Coinvariant Algebras of Finite Subgroups of SL(3,*C*)

Yasushi Gomi, Iku Nakamura and Ken-ichi Shinoda

Abstract. For most of the finite subgroups of SL(3, **C**) we give explicit formulae for the Molien series of the coinvariant algebras, generalizing McKay's formulae [McKay99] for subgroups of SU(2). We also study the *G*-orbit Hilbert scheme Hilb^G(**C**³) for any finite subgroup *G* of SO(3), which is known to be a minimal (crepant) resolution of the orbit space C^3/G . In this case the fiber over the origin of the Hilbert-Chow morphism from Hilb^G(**C**³) to C^3/G consists of finitely many smooth rational curves, whose planar dual graph is identified with a certain subgraph of the representation graph of *G*. This is an SO(3) version of the McKay correspondence in the SU(2) case.

0 Introduction

Let *G* be a finite subgroup of SL(*n*, **C**), *S*_{*G*} the coinvariant algebra of *G*, and (*S*_{*G*})_{*i*} the subspace of *S*_{*G*} of homogeneous degree *i* respectively. For each irreducible representation ρ of *G*, let $\langle \rho, (S_G)_i \rangle_G$ be the multiplicity of ρ in $(S_G)_i$ and define the Molien series $P_{S_G,\rho}(t)$ of *S*_{*G*} for ρ to be

$$P_{S_G,\rho}(t) = \sum \langle \rho, (S_G)_i \rangle_G t^i.$$

Since S_G is finite-dimensional, $P_{S_G,\rho}(t)$ is a polynomial of t. One can define similarly the Molien series $P_{M,\rho}(t)$ for an arbitrary graded G-module M with finite dimensional graded pieces. If M is the polynomial algebra S in two variables and if G is a subgroup of SU(2), then the Molien series $P_{S,\rho}(t)$ of S is a rational function of t by [Springer87] and it is well understood as is the connection with the Dynkin diagram corresponding to G (*cf.* [Springer87] and [McKay99]). In these cases the Molien series $P_{S,\rho}(t)$ of S_G is easily derived from the formula for $P_{S,\rho}(t)$.

The first purpose of this paper is to give an explicit formula for $P_{S_G,\rho}$ when *G* is one of the exceptional finite subgroups of SL(3, **C**) of type from (E) to (L) in the notation of [YY93]. Using the Koszul complex with *G*-action, we derive a certain system of equations analogous to the SU(2) case [McKay99] satisfied by the Molien series $P_{S,\rho}$. The equations are obtained just by taking alternating sums of componentwise generating functions of *G*-modules in the Koszul complex. They are given explicitly in

Received by the editors June 25, 2002; revised May 14, 2003.

The authors were supported in part by the Grants-in-aid (Nos. 12740025, 12304001, 12640040) for Scientific Research, JSPS. This work is also partially supported by the Japan-Britain joint research project of JSPS, 2000 April–2002 March.

AMS subject classification: Primary: 14J30; secondary: 14J17.

Keywords: Hilbert scheme, Invariant theory, Coinvariant algebra, McKay quiver, McKay correspondence.

[©]Canadian Mathematical Society 2004.

terms of irreducible decompositions of tensor products with the natural representation ρ_{nat} and its second exterior product $\bigwedge^2 \rho_{nat}$. This will be discussed in Section 2. The consequence of this section enables us to compute $P_{S,\rho}$ explicitly later. However the calculation of $P_{S_G,\rho}$ in the exceptional cases (E)–(L) is much harder, which will be discussed in Sections 4 and 5. This study of the Molien series $P_{S_G,\rho}$ was in fact motivated by the study of the *G*-orbit Hilbert scheme explained below, in particular by the study of $\pi^{-1}(0)$.

For a positive integer N, Hilb^N(\mathbb{C}^n) is the universal scheme which parametrizes all zero-dimensional subschemes of \mathbb{C}^3 of length N. For a finite subgroup G of $GL(n, \mathbb{C})$, we choose N = |G|, the order of G. Then the group G acts in the natural manner on Hilb^{|G|}(\mathbb{C}^n). The G-orbit Hilbert scheme Hilb^G(\mathbb{C}^n) is by definition the unique irreducible component of the G-invariant part of Hilb^{|G|}(\mathbb{C}^n) dominating \mathbb{C}^n/G , the G-invariant part of the corresponding Chow scheme of |G| points. In other words, Hilb^G(\mathbb{C}^n) is the universal subscheme of the Hilbert scheme Hilb^{|G|}(\mathbb{C}^n) which parametrizes all smoothable scheme-theoretic G-orbits of length |G|. The G-orbit Hilbert scheme Hilb^G(\mathbb{C}^n) is a fairly natural algebro-geometric object which incorporates all representation-theoretic information about G as a subgroup of $GL(n, \mathbb{C})$. It has already been studied in detail in the SU(2) case [IN99] and in the case where G is a noncommutative simple subgroup A_5 or PSL(2, 7) of SL(3, \mathbb{C}) [GNS00]. The scheme Hilb^N(\mathbb{C}^n) is known to be very singular if $n \ge 3$. However for a finite subgroup G of SL(3, \mathbb{C}), Hilb^G(\mathbb{C}^3) is known to be nonsingular by [N01] in the abelian case and by [BKR01] in the general case.

The second purpose of the article is to study $\operatorname{Hilb}^{G}(\mathbb{C}^{3})$, among other things, the fiber $\pi^{-1}(0)$ of the Hilbert-Chow morphism π : $\operatorname{Hilb}^{G}(\mathbb{C}^{3}) \to \mathbb{C}^{3}/G$ when G is a finite subgroup of SO(3). This will be discussed in Section 3.

It is well known that there is a surjective homomorphism from SU(2) onto SO(3)having ± 1 as its kernel, by which non-abelian subgroups of SU(2) and SO(3) correspond bijectively. For a subgroup G of SO(3) we define the representation graph R(G) of G by using the irreducible decompositions of tensor products with ρ_{nat} in the same manner as in the SU(2) case. First we observe that $\pi^{-1}(0)$ is a union of finitely many smooth rational curves. So we define, in the same way as in the SU(2)case, the planar dual graph $\bar{R}(G)$ of $\pi^{-1}(0)$ by associating a vertex to each rational curve in $\pi^{-1}(0)$, and by associating an edge connecting a pair of the vertices to each intersection point of the corresponding curves. Then it turns out that the planar dual graph $\overline{R}(G)$ is identified with a particular subgraph of R(G). In other words, every irreducible rational curve in $\pi^{-1}(0)$ is labeled by one of the nontrivial irreducible representations of G and vice versa, whose intersections are described purely in terms of irreducible decompositions of tensor products with ρ_{nat} in a manner similar to the SU(2) case. Thus we have a complete description of $\pi^{-1}(0)$ in the SO(3) case. However in almost all cases other than (A), (H) and (I) in the notation of [YY93] the precise structure of $\pi^{-1}(0)$ is yet to be determined.

This paper is organized as follows. In Section 1, we explain basic lemmas necessary for computing $P_{S_G,\rho}$. In Section 2, we first recall the Koszul complex over *S* and show that any alternating sum of componentwise generating functions of the *G*-modules in the Koszul complex is equal to zero, which yields a Springer-McKay type identity

of $P_{S,\rho}$. In Section 3, we describe $\pi^{-1}(0)$ completely when *G* is a subgroup of SO(3). In Sections 4 and 5 we give tables of $P_{S_G,\rho}$ for every finite subgroup *G* of SL(3, **C**) of type from (E) to (L) and every non-trivial representation ρ of *G*.

We would like to thank J. McKay and A. King for helpful discussions.

1 The Coinvariant Algebra for a Finite Subgroup G of SL(3, C)

1.1 The Molien Series

Let *V* be an *n*-dimensional complex vector space, V^{\vee} the dual of *V* and *G* a finite subgroup of GL(*V*). We denote by ρ the matrix representation of *G* afforded by the natural inclusion of *G* into GL(*V*) and by ρ^{\vee} its contragredient representation. As usual we call ρ the natural representation of *G*. We use the same notation as in [GNS00]; in particular we denote by $S = S(V^{\vee})$, $\mathfrak{m} = S_+$, S^G and S_G^+ respectively the symmetric algebra of V^{\vee} over **C**, the maximal ideal of *S* of the origin, the invariant algebra of *G*, and the maximal ideal of S^G of the origin. Let \mathfrak{n} be the ideal of *S* generated by S_+^G and $S_G := S/\mathfrak{n}$ the coinvariant algebra of *G*. Since \mathfrak{n} is a graded ideal of *S*, S_G is a graded algebra, too.

By the Noether normalization lemma, we can take a minimal system of homogeneous parameters f_1, f_2, \ldots, f_n of S^G so that S^G is a finite module over $\mathbf{C}[f_1, \ldots, f_n]$. Extending them we choose a minimal system of homogeneous generators f_1, f_2, \ldots, f_r of S^G and fix them once for all. The ideal n of S is generated by f_1, f_2, \ldots, f_r .

