oo. Given e > 0, chose V e Ws and W 6 <&V such

that \h(s, t) - h(s', 01 < e/(M + 1) whenever (s, s') € V and (r, f) 6 W. Thus, if
(t, t') e W, then for all a we have

\\<P,(» - <Pa(t')\\ = I (h(s,t)-h(s,t'))(xa(ds)

Af + 1
• M

which implies the uniform equicontinuity of [<pa]. O

Let 5 and T be uniform spaces. Let X and Y be Banach lattices. Then, by [8,
Theorem], given vector measures fi 6 ^f(S, X) and v 6 Jt{T, Y), there exists
a unique vector measure fi§iv : 3&{S) x 38(T) -> X ® Y, which is called the
injective tensor product of/A and v, such that (/z. § v)(A x B ) = /x(A) ® v(J?) for all
A 6 ̂ ( 5 ) and B € SS(T)\ see also [16, Theorem]. In this section, as an application of
Theorem 4.1, we consider a problem of joint continuity of the injective tensor product
of positive vector measures in certain Banach lattices.
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In the rest of this paper, we assume that 5 and T satisfy 9&(S x T) = 3§{S) x 3§(T)
(it is routine to check that this condition is satisfied, for instance, either 5 or T has a
countable base of open sets). In this case, we can view the injective tensor product
/u,®v as a vector measure defined on S8(S x T), and integrate any (uniformly)
continuous real function with respect to /x <g> v. As an application of Theorem 4.1 we
have the following result.

THEOREM 5.3. Let S and T be uniform spaces. Let X and Y be Banach lattices.
Let {ixa} be a net in JK+(S, X) and \x e ^+(S, X). Let {va} be a net in ^,+ (T, Y)
and v € ^#r

+(7\ Y). Assume that v is x-smooth. If fsf d/xa -*• fsf d\i and
fTgdva -+ fT g dv for every f e U(S) and g 6 U(T), then jSxThd{^a®va) -+
fSxT hd([i®v) for every h e U(S x T).

PROOF. We may assume without loss of generality that {/xa} and {va} are uniformly
bounded, that is, supa ||/ia||(S) < oo and supo | |va| |(7) < oo.

Fix h e U(S x T), and put <pa(t) = fs h(s, t)ixa(ds) and cp(t) = fs h(s, t)/j.(ds)
for each a and t e T. Then, by Lemma 5.2 and the assumptions of this theorem, {(pa)
and <p satisfy the conditions of Theorem 4.1, and hence we have fT<pa ® dva —>
fT<p® dv. By the Fubini theorem for injective tensor product measures (see,
for instance, [11, Theorem 13]), we have fT<pa® dva = fSxThd(na®va) and
fT<p® dv = fSxThd(fx ® v), which proves the theorem. •

Let X and Y be Banach lattices. Then, in general, the injective tensor product X ® Y
or the projective tensor product may not be a vector lattice for the natural ordering.
However, the injective tensor products of some important examples of Banach lattices
are also Banach lattices; see the examples after the proof of the following theorem.

Let X and Y be Banach lattices such that the injective tensor product X <g> Y is also
a Banach lattice satisfying the condition x (g> y > 0 for every x > 0 and y > 0. Let
(Q, #/) and (F, 88) be measurable spaces. Let /u, : srf -» X and v : 38 -*• Y be vector
measures. Then it is easy to verify that if /x and v are positive, so is the injective
tensor product /x ® v. In this case, we have an affirmative answer for a problem of
joint continuity of the injective tensor products with respect to the weak convergence
of vector measures.

THEOREM 5.4. Let S and T be uniform spaces. Let X and Y be Banach lattices
such that the injective tensor product X <g> Y is also a Banach lattice satisfying the
condition x <g> y > Ofor every x > 0 and y > 0. Let {/xa} be a net in ^+(S, X) and
ix € ^,+ (S, X). Let {va} be a net in ^ + ( 7 \ Y) and v e JZ?{T, Y). Assume that v
is x -smooth. Iffxa —>• \x and va —> v, then /xa <g> va —> \x <E> v.

PROOF. By Theorem 5.3, for every h e U(S x T) we have fSxThd(^a ® va) -*•
fSyTd(n§>v). By assumption, /u.a<g>va's and n<8>v are positive, and it is easy
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to prove that /ii®v is tight. Consequently, it follows from Proposition 5.1 that
Hot ® Va - A - fj, §> V. D

REMARK. In the special case that X = Y = K, an alternative proof of Theorem 5.4
is executed by a well-known criterion that one can prove the weak convergence of
iia to /A by showing that fxa(A) —• (A(A) for some special class of sets A (see, for
instance, [24, Corollary 1 to Theorem 1.3.5 and Proposition 1.4.1]). However, it seems
that the usual proof of the above criterion does not work well for positive vector
measures, since the notions of limit infimum and limit supremum cannot be extended
to general Banach lattices.

We finish this paper with examples of Banach lattices X and Y such that the injective
tensor product X ® Y is also a Banach lattice satisfying the condition x ® y > 0 for
every x > 0 and y > 0; see examples in [20, pages 274-276] and [12, page 90].