Let $\hat{G} = \{\rho_0 = 1, \rho_1, \dots, \rho_s\}$ be the set of representatives of equivalence classes of all irreducible representations of *G* and χ_i the character of ρ_i for $0 \le i \le s$. For an arbitrary graded CG-module $M = \bigoplus_{i\ge 0} M_i$ with dim $M_i < \infty$, we define the Molien series of *M* for ρ_j by

$$P_{M,\rho_j}(t) = \sum_{i\geq 0} \langle M_i, \rho_j \rangle_G t^i,$$

where

$$\langle M_i, \rho_j \rangle_G = \dim \operatorname{Hom}_G(\rho_j, M_i) = \frac{1}{|G|} \sum_{g \in G} \overline{\chi_j(g)} \operatorname{Tr}_{M_i}(g).$$

The following is derived easily from the formula in [Bourbaki, Lemme 2, p. 110]

(1)
$$P_{S,\rho_j}(t) = \frac{1}{|G|} \sum_{g \in G} \frac{\chi_j(g)}{\det(1 - \rho^{\vee}(g)t)}$$

Now we recall from [Stanley79, (4.9)].

Theorem 1.2 Let f_1, f_2, \ldots, f_r be homogeneous generators of S^G chosen as above, $d_i = \deg f_i, (f_1, f_2, \ldots, f_n)$ the ideal of S generated by f_1, f_2, \ldots, f_n , and let $R = S/(f_1, f_2, \ldots, f_n)$. Then as CG-modules we have

$$S \simeq R \otimes \mathbf{C}[f_1, f_2, \dots, f_n]$$
 and $R \simeq (\mathbf{C}G)^e$

where $e = |G|^{-1} d_1 d_2 \cdots d_n$.

Keeping the notations as above, we have **Proposition 1.3**

(i)

$$P_{R,\rho_j}(t) = \frac{\prod_{i=1}^n (1-t^{d_i})}{|G|} \sum_{g \in G} \frac{\overline{\chi_j(g)}}{\det(1-\rho^{\vee}(g)t)}.$$

(ii) $P_{R,\rho_i}(t) - P_{S_G,\rho_i}(t)$ is a polynomial with non-negative integer coefficients. (iii)

$$\sum_{j=0}^{S} (\deg \rho_j) P_{S_G, \rho_j}(t) = \sum_{j \ge 0} \dim(S_G)_i t^i.$$

Proof (i) It follows from Theorem 1.2 that $P_{S,\rho_i}(t) = P_{R,\rho_i}(t) / \prod_{i=1}^n (1-t^{d_i})$. From Molien's formula (1), we infer (i).

(ii) Since we have a canonical surjection from R to S_G , $P_{R,\rho_i}(t) - P_{S_G,\rho_i}(t)$ has non-negative integer coefficients.

(iii) Let $S_G = \bigoplus_{i=0}^{s} (S_G)_{\rho_i}$ be the decomposition into homogeneous components, namely ρ_j -factors $(S_G)_{\rho_j}$ of S_G . Since dim $(S_G)_{\rho_j} = (\deg \rho_j) \langle S_G, \rho_j \rangle_G$, the above equation is clear from the definition of $P_{S_G,\rho_i}(t)$.

We note that if there exists a complex reflection group \tilde{G} of GL(V) containing G with [G:G] = 2, then it is easier to calculate $P_{S_G,\rho_i}(t)$ by using the following

Theorem 1.4 ([Bourbaki] or [GNS00, 1.6]) Assume that there exists a complex reflection subgroup \tilde{G} of GL(V) containing G with $[\tilde{G}:G] = 2$.

(i) There exist n homogeneous Ğ-invariants f₁, f₂,..., f_n such that as CĞ-modules S^G = C[f₁, f₂,..., f_n] and S_Ğ = S/(f₁, f₂,..., f_n) ≃ CĞ.
(ii) Let f_{n+1} = Jac(f₁, f₂,..., f_n). Then we have

 $S^G = \mathbf{C}[f_1, f_2, \dots, f_n, f_{n+1}]$ and $S_{\tilde{G}} \simeq S_G \oplus \mathbf{C}f_{n+1}$.

Moreover

$$(S_{\tilde{G}})_k \simeq \begin{cases} (S_G)_k, & \text{if } k < d_{n+1}, \\ \mathbf{C}f_{n+1}, & \text{if } k = d_{n+1}, \\ 0, & \text{if } k > d_{n+1}, \end{cases}$$

where $d_{n+1} = \deg f_{n+1} = \sum_{i=1}^{n} (d_i - 1)$.

Corollary 1.5 Under the same assumptions in Theorem 1.4

$$P_{S_{G},\rho_{j}}(t) = P_{S_{\tilde{G}},\rho_{j}}(t) = \prod_{i=1}^{n} (1 - t^{d_{i}}) P_{S,\rho_{j}}(t),$$
$$P_{S_{G},\rho_{0}}(t) = P_{S_{\tilde{G}},\rho_{0}}(t) + t^{n+1} = \prod_{i=1}^{n} (1 - t^{d_{i}}) P_{S,\rho_{j}}(t) + t^{d_{n+1}}.$$

Proof Immediate from Theorem 1.4.

Remark 1.6 Let *G* be a finite subgroup of SL(3, **C**) of exceptional type (E)–(L). Then homogeneous generators of S^G are known explicitly in [YY93]. Moreover, since $(S_G)_i \simeq S_i/(\mathfrak{n})_i$ and $(\mathfrak{n})_i = V^{\vee} \cdot (\mathfrak{n})_{i-1} + \sum_{\deg f_j=i} \mathbf{C}f_j$, we can calculate $(\mathfrak{n})_i$ inductively. Thus all the informations of Proposition 1.3 are available, which turns out to be sufficient to determine $P_{S_G,\rho_j}(t)$ by the case-by-case examination. The results are summarized in Sections 4 and 5.

Either of the groups of type (H), (I) and (L) is a subgroup of some complex reflection group of index two, while the group of type (E), (F) or (J) is a subgroup of some complex reflection group of index 6, 3 or 12 respectively. In these cases we can apply [Steinberg64] and [Stanley79] to describe $R := S/(f_1, f_2, f_3)$ in some detail. However no group of type (G) or (K) is a subgroup of a complex reflection group. Nevertheless in any case from (E) to (L) the algebra R has a remarkable duality as in the cases of complex reflection groups. We will discuss it elsewhere.

2 Koszul Complex and Springer-McKay Identities of Molien Series

We keep the previous notation. We start with the Koszul complex for the symmetric algebra $S = S(V^{\vee})$ (*cf.* [Lang84, XVI Section 10]).

Lemma 2.1 Let $\bigwedge^k V^{\vee}$ be the k-th alternating product of V^{\vee} .

(i) There is a unique homomorphism

$$d_k\colon \bigwedge^k V^{\vee}\otimes S \to \bigwedge^{k-1} V^{\vee}\otimes S$$

such that for $x_i \in V^{\vee}$ and $y \in S$

$$d_k\big((x_1 \wedge x_2 \wedge \cdots \wedge x_k) \otimes y\big) = \sum_{i=1}^k (-1)^{i-1} (x_1 \wedge x_2 \wedge \cdots \wedge \hat{x_i} \wedge \cdots \wedge x_k) \otimes (x_i \cdot y).$$

(ii) There is an exact sequence with d_k given by (i)

$$0 \to \bigwedge^n V^{\vee} \otimes S \xrightarrow{d_n} \bigwedge^{n-1} V^{\vee} \otimes S \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} V^{\vee} \otimes S \xrightarrow{d_1} S \xrightarrow{d_0} \mathbf{C} \to 0.$$

(iii) For each integer $m \ge 1$ we have an exact sequence

$$0\to \bigwedge^n V^{\vee}\otimes S_{m-n}\to \bigwedge^{n-1}V^{\vee}\otimes S_{m-n+1}\to\cdots\to S_m\to 0,$$

where $S_i = 0$ for j < 0.

(iv) For each integer $m \ge 1$ and for each irreducible representation ρ_j ($0 \le j \le s$), we have an exact sequence

$$0 \to \left(\bigwedge^{n} V^{\vee} \otimes S_{m-n}\right)_{\rho_{j}} \to \left(\bigwedge^{n-1} V^{\vee} \otimes S_{m-n+1}\right)_{\rho_{j}} \to \cdots \to (S_{m})_{\rho_{j}} \to 0.$$

Proof For a proof of (i), (ii) and (iii), see [Lang84, (10.13) and (10.14)]. Since d_k is a *G*-homomorphism, we decompose the exact sequence of (iii) into ρ_j -components, which proves (iv).

We denote by $\rho^{(k)}$ (resp. $\rho^{\vee(k)}$) the CG-module $\bigwedge^k V$ (resp. $\bigwedge^k V^{\vee}$). Note that $\rho^{(0)} = 1, \ \rho^{(1)} = \rho, \ \rho^{(n)} = \text{det}, \text{ and } \rho^{\vee(k)}$ is the dual CG-module of $\rho^{(k)}$. Define non-negative integers $a_{i,j}^{(k)}$ by

(2)
$$\rho^{(k)} \otimes \rho_i = \sum_{j=0}^s a_{ij}^{(k)} \rho_j, \quad \text{for } 0 \le i \le s \text{ and } 0 \le k \le n.$$

Theorem 2.2 The Molien series $P_{S,\rho_j}(t)$ satisfy the following equations:

$$\sum_{k=0}^{n} \sum_{j=0}^{s} (-1)^{k} a_{ij}^{(k)} t^{k} P_{S,\rho_{j}}(t) = \delta_{i,0} \quad \text{for } i = 0, 1, \dots, s.$$

Proof We see

$$\dim\left(\bigwedge^{k} V^{\vee} \otimes S_{m-k}\right)_{\rho_{i}} = \deg(\rho_{i}) \dim \operatorname{Hom}_{G}(\rho_{i}, \rho^{\vee(k)} \otimes S_{m-k})$$
$$= \deg(\rho_{i}) \dim \operatorname{Hom}_{G}(\rho^{(k)} \otimes \rho_{i}, S_{m-k})$$
$$= \deg(\rho_{i}) \sum_{j=0}^{s} a_{ij}^{(k)} \dim \operatorname{Hom}_{G}(\rho_{j}, S_{m-k}).$$

Thus we obtain

$$\sum_{m\geq 0} \left(\dim \left(\bigwedge^k V^{\vee} \otimes S_{m-k} \right)_{\rho_i} \right) t^m = \deg(\rho_i) \sum_{j=0}^s a_{ij}^{(k)} t^k P_{S,\rho_j}(t).$$

Hence our theorem follows from Lemma 2.1 (ii) and (iv).

Remark 2.3 This proposition can be proved directly by using (1).

Corollary 2.4 Keep the same notation in Theorem 2.2.

(i) If G is a subgroup of SL(V), then

$$\sum_{k=1}^{n-1} \sum_{j=0}^{s} (-1)^k a_{ij}^{(k)} t^k P_{S,\rho_j}(t) = \left(-1 - (-1)^n t^n\right) P_{S,\rho_i}(t) + \delta_{i,0},$$

(ii) If G is a subgroup of $SL(2, \mathbb{C})$, then

$$\sum_{j=0}^{s} a_{ij}^{(1)} P_{S,\rho_j}(t) = (t+t^{-1}) P_{S,\rho_i}(t) - t^{-1} \delta_{i,0},$$

(iii) If G is a subgroup of SL(3, C) and if $\rho^{\vee} = \rho$, then

$$\sum_{j=0}^{s} a_{ij}^{(1)} P_{S,\rho_j}(t) = (t+1+t^{-1}) P_{S,\rho_i}(t) + (t^2-t)^{-1} \delta_{i,0}.$$

(The assumption in (iii) is satisfied if $G \subset SO(3)$.)

Proof If *G* is a finite subgroup of SL(*V*), then $\rho^{(0)}$ and $\rho^{(n)}$ are trivial. So (i) follows at once from Theorem 2.2. If dim *V* = 2, we obtain (ii) by dividing both sides of (i) by -t. Under the assumption of (iii), we have $\rho^{(1)} = \rho^{(2)} = \rho$. Dividing both sides of (i) by $(t^2 - t)$, we obtain (iii).

Put
$$F_j(t) = P_{S,\rho_j}(t) \prod_{i=1}^n (1 - t^{d_i})$$
 for $0 \le j \le s$. By Theorem 1.4

$$F_j(t) = \begin{cases} 1 + t^{d_{n+1}} & \text{if } j = 0\\ P_{S_G,\rho_j}(t) & \text{if } j \ne 0. \end{cases}$$

The next corollary is immediate from Corollary 2.4.

Corollary 2.5 Keep the notation as above. Let $0 \le i \le s$ *. Then*

(i) If G is a finite subgroup of $SL(2, \mathbb{C})$, then

$$\sum_{j=0}^{s} a_{ij}^{(1)} F_j(t) = (t+t^{-1}) F_i(t) - \frac{(1-t^{d_1})(1-t^{d_2})}{t} \delta_{i,0}$$

(ii) If G is a finite subgroup of SO(3), then

$$\sum_{j=0}^{s} a_{ij}^{(1)} F_j(t) = (t+1+t^{-1}) F_i(t) + \frac{(1-t^{d_1})(1-t^{d_2})(1-t^{d_3})}{(t^2-t)} \delta_{i,0}.$$

Remark 2.6 The system of equations in Corollary 2.4(ii) were given in [Springer87] and [McKay99] by using corresponding Coxeter-Dynkin diagrams, or McKay's semiaffine graphs. Corollary 2.4(i) claims, roughly speaking, that one can calculate all the Molien series once one knows $a_{ij}^{(k)}$, in particular only $a_{ij}^{(1)}$ when $G \subset SL(2, \mathbb{C})$ or $G \subset SO(3)$. In this sense the representation graph (or rather the indices $a_{ij}^{(1)}$) of a subgroup G of SO(3) plays the same role in calculating Molien series as the Coxeter-Dynkin diagram for a finite subgroup of SL(2, \mathbb{C}).

2.7 Complex Reflection Groups

If *G* is a finite subgroup of SL(2, **C**) or SO(3), there exists a complex reflection group \tilde{G} containing *G* with $[\tilde{G}:G] = 2$. We list all such pairs *G* and \tilde{G} in Table 1 and Table 2. We use the notation in [Cohen76]; the group G_i is the complex reflection group with Shephard-Todd number *i*. The symbol W(A) stands for the Weyl group of type *A*. The integer d_i in the tables is the degree of f_i defined in Theorem 1.4.

G in SL(2, C)	order	Ĝ	d_1, d_2
cyclic	1	$W(I_2^{(l)})$	2, l
binary dihedral	4l	G(2l,l,2)	4,2l
binary tetrahedral	24	G_{12}	6,8
binary octahedral	48	G_{13}	8,12
binary icosahedral	120	G_{22}	12, 20

Table 1: Subgroups of SL(2, **C**)

G in SO(3)	order	Ĝ	d_1, d_2, d_3
cyclic	1	$W(I_2^{(l)})$	1,2,l
dihedral	21	$W(I_2^{(l)} \times A_1)$	2,2,1
tetrahedral $(\simeq A_4)$	12	$W(A_3)$	2,3,4
octahedral ($\simeq S_4$)	24	$W(B_3)$	2,4,6
icosahedral ($\simeq A_5$)	60	$W(H_3)$	2,6,10

Table 2: Subgroups of SO(3)

3 Geometric McKay Correspondence for Subgroups of SO(3)

Let π : Hilb^{*G*}(**C**³) \rightarrow **C**³/*G* be the Hilbert-Chow morphism for $G \subset$ SO(3).

Theorem 3.1 Let G be a finite subgroup of SO(3). For $I \in \text{Hilb}^G(\mathbb{C}^3)$ with $I \subset \mathfrak{m}$, we define $V(I) = I/(\mathfrak{m}I + \mathfrak{n})$. For $1 \leq i \leq s$, we define $C_j = \{I \in \text{Hilb}^G(\mathbb{C}^3) ; V(I) \supset \rho_j, I \subset \mathfrak{m}\}$. Then

- (i) $C_i \simeq \mathbf{P}^1$ and $\pi^{-1}(0) = \bigcup_{i=1}^s C_i$.
- (ii) If $I \in C_i$ and $I \notin C_i$ for any $j \neq i$, then $V(I) \simeq \rho_i$ as G-modules.
- (iii) If only two rational curves C_i and C_j meet at $I \in \pi^{-1}(0)$, then C_i and C_j intersect at I transversally and $V(I) \simeq \rho_i + \rho_j$.
- (iv) If G is either cyclic, A_4 or D_{4m+2} , then there are no three rational curves meeting at a point of $\pi^{-1}(0)$.
- (v) If $G = D_{4m}$, S_4 or A_5 , then there is a unique $I \in \pi^{-1}(0)$ such that $\{I\} = C_i \cap C_j \cap C_k$ for $\rho_i, \rho_j, \rho_k \in \hat{G}$ all distinct. In this case $V(I) \simeq \rho_i + \rho_j + \rho_k$ and the curves C_i, C_j, C_k meet transversally at I as coordinate axes of $(\mathbb{C}^3, 0)$.
- (vi) No four rational curves C_i meet at a point of $\pi^{-1}(0)$.

Our proof of Theorem 3.1 is carried out by the case by case examination. When *G* is abelian, our theorem is proved by the same argument as in the two dimensional case. When *G* is isomorphic to the alternating group A_4 or A_5 , our theorem has been proved in [GNS00]. So we only need to prove our theorem when *G* is a dihedral group or $G = S_4$. We will give a proof of it in the subsections 3.4, 3.5 and 3.6.

3.2 Graphs of G

Here we define three graphs for a finite subgroup G of SO(3).