EXAMPLES. (1) If AT is a compact space and Y be any Banach lattice, then C(K) §> Y
is isometrically lattice isomorphic to the Banach lattice C(K, Y). Especially, when
Y = C(L) for some compact space L, C(K) ® C(L) is isometrically lattice isomor-
phic to C(K x L).

(2) Let P be a locally compact space and Y be any Banach lattice. Denote by
Q)(P, y) the Banach lattice with its canonical ordering of all continuous functions
<p : P -* Y such that for every e > 0, the set [s € P : | | ^ (J ) | | > e) is compact.
We write C0(P) = C0(P, K). Then CQ(P)§> Y is isometrically lattice isomorphic
to Co(P, Y). Especially, when Y = C0(Q) for some locally compact space Q,
Co(P) ® Co(Q) is isometrically lattice isomorphic to Co(P x Q).

(3) Let (Q, £/, a) be a measure space and Y be any Banach lattice. Denote by
L°°(Sl, Y) the Banach lattice of all (equivalence classes of) a-essentially bounded
measurable functions <p : £2 -» Y with its canonical ordering. We write L°°(£2) =
L°°(Q, R). Then, L°°(Q) ® Y is a Banach lattice. However, in general, L°°(J2) § Y
is a proper closed subset of L°°(Q, Y).

Acknowledgement

The author is very grateful to the referee for detailed comments and suggestions
which have significantly improved this paper.

References

[1] R. G. Bartle, 'A general bilinear vector integral', Studio Math. 15 (1956), 337-352.
[2] R. G. Bartle, N. Dunford and J. Schwartz, 'Weak compactness and vector measures', Canad. J.

Math. 7(1955), 289-305.

https://doi.org/10.1017/S1446788700003244 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003244


[15] Joint continuity of tensor products 199

[3] P. Billingsley, Convergence of probability measures (Wiley, New York, 1968).
[4] N. Bourbaki, Topologie generate, 2nd edition (Hermann, Paris, 1958).
[5] I. CsiszaY, 'On the weak* continuity of convolution in a convolution algebra over an arbitrary

topological group', Studio Sci. Math. Hungar. 6 (1971), 27-40.
[6] M. Dekiert, Kompaktheit, Fortsetzbarkeit und Konvergenz von Vectormqfien (Dissertation, Univer-

sity of Essen, 1991).
[7] J. Diestel and J. J. Uhl, Jr., Vector measures, Amer. Math. Soc. Surveys 15 (Amer. Math. Soc.,

Providence, 1977).
[8] M. Duchoft and I. Kluv&iek, 'Inductive tensor product of vector-valued measures', Mat. Casopis

Sloven. Akad. Vied. 17 (1967), 108-112.
[9] R. M. Dudley, Real analysis and probability (Wadsworth & Brooks/Cole, California, 1989).

[10] N. Dunford and J.T.Schwartz, Linear operators. Part 1: General theory (Wiley, New York, 1958).
[11] F. J. Freniche and J. C. Garcia-Vazquez, 'The Bartle bilinear integration and Carleman operators',

J. Math. Anal. Appl. 240 (1999), 324-339.
[12] A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc.

16 (Amer. Math. Soc, Providence, 1955).
[13] I. M. James, Topological and uniform spaces (Springer, New York, 1987).
[14] J. Kawabe, 'Weak convergence of tensor products of vector measures with values in nuclear spaces',

Bull. Austral. Math. Soc. 59 (1999), 449-458.
[15] , 'A type of Strassen's theorem for positive vector measures with values in dual spaces',

Proc. Amer. Math. Soc. 128 (2000), 3291-3300.
[16] I. Kluvanek, 'On the product of vector measures', J. Austral. Math. Soc. 15 (1973), 22-26.
[17] I. Kluvanek and G. Knowles, Vector measures and control systems (North Holland, Amsterdam,

1975).
[18] D. R. Lewis, 'Integration with respect to vector measures', Pacific J. Math. 33 (1970), 157-165.
[19] M. Marz and R. M. Shortt, 'Weak convergence of vector measures', Publ. Math. Debrecen 45

(1994), 71-92.
[20] H. H. Schaefer, Banach lattices and positive operators (Springer, Berlin, 1974).
[21] L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures (Tata

Institute of Fundamental Research, Oxford University Press, 1973).
[22] R,M. Shortt, 'Strassen's theorem for vector measures', Proc. Amer. Math. Soc. 122(1994), 811-

820.
[23] F. Tops0e, Topology and measure, Lecture Notes in Math. 133 (Springer, New York, 1970).
[24] N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, Probability distributions on Banach spaces

(D. Reidel Publishing Company, 1987).
[25] M. Vath, Volterra and integral equations of vector functions (Marcel Dekker, New York, 2000).
[26] A. J. White, 'Convolution of vector measures', Proc. Roy. Soc. Edinburgh Sect. A 73 (1974/75),

117-135.

Department of Mathematics
Faculty of Engineering
Shinshu University
1-17-1 Wakasato
Nagano 380-8553
fapan
;-mail: jkawabe@gipwc.shinshu-u.ac.jp

https://doi.org/10.1017/S1446788700003244 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003244


200 j . Aust. Math. Soc. 74 (2003)

https://doi.org/10.1017/S1446788700003244 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003244