First we define the planar dual graph $\bar{R}(G)$ of $\pi^{-1}(0)$ as follows: the set of vertices of $\bar{R}(G)$ is $\{C_j\}_{1 \le j \le s}$; C_i and C_j are joined by a single edge if and only if $C_i \cap C_j \ne \phi$. We note that in Theorem 3.1 there are three rational curves C_i , C_j and C_k in $\pi^{-1}(0)$ meeting at a point, for which we define a planar triangle in $\bar{R}(G)$ with three vertices C_i , C_j and C_k instead of a two cell. See Table 3.

Next we define the (unoriented) representation graph R(G) of G as follows: the set of vertices is \hat{G} ; let $a_{i,j}^{(1)}$ be the integer defined in (2); ρ_i and ρ_j are joined by an edge of multiplicity $a_{i,j}^{(1)}$ if $a_{i,j}^{(1)} \neq 0$, where if i = j the edge joining ρ_i with itself is understood as a loop of multiplicity $a_{i,i}^{(1)}$. We note $a_{i,j}^{(1)} = 0$ or 1 for $i \neq j$, while $a_{i,i}^{(1)} = 0$, 1, or 2. We also note that $a_{i,j}^{(1)} = a_{i,j}^{(2)}$ for any finite subgroup G of SO(3).

Finally we define a subgraph $R_0(G)$ of R(G) as follows: the set of vertices is $\{\rho_j\}_{1 \le j \le s}$ and ρ_i and ρ_j are joined by a single edge if and only if $i \ne j$ and $a_{i,j}^{(1)} \ne 0$. In other words, $R_0(G)$ is the subgraph of R(G) obtained from R(G) by removing the vertex ρ_0 , all the edges starting from ρ_0 and all the loops in R(G).

The following theorem is a corollary to the proof of Theorem 3.1 once we calculate the representation graph R(G).

Theorem 3.3 $\bar{R}(G)$ is isomorphic to $R_0(G)$ under the map $C_i \mapsto \rho_i$ $(1 \le i \le s)$. The graphs $\bar{R}(G)$ and R(G) are given in Table 3.

In the rest of this section we give proofs of Theorem 3.1 in the cases where G is a dihedral group or G is isomorphic to S_4 .

3.4 Proof of Theorem 3.1—The Dihedral Group of Order $2\ell = 4m$

Let *G* be the dihedral group of order 2ℓ :

$$G = \left\langle \sigma = \left(\begin{matrix} \varepsilon^{-1} & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & 1 \end{matrix} \right), \ \tau = \left(\begin{matrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{matrix} \right) \right\rangle, \quad \text{where } \varepsilon = e^{2\pi i/\ell}.$$

We define

$$f_1 = z^2, \ f_2 = xy, \ f_3 = x^\ell + y^\ell, \ f_4 = z(x^\ell - y^\ell).$$

Then we see { f_1, f_2, f_3, f_4 } is a system of generators of S^G which satisfies

$$f_4^2 - f_1 f_3^2 + 4 f_1 f_2^\ell = 0,$$

regardless of the parity of ℓ .

First in this subsection we consider the case where ℓ is even. So we write $\ell = 2m$, |G| = 4m. The character table of *G* is given in Table 4.

The coinvariant algebra S_G splits into irreducible components as in Table 5. Using Table 5 we define ideals in Hilb^{*G*}(\mathbf{C}^3) $[a:b] \in \mathbf{P}^1$ as in [GNS00].

$$I([a:b]_{1_2}) = (az + b(x^{2m} - y^{2m}), xz, yz) + \mathfrak{n},$$

$$I([a:b]_{1_3}) = (a(x^m + y^m) + b(x^m - y^m)z, x^{m+1}, y^{m+1}, (x^m + y^m)z) + \mathfrak{n},$$

$$I([a:b]_{1_4}) = (a(x^m - y^m) + b(x^m + y^m)z, x^{m+1}, y^{m+1}, (x^m - y^m)z) + \mathfrak{n},$$

$$I([a:b]_{2_j}) = S[G] \cdot (ax^j z + by^{2m-j}, x^{j+1}z, x^{2m-j+1}) + \mathfrak{n}, \quad (i = 1, 2, ..., m-1).$$

It is clear that $V(I([a:b]_{\rho})) \simeq \rho$ as *G*-modules. We note that the following exhaust all the possible cases of coincidence between $I([a:b]_{\rho})$.

$$I([0:1]_{1_2}) = I([1:0]_{2_1}),$$

$$I([0:1]_{2_j}) = I([1:0]_{2_{j+1}}), \text{ for } j = 1, 2, \dots, m-2,$$

$$I([0:1]_{2_{m-1}}) = I([0:1]_{1_3}) = I([0:1]_{1_4}).$$

Now we prove

$$\pi^{-1}(0) = \bigcup_{\rho \in \hat{G} \setminus \{1_1\}} I([a:b]_{\rho}).$$

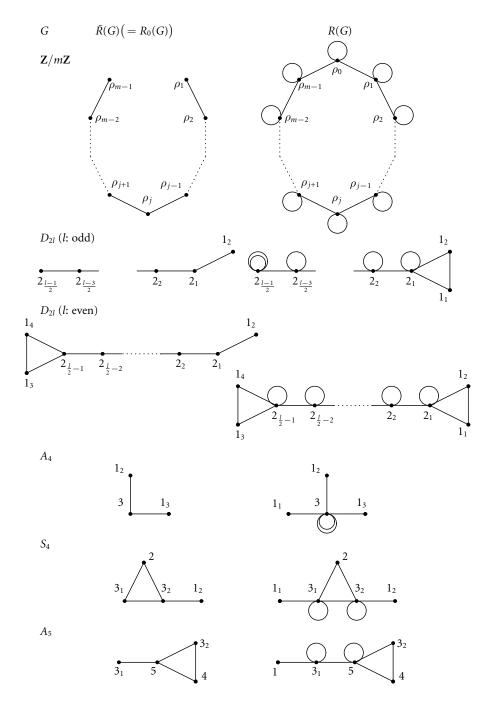


Table 3: Graphs of subgroups of SO(3)

Gomi, Nakamura and Shinoda

c.c	1	-1	au	$ au\sigma$	σ^{i}
age	0	1	1	1	1
#	1	1	т	т	2
1_1	1	1	1	1	1
1_2	1	1	-1	-1	1
1_{3}	1	$(-1)^{m}$	1	-1	$(-1)^{i}$
1_4	1	$(-1)^{m}$	-1	1	$(-1)^{i}$
2 _j	2	$(-1)^{j}2$	0	0	$\varepsilon^{ij} + \varepsilon^{-ij}$
					$(1 \le i, j \le m - 1)$

Table 4: Characters of $G(D_{2\ell})$, $\ell = 2m$:even.

degree	$(S_G)_j$	irred. factors
1	$\langle x,y angle\oplus \langle z angle$	$2_1 + 1_2$
$2 \le j \le m-1$	$\langle x^j, y^j angle \oplus \langle x^{j-1}z, -y^{j-1}z angle$	$2_j + 2_{j-1}$
т	$\langle x^m+y^m angle\oplus \langle x^m-y^m angle$	
	$\oplus \langle x^{m-1}z, -y^{m-1}z angle$	$1_3 + 1_4 + 2_{m-1}$
m + 1	$\langle y^{m+1}, x^{m+1} angle \oplus \langle (x^m - y^m) z angle$	
	$\oplus \langle (x^m + y^m) z \rangle$	$2_{m-1} + 1_3 + 1_4$
$m+2 \le j \le 2m-1$	$\langle y^j, x^j angle \oplus \langle y^{j-1}z, -x^{j-1}z angle$	$2_{2m-j} + 2_{2m-j+1}$
2 <i>m</i>	$\langle x^{2m}-y^{2m} angle\oplus \langle y^{2m-1}z,-x^{2m-1}z angle$	$1_2 + 2_1$

Table 5: The coinvariant algebra of $G(D_{2\ell})$, $\ell = 2m$: even.

It is immediate from the definition and the Diagram D_{4m} (see 3.7) that $I([a:b]_{\rho})$ are contained in $\pi^{-1}(0)$. Conversely let *I* be an ideal contained in $\pi^{-1}(0)$, that is, $\mathfrak{n} \subset I \subset \mathfrak{m}$ and $S/I \simeq \mathbb{C}[G]$. By the Diagram D_{4m} , it is easy to see that $x^{2m-j}z$, $y^{2m-j}z \in I$ for all $j = 1, 2, \ldots, m-1$ and that $x^j + ax^jz + by^{2m-j} \notin I$ for any $a, b \in \mathbb{C}$ and $j = 1, 2, \ldots, m-1$. If $x^jz + by^{2m-j} \in I$ for some $b \neq 0$ and some $j = 1, 2, \ldots, m-1$, then we have $I([1:b]_{2_j}) \subset I$ which implies $I([1:b]_{2_j}) = I$.

Now we assume the contrary, that is, that $x^j z + by^{2m-j} \notin I$ for any nonzero b and any j = 1, ..., m-1. Then by the condition $S/I \simeq \mathbb{C}[G]$ we have either $x^j z \in I$ or $y^{2m-j} \in I$. If there is $j \ge 2$ such that $x^j z \in I$, $x^{j-1}z \notin I$, then $y^{2m-j+1} \in I$. It follows that $I = I([1:0]_{2_j})$. If $xz \in I$, then $I = I([a:b]_{1_2})$.

It remains to consider the case where there is no j such that $x^j z \in I$. Hence $y^{m+1} \in I$. If $x^m + y^m + b(x^m - y^m)z \in I$ (resp. $x^m - y^m + b(x^m + y^m)z \in I$) for some $b \in C$, then $I = I([1:b]_{1_3})$ (resp. $I([1:b]_{1_4})$). Otherwise I contains $(x^m - y^m)z$

and $(x^m + y^m)z$ and then we have $I = I([0:1]_{1_3})$. Thus we complete the proof of Theorem 3.1 when *G* is a dihedral group of order 4m.

3.5 Proof of Theorem 3.1—The Dihedral Group of Order 4m + 2

Now we consider the second case where *G* is a dihedral group of order $2\ell = 4m + 2$. Table 6 is the character table of *G*. The coinvariant algebra S_G splits into irreducible components as in Table 7.

c.c	1	au	σ^{i}
age	0	1	1
#	1	2 <i>m</i> + 1	2
1_1	1	1	1
1_{2}	1	-1	1
2_j	2	0	$\varepsilon^{ij} + \varepsilon^{-ij}$
			$(1 \le i, j \le m)$

Table 6: Characters of $G(D_{2\ell})$, $\ell = 2m + 1$:odd.

degree	$(S_G)_j$	irred. factors
1	$\langle x,y angle\oplus \langle z angle$	$2_1 + 1_2$
j	$\langle x^j, y^j angle \oplus \langle x^{j-1}z, -y^{j-1}z angle$	$2_j + 2_{j-1}$
		$(2 \le j \le m-1)$
т	$\langle x^m, y^m angle \oplus \langle x^{m-1}z, -y^{m-1}z angle$	$2_m + 2_{m-1}$
m + 1	$\langle y^{m+1}, x^{m+1} angle \oplus \langle x^m z, -y^m z angle$	$2_m + 2_m$
<i>m</i> + 2	$\langle y^{m+2}, x^{m+2} angle \oplus \langle x^{m+1}z, -y^{m+1}z angle$	$2_{m-1} + 2_m$
j	$\langle y^j, x^j angle \oplus \langle y^{j-1}z, -x^{j-1}z angle$	$2_{2m-j+1} + 2_{2m-j+2}$
		$(m+3 \le j \le 2m)$
2 <i>m</i> + 1	$\langle x^{2m+1}-y^{2m+1} angle\oplus \langle y^{2m}z,-x^{2m}z angle$	$1_2 + 2_1$

Table 7: The coinvariant algebra of $G(D_{2\ell})$, $\ell = 2m + 1$: odd.

We define

$$I([a:b]_{1_2}) = (az + b(x^{2m+1} - y^{2m+1}), xz, yz) + \mathfrak{n},$$

$$I([a:b]_{2_j}) = S[G] \cdot (ax^j z + by^{2m-j+1}, x^{j+1}z, x^{2m-j+2}) + \mathfrak{n}, \quad j = 1, 2, \dots, m,$$

where

$$I([0:1]_{1_2}) = I([1:0]_{2_1}),$$

$$I([0:1]_{2_j}) = I([1:0]_{2_{j+1}}), \text{ for } j = 1, 2, \dots, m-1.$$

We see $\pi^{-1}(0) = \bigcup_{\rho \in \hat{G} \setminus \{1_1\}} I([a:b]_{\rho})$ in the same manner as in the case of even ℓ . As before we see that $x^{2m-j}z$, $y^{2m-j}z \in I$ for any j = 1, 2, ..., m-1 and that $x^j + ax^jz + by^{2m-j} \notin I$ for any $a, b \in \mathbb{C}$ and j = 1, 2, ..., m-1. If $x^jz + by^{2m-j} \in I$ for some $b \neq 0$ and some j = 1, 2, ..., m-1, then $I = I([1:b]_{2_j})$. If there is $j \ge 2$ such that $x^jz \in I$, $x^{j-1}z \notin I$, then $I = I([1:0]_{2_j})$. If $xz \in I$, then $I = I([a:b]_{1_2})$. If $x^mz \notin I$, then $y^{m+1}, x^{m+1} \in I$ so that $I = I([0:1]_{2_m})$.

3.6 Proof of Theorem 3.1—The Symmetry Group $G = S_4$

Let

$$G = \left\langle \sigma = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \tau = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \right\rangle.$$

We define

$$f_1 = xyz, \ f_2 = x^2 + y^2 + z^2, \ f_3 = x^4 + y^4 + z^4,$$

$$f_4 = (x^2 - y^2)(y^2 - z^2)(z^2 - x^2).$$

Then $\{f_1^2, f_2, f_3, f_1f_4\}$ is a system of generators of S^G which satisfies

$$4(f_1f_4)^2 + 108f_1^6 - 20f_1^4f_2^3 + 36f_1^4f_2f_3 + f_1^2f_2^6 - 4f_1^2f_2^4f_3 + 5f_1^2f_2^2f_3^2 - 2f_1^2f_3^3 = 0$$

The following is the character table of *G*.

c.c	1	σ^2	au	σ	$\sigma \tau \sigma^2$
age	0	1	1	1	1
#	1	3	8	6	6
11	1	1	1	1	1
12	1	1	1	-1	-1
2	2	2	$^{-1}$	0	0
31	3	-1	0	1	-1
32	3	-1	0	-1	1

Table 8: Characters of *S*₄.

The decomposition of the coinvariant algebra S_G into irreducible components is given in Table 9 where

$$g = x^2 + \omega y^2 + \omega^2 z^2, \ \bar{g} = x^2 + \omega^2 y^2 + \omega z^2, \quad \omega = e^{2\pi\sqrt{-1}/3}.$$

d	$(S_G)_d$	irred. factors
1	$\langle x, y, z \rangle$	31
2	$\langle g, ar{g} angle \oplus \langle yz, zx, xy angle$	2 + 3 ₂
3	$\langle f_1 angle \oplus \langle x^3, y^3, z^3 angle$	
	$\oplus \langle (y^2-z^2)x,(z^2-x^2)y,(x^2-y^2)z angle$	$1_2 + 3_1 + 3_2$
4	$\langle ar{g}^2, g^2 angle \oplus \langle (y^2 - z^2)yz, (z^2 - x^2)zx, (x^2 - y^2)xy angle$	
	$\oplus \langle f_1 x, f_1 y, f_1 z angle$	$2 + 3_1 + 3_2$
5	$\langle f_1g, -f_1ar{g} angle \oplus \langle f_1yz, f_1zx, f_1xy angle$	
	$\oplus \langle (y^2-z^2)x^3,(z^2-x^2)y^3,(x^2-y^2)z^3 \rangle$	$2 + 3_1 + 3_2$
6	$\langle f_4 angle \oplus \langle f_1(y^2-z^2)x, f_1(z^2-x^2)y, f_1(x^2-y^2)z angle$	
	$\oplus \langle f_1 x^3, f_1 y^3, f_1 z^3 \rangle$	$1_2 + 3_1 + 3_2$
7	$\langle f_1 ar{g}^2, -f_1 g^2 angle$	
	$\oplus \langle f_1(y^2-z^2)yz, f_1(z^2-x^2)zx, f_1(x^2-y^2)xy \rangle$	2 + 3 ₂
8	$\langle f_1(y^2-z^2)x^3, f_1(z^2-x^2)y^3, f_1(x^2-y^2)z^3 \rangle$	31

Table 9: The coinvariant algebra of S_4 .

We define

$$I([a:b]_{1_2}) = S \cdot (af_1 + bf_4, f_1x, f_1y, f_1z) + \mathfrak{n},$$

$$I([a:b]_2) = S[G] \cdot (ag^2 + bf_1\bar{g}, (y^2 - z^2)x^3, f_1yz) + \mathfrak{n},$$

$$I([a:b]_{3_1}) = S[G] \cdot (a(y^2 - z^2)yz + bf_1yz, f_1g, (y^2 - z^2)x^3) + \mathfrak{n},$$

$$I([a:b]_{3_2}) = S[G] \cdot (af_1x + b(y^2 - z^2)x^3, f_1g, f_1yz) + \mathfrak{n}.$$

Let $\bar{S}_d = (S_G)_d$, the degree d part of S_G . Let $I \in \text{Hilb}^G(\mathbb{C}^3)$ such that $\mathfrak{n} \subset I \subset \mathfrak{m}$. First we note by using the quiver diagram of S_4 as before that I does not contain the elements whose projections to $\bar{S}_1 \oplus \bar{S}_2$ (the degree one and two parts of S_G) are nonzero. We note also that I contains $\bar{S}_7 \oplus \bar{S}_8$.

Assume that *I* contains an element af_1+bf_4 for $a \neq 0$. Then by the quiver diagram of S_4 , we see easily that $I = I([a:b]_{1_2})$.

Now we consider the case I contains no element $af_1 + bf_4$ for $a \neq 0$. Since $S_G/I = C[G]$, $f_4 \in I$, that is $\overline{S}_6(1_2) \subset I$. If I contains an element $af_1x + b(y^2 - z^2)x^3$ for

 $a \neq 0$, then $I = I([a:b]_{3_2})$. If *I* contains an element $a(y^2 - z^2)yz + bf_1yz$ for $a \neq 0$, then $I = I([a:b]_{3_1})$.

Now we consider the remaining cases. By the quiver diagram of S_4 , we see $\bar{S}_5(3_1) \oplus \bar{S}_5(3_2) \subset I$ and $\bar{S}_6 \subset I$. If $a\bar{g}^2 + bf_1g \in I$ for $a \neq 0$, then $I = I([a:b]_2)$. If I contains no element $a\bar{g}^2 + bf_1g$ for $a \neq 0$, then $f_1g \in \bar{S}_5(2) \subset I$ because I contains no elements with nonzero projections to $\bar{S}_1 \oplus \bar{S}_2$. Hence $\bar{S}_5 \subset I$, and $I = I([0:1]_2) = I([0:1]_{3_1}) = I([0:1]_{3_2})$.

The following exhaust all the possible cases of coincidence between $I([a:b]_{\rho})$.

$$I([0:1]_{1_2}) = I([1:0]_{3_1}),$$

$$I([0:1]_2) = I([0:1]_{3_1}) = I([0:1]_{3_2}).$$

This completes the proof of Theorem 3.1.

3.7 Quiver Diagrams

The diagrams $D_{2\ell}$ and S_4 on the next page are drawn in the same manner as in [GNS00]. They express the quiver structure of S_G , that is the decomposition of $S_1 \cdot ((S_G)_d)_{\rho_j}$. The rows are indexed by degrees and the columns by irreducible representations. Each irreducible factor ρ_j of $(S_G)_d$ has multiplicity one except when $G = D_{4m+2}, d = m+1, \rho_j = 2_m$ and $(S_G)_{m+1} = \langle y^{m+1}, x^{m+1} \rangle \oplus \langle x^m z, -y^m z \rangle = 2 \cdot 2_m$. Each vertex in the diagram stands for nonzero $((S_G)_d)_{\rho_j}$ and we join $((S_G)_d)_{\rho_j}$ and $((S_G)_{d+1})_{\rho_k}$ with an edge when nonzero $((S_G)_{d+1})_{\rho_k}$ appears in $S_1 \cdot ((S_G)_d)_{\rho_j}$. In the unique exceptional case where $G = D_{4m+2}$, the diagram shows

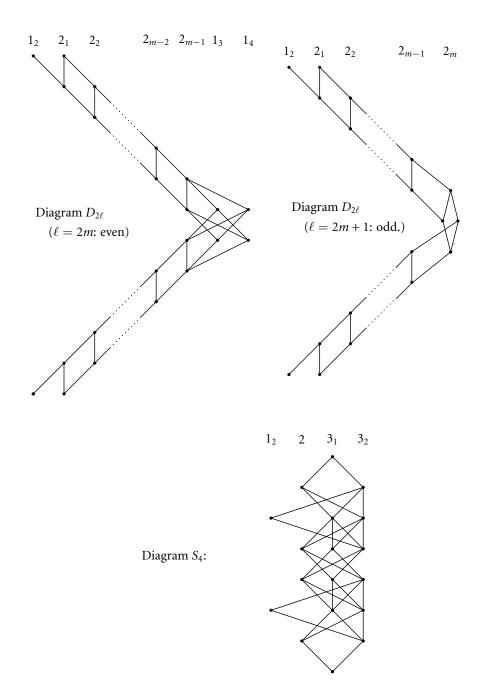
$$S_1 \cdot ((S_G)_m)_{2_{m-1}} = \langle x^m z, -y^m z \rangle, \quad S_1 \cdot ((S_G)_m)_{2_m} = (S_G)_{m+1}.$$

4 The Molien Series P_{S_G,ρ_i} —The Case (E)

Finite subgroups of SL(3, **C**) are classified in [Blichfeldt17]. With the notation in [YY93], there are exactly 4 infinite series labeled by (A), (B), (C), (D), and 8 exceptional cases labeled by (E) through (L). Homogeneous generators of the invariant rings for the exceptional 8 groups, together with explicit descriptions of these groups, are given in [YY93], which we shall follow.¹ Since the character tables of these groups can be obtained by using, for example, GAP, we omitted them; instead we give short descriptions of irreducible characters. In what follows we denote by 1_0 the trivial character (or representation) of *G*.

In this and the next section we calculate P_{R,ρ_j} and P_{S_G,ρ_j} explicitly for (E)–(L). See also [GNS00]. In this section we discuss the case (E) in some detail as a prototype for all the other cases. In what follows in order to save space we will not explain the customary notation.

¹Since our results use the results in [YY93], we mention here some of their misprints: page 34, line 1, $\frac{1}{\sqrt{-7}}$ should be $\frac{-1}{\sqrt{-7}}$, page 80, line 2, $(15 + 5\sqrt{15}i)x^3y^3$ should be $(15 + 5\sqrt{15}i)y^3z^3$.



$$G = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, V = \frac{1}{\sqrt{-3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \right\rangle,$$

where $\omega = e^{2\pi i/3}$. Then we have |G| = 108, and $\hat{G} = \{1_0, 1_1, 1_2, 1_3, 3_1, 3_2, 3_3, 3_4, 3_5, 3_6, 3_7, 3_8, 4_1, 4_2\}$, where $1_1(V) = \sqrt{-1}$, $1_2 = 1_1^2$, $1_3 = 1_1^3$, $3_1 = \rho$, $3_2 = 1_1\rho$, $3_3 = 1_2\rho$, $3_4 = 1_3\rho$, $3_5 = \rho^{\vee}$, $3_6 = 1_1\rho^{\vee}$, $3_7 = 1_2\rho^{\vee}$, $3_8 = 1_3\rho^{\vee}$, $4_1(T) = 1$ and $4_2(T) = -2$.

The decompositions of $\rho_i \otimes \rho$ are given in Appendix.

We also have $S^G = C[f_1, f_2, f_3, f_4, f_5]$ with deg $f_1 = 6$, deg $f_2 = 6$, deg $f_3 = 12$, deg $f_4 = 12$, and deg $f_5 = 9$.

Put $R = S/(f_1, f_2, f_3)$. Then we can easily compute $P_{R,\rho_j}(t)$ by applying Proposition 1.3. Thus we see that *R* splits into irreducible representations as in Table 10.

Next we calculate the Molien series $P_{S_G}(t)$ by the repeated use of the trivial relation $(\mathfrak{n})_i = V^{\vee} \cdot (\mathfrak{n})_{i-1} + (S^G)_i$ for any *i*. In the case (E) we need to compute only for $i \leq 21$. What we do is not more than elementary linear algebra, so we omit the details of the computation. We see

$$P_R(t) = \frac{(1-t^6)^2(1-t^{12})}{(1-t)^3}$$

= 1+3t+6t^2+10t^3+15t^4+21t^5+26t^6+30t^7
+33t^8+35t^9+36t^{10}+36t^{11}+35t^{12}+33t^{13}+30t^{14}
+26t^{15}+21t^{16}+15t^{17}+10t^{18}+6t^{19}+3t^{20}+t^{21},

$$P_{S_G}(t) = 1 + 3t + 6t^2 + 10t^3 + 15t^4 + 21t^5 + 26t^6 + 30t^7 + 33t^8 + 34t^9 + 33t^{10} + 30t^{11} + 24t^{12} + 15t^{13} + 6t^{14}$$

Then in view of Proposition 1.3 we can compute the Molien series $P_{S_G,\rho_j}(t)$. Summarizing the computation we see S_G splits as in Table 11.

In other words,

$$\begin{split} P_{S_G,1_0}(t) &= 1, \\ P_{S_G,1_1}(t) &= t^3 + t^9, \\ P_{S_G,1_2}(t) &= 2t^6, \\ P_{S_G,1_3}(t) &= t^3 + t^9, \\ P_{S_G,3_1}(t) &= 3t^5 + 3t^8 + 2t^{11}, \\ P_{S_G,3_2}(t) &= t^2 + t^5 + 3t^8 + 2t^{11}, \\ P_{S_G,3_2}(t) &= 2t^5 + 2t^8 + 4t^{11} + 2t^{14}, \end{split}$$

512

Let

deg	10	11	12	13	31	32	33	34	35	36	37	38	41	42	dim R _d
1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	3
2	0	0	0	0	0	1	0	1	0	0	0	0	0	0	6
3	0	1	0	1	0	0	0	0	0	0	0	0	1	1	10
4	0	0	0	0	0	0	0	0	1	2	0	2	0	0	15
5	0	0	0	0	3	1	2	1	0	0	0	0	0	0	21
6	0	0	2	0	0	0	0	0	0	0	0	0	3	3	26
7	0	0	0	0	0	0	0	0	2	2	4	2	0	0	30
8	0	0	0	0	3	3	2	3	0	0	0	0	0	0	33
9	1	1	0	1	0	0	0	0	0	0	0	0	4	4	35
10	0	0	0	0	0	0	0	0	2	3	4	3	0	0	36
11	0	0	0	0	2	3	4	3	0	0	0	0	0	0	36
12	1	1	0	1	0	0	0	0	0	0	0	0	4	4	35
13	0	0	0	0	0	0	0	0	3	3	2	3	0	0	33
14	0	0	0	0	2	2	4	2	0	0	0	0	0	0	30
15	0	0	2	0	0	0	0	0	0	0	0	0	3	3	26
16	0	0	0	0	0	0	0	0	3	1	2	1	0	0	21
17	0	0	0	0	1	2	0	2	0	0	0	0	0	0	15
18	0	1	0	1	0	0	0	0	0	0	0	0	1	1	10
19	0	0	0	0	0	0	0	0	0	1	0	1	0	0	6
20	0	0	0	0	1	0	0	0	0	0	0	0	0	0	3
21	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Table 10: The decomposition of *R* of type (E).

		-	-	-	-	-	-	-	-	-	-	-			1: (0)
deg	1_0	1_{1}	1_{2}	13	31	32	33	34	35	36	37	38	41	42	$\dim(S_G)_d$
1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	3
2	0	0	0	0	0	1	0	1	0	0	0	0	0	0	6
3	0	1	0	1	0	0	0	0	0	0	0	0	1	1	10
4	0	0	0	0	0	0	0	0	1	2	0	2	0	0	15
5	0	0	0	0	3	1	2	1	0	0	0	0	0	0	21
6	0	0	2	0	0	0	0	0	0	0	0	0	3	3	26
7	0	0	0	0	0	0	0	0	2	2	4	2	0	0	30
8	0	0	0	0	3	3	2	3	0	0	0	0	0	0	33
9	0	1	0	1	0	0	0	0	0	0	0	0	4	4	34
10	0	0	0	0	0	0	0	0	1	3	4	3	0	0	33
11	0	0	0	0	2	2	4	2	0	0	0	0	0	0	30
12	0	0	0	0	0	0	0	0	0	0	0	0	3	3	24
13	0	0	0	0	0	0	0	0	1	1	2	1	0	0	15
14	0	0	0	0	0	0	2	0	0	0	0	0	0	0	6

Table 11: The decomposition of S_G of type (E).

Gomi, Nakamura and Shinoda

$$P_{S_G,3_4}(t) = t^2 + t^5 + 3t^8 + 2t^{11},$$

$$P_{S_G,3_5}(t) = t + t^4 + 2t^7 + t^{10} + t^{13},$$

$$P_{S_G,3_6}(t) = 2t^4 + 2t^7 + 3t^{10} + t^{13},$$

$$P_{S_G,3_7}(t) = 4t^7 + 4t^{10} + 2t^{13},$$

$$P_{S_G,3_8}(t) = 2t^4 + 2t^7 + 3t^{10} + t^{13},$$

$$P_{S_G,3_8}(t) = t^3 + 3t^6 + 4t^9 + 3t^{12},$$

$$P_{S_G,4_2}(t) = t^3 + 3t^6 + 4t^9 + 3t^{12}.$$

As a consequence we see

$$P_{S_G,\rho_j}(t) = [(1-t^9)(1-t^{12})P_{R,\rho_j}(t)]_+$$

where $[f(t)]_+ = \sum_{d=0}^{21} \max\{a_d, 0\} t^d$ for $f(t) = \sum a_d t^d \in \mathbb{Z}[t]$. Note that this formula does not imply a similar formula for ρ_{S_G} .

5 The Molien Series P_{S_G,ρ_i}

In this section we report the results for the other types (F)–(L). For the sake of the reader's convenience we list the decompositions of $\rho_i \otimes \rho$ in the appendix.

5.1 The Group of Type (F)

$$G = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \\ \frac{1}{\sqrt{-3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix}, \frac{1}{\sqrt{-3}} \begin{pmatrix} 1 & 1 & \omega^2 \\ 1 & \omega & \omega \\ \omega & 1 & \omega \end{pmatrix} \right\rangle,$$

where $\omega = e^{2\pi i/3}$. |G| = 216. $\hat{G} = \{1_0, 1_1, 1_2, 1_3, 2, 3_1, 3_2, 3_3, 3_4, 3_5, 3_6, 3_7, 3_8, 6_1, 6_2, 8\}$, where $1_3 = 1_1 1_2$, $3_1 = \rho$, $3_2 = 1_1 \rho$, $3_3 = 1_2 \rho$, $3_4 = 1_3 \rho$, $3_5 = \rho^{\vee}$, $3_6 = 1_1 \rho^{\vee}$, $3_7 = 1_2 \rho^{\vee}$, $3_8 = 1_3 \rho^{\vee}$, $6_1 = \rho^2 - \rho^{\vee}$, $6_2 = \rho^{\vee 2} - \rho$. $S^G = \mathbb{C}[f_1, f_2, f_3, f_4]$, with deg $f_1 = 6$, deg $f_2 = 9$, deg $f_3 = 12$, deg $f_4 = 12$. Let $R = S/(f_1, f_2, f_3)$. Then we have

$$P_{R,1_0}(t) = 1 + t^{12} + t^{24},$$

$$P_{R,1_1}(t) = P_{R,1_2} = P_{R,1_3} = t^6 + t^{12} + t^{18},$$

$$P_{R,2}(t) = t^3 + 2t^9 + 2t^{15} + t^{21},$$

$$P_{R,3_1}(t) = 2t^5 + 2t^8 + 2t^{11} + t^{17} + t^{20} + t^{23},$$

$$\begin{split} P_{R,3_2}(t) &= P_{R,3_3} = P_{R,3_4} = t^5 + t^8 + 3t^{11} + 2t^{14} + 2t^{17}, \\ P_{R,3_5}(t) &= t + t^4 + t^7 + 2t^{13} + 2t^{16} + 2t^{19}, \\ P_{R,3_6}(t) &= P_{R,3_7} = P_{R,3_8} = 2t^7 + 2t^{10} + 3t^{13} + t^{16} + t^{19}, \\ P_{R,6_1}(t) &= 2t^4 + 2t^7 + 5t^{10} + 3t^{13} + 4t^{16} + t^{19} + t^{22}, \\ P_{R,6_2}(t) &= t^2 + t^5 + 4t^8 + 3t^{11} + 5t^{14} + 2t^{17} + 2t^{20}, \\ P_{R,8}(t) &= t^3 + 3t^6 + 5t^9 + 6t^{12} + 5t^{15} + 3t^{18} + t^{21}. \end{split}$$

We see that

$$P_{S_G}(t) = 1 + 3t + 6t^2 + 10t^3 + 15t^4 + 21t^5 + 27t^6 + 33t^7 + 39t^8 + 44t^9 + 48t^{10} + 51t^{11} + 51t^{12} + 48t^{13} + 42t^{14} + 34t^{15} + 24t^{16} + 15t^{17} + 8t^{18} + 3t^{19}.$$

Hence we have

$$\begin{split} &P_{S_G,1_0}(t) = 1, \\ &P_{S_G,1_1}(t) = P_{S_G,1_2} = P_{S_G,1_3} = t^6 + t^{12}, \\ &P_{S_G,2}(t) = t^3 + 2t^9 + t^{15}, \\ &P_{S_G,3_1}(t) = 2t^5 + 2t^8 + 2t^{11}, \\ &P_{S_G,3_2}(t) = P_{S_G,3_3} = P_{S_G,3_4} = t^5 + t^8 + 3t^{11} + 2t^{14} + t^{17}, \\ &P_{S_G,3_5}(t) = t + t^4 + t^7 + t^{13} + t^{16} + t^{19}, \\ &P_{S_G,3_6}(t) = P_{S_G,3_7} = P_{S_G,3_8} = 2t^7 + 2t^{10} + 3t^{13} + t^{16}, \\ &P_{S_G,6_1}(t) = 2t^4 + 2t^7 + 5t^{10} + 3t^{13} + 2t^{16}, \\ &P_{S_G,6_2}(t) = t^2 + t^5 + 4t^8 + 3t^{11} + 4t^{14} + t^{17}, \\ &P_{S_G,8}(t) = t^3 + 3t^6 + 5t^9 + 6t^{12} + 4t^{15} + t^{18}. \end{split}$$

5.2 The Group of Type (G)

$$\begin{split} G &= \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \\ U &= \begin{pmatrix} \varepsilon^2 & 0 & 0 \\ 0 & \varepsilon^2 & 0 \\ 0 & 0 & \varepsilon^5 \end{pmatrix}, \frac{1}{\sqrt{-3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \right\rangle, \end{split}$$

where $\varepsilon = e^{2\pi i/9}$, $\omega = e^{2\pi i/3}$. |G| = 648. $\hat{G} = \{1_0, 1_1, 1_2, 2_1, 2_2, 2_3, 3_1, 3_2, 3_3, 3_4, 3_5, 3_6, 3_7, 6_1, 6_2, 6_3, 6_4, 6_5, 6_6, 8_1, 8_2, 8_3, 9_1, 9_2\}$, where 2_1 and 3_7 are rational valued characters and $1_1(U) = \omega$, $1_2 = 1_1^2$, $2_2 = 1_12_1$, $2_3 = 1_22_1$, $3_1 = \rho$, $3_2 = 1_13_1$, $3_3 = 1_23_1$,

 $3_4 = \rho^{\vee}, 3_5 = 1_1 3_4, 3_6 = 1_2 3_4, 6_1 = \rho^2 - \rho^{\vee}, 6_2 = 1_1 6_1, 6_3 = 1_2 6_1, 6_4 = \rho^{\vee 2} - \rho, 6_5 = 1_1 6_4, 6_6 = 1_2 6_4, 8_1 = \rho \rho^{\vee} - 1_0, 8_2 = 1_1 8_1, 8_3 = 1_2 8_1, 9_1 = 3_7 \rho, 9_2 = 3_7 \rho^{\vee}.$ $S^G = \mathbb{C}[f_1, f_2, f_3, f_4]$, with deg $f_1 = 9$, deg $f_2 = 12$, deg $f_3 = 18$, deg $f_4 = 18$. $R = S/(f_1, f_2, f_3)$. Then we have

$$\begin{split} P_{R,1_0}(t) &= 1 + t^{18} + t^{36}, \\ P_{R,1_1}(t) &= 2t^{12} + t^{30}, \\ P_{R,1_2}(t) &= t^6 + 2t^{24}, \\ P_{R,2_1}(t) &= 3t^{15} + 3t^{21}, \\ P_{R,2_2}(t) &= 2t^9 + 2t^{15} + t^{27} + t^{33}, \\ P_{R,2_2}(t) &= t^3 + t^9 + 2t^{21} + 2t^{27}, \\ P_{R,3_1}(t) &= t^8 + 2t^{11} + 3t^{17} + t^{20} + t^{26} + t^{35}, \\ P_{R,3_2}(t) &= t^5 + 2t^{11} + t^{14} + 2t^{20} + t^{23} + 2t^{29}, \\ P_{R,3_3}(t) &= t^5 + t^8 + t^{14} + 2t^{17} + 3t^{23} + t^{32}, \\ P_{R,3_5}(t) &= t^7 + t^{13} + 2t^{16} + t^{22} + 2t^{25} + t^{28}, \\ P_{R,3_5}(t) &= 2t^7 + t^{13} + 2t^{16} + t^{22} + 2t^{25} + t^{31}, \\ P_{R,3_5}(t) &= t^6 + 2t^{12} + 3t^{18} + 2t^{24} + t^{30}, \\ P_{R,6_1}(t) &= t^4 + 3t^{10} + 2t^{13} + 4t^{16} + t^{19} + 5t^{22} + t^{25} + 3t^{28}, \\ P_{R,6_5}(t) &= t^7 + 3t^{10} + t^{13} + 5t^{16} + 2t^{19} + 3t^{22} + t^{25} + 3t^{28}, \\ P_{R,6_5}(t) &= t^7 + 3t^{10} + t^{13} + 5t^{16} + 2t^{19} + 2t^{22} + 2t^{25} + t^{28} + t^{31}, \\ P_{R,6_5}(t) &= t^7 + 3t^{10} + t^{13} + 5t^{16} + 2t^{19} + 2t^{22} + 2t^{25} + t^{28} + t^{32}, \\ P_{R,6_5}(t) &= t^5 + t^8 + t^{11} + 5t^{14} + t^{17} + 4t^{20} + 2t^{23} + t^{26} + t^{29} + t^{32}, \\ P_{R,6_5}(t) &= t^2 + t^8 + 2t^{11} + 2t^{14} + 2t^{17} + 5t^{20} + t^{23} + 3t^{26} + t^{29}, \\ P_{R,6_5}(t) &= 3t^8 + t^{11} + 3t^{14} + 3t^{17} + 2t^{20} + 2t^{23} + 3t^{26} + t^{29}, \\ P_{R,6_5}(t) &= 3t^8 + t^{11} + 3t^{14} + 3t^{17} + 2t^{20} + 2t^{23} + 3t^{26} + t^{29}, \\ P_{R,8_5}(t) &= 2t^6 + 2t^9 + 2t^{12} + 5t^{15} + 3t^{18} + 3t^{21} + 4t^{24} + t^{27} + t^{30}, \\ P_{R,8_5}(t) &= 2t^6 + 2t^9 + 2t^{12} + 5t^{15} + 3t^{18} + 3t^{21} + 4t^{24} + t^{27} + t^{30}, \\ P_{R,8_5}(t) &= 2t^6 + 2t^9 + 2t^{12} + 5t^{15} + 3t^{18} + 3t^{21} + 4t^{24} + t^{27} + t^{30}, \\ P_{R,9_5}(t) &= t^7 + 2t^{10} + 5t^{13} + 3t^{16} + 6t^{19} + 3t^{22} + 4t^{25} + t^{28} + t^{31}. \end{split}$$

We see that

$$\begin{split} P_{S_G}(t) &= 1 + 3t + 6t^2 + 10t^3 + 15t^4 + 21t^5 + 28t^6 + 36t^7 + 45t^8 + 54t^9 \\ &\quad + 63t^{10} + 72t^{11} + 80t^{12} + 87t^{13} + 93t^{14} + 98t^{15} + 102t^{16} \\ &\quad + 105t^{17} + 105t^{18} + 102t^{19} + 96t^{20} + 88t^{21} + 78t^{22} \\ &\quad + 66t^{23} + 52t^{24} + 36t^{25} + 21t^{26} + 10t^{27} + 3t^{28}, \end{split}$$

and $P_{S_G,1_0}(t) = 1$,

$$\begin{split} & P_{S_G,1_1}(t) = 2t^{12}, \\ & P_{S_G,1_2}(t) = t^6 + t^{24}, \\ & P_{S_G,2_1}(t) = 3t^{15} + 3t^{21}, \\ & P_{S_G,2_2}(t) = 2t^9 + 2t^{15}, \\ & P_{S_G,2_3}(t) = t^3 + t^9 + t^{21} + t^{27}, \\ & P_{S_G,3_1}(t) = t^8 + 2t^{11} + 3t^{17} + t^{20}, \\ & P_{S_G,3_2}(t) = t^5 + 2t^{11} + t^{14} + 2t^{20}, \\ & P_{S_G,3_3}(t) = t^5 + t^8 + t^{14} + 2t^{17} + 2t^{23}, \\ & P_{S_G,3_5}(t) = t^5 + t^8 + t^{14} + 2t^{17} + 2t^{25}, \\ & P_{S_G,3_5}(t) = 2t^7 + t^{13} + 2t^{16} + t^{22}, \\ & P_{S_G,3_5}(t) = 2t^7 + t^{13} + 2t^{16} + t^{22}, \\ & P_{S_G,3_5}(t) = t^6 + 2t^{12} + 3t^{18} + t^{24}, \\ & P_{S_G,3_5}(t) = t^6 + 2t^{12} + 3t^{18} + t^{24}, \\ & P_{S_G,3_5}(t) = t^7 + 3t^{10} + t^{13} + 2t^{16} + 3t^{19} + 2t^{22} + t^{25}, \\ & P_{S_G,6_5}(t) = t^7 + 3t^{10} + t^{13} + 5t^{16} + 2t^{19} + 2t^{22} + t^{25}, \\ & P_{S_G,6_5}(t) = t^7 + 3t^{10} + t^{13} + 5t^{16} + 2t^{19} + 2t^{22} + t^{25}, \\ & P_{S_G,6_5}(t) = t^7 + 3t^{10} + t^{13} + 5t^{16} + 2t^{19} + 2t^{22} + t^{25}, \\ & P_{S_G,6_5}(t) = t^2 + t^8 + 2t^{11} + 2t^{14} + 2t^{17} + 4t^{20} + t^{23} + 2t^{26}, \\ & P_{S_G,6_5}(t) = 3t^8 + t^{11} + 3t^{14} + 3t^{17} + 2t^{20} + 2t^{23}, \\ & P_{S_G,8_1}(t) = 3t^9 + 3t^{12} + 3t^{15} + 6t^{18} + 3t^{21} + 3t^{24}, \\ & P_{S_G,8_1}(t) = 3t^9 + 3t^{12} + 3t^{15} + 5t^{18} + 4t^{21} + t^{24} + t^{27}, \\ & P_{S_G,8_3}(t) = 2t^6 + 2t^9 + 2t^{12} + 5t^{15} + 3t^{18} + 4t^{21} + t^{24} + t^{27}, \\ & P_{S_G,8_1}(t) = t^5 + t^8 + 4t^{11} + 3t^{14} + 6t^{17} + 3t^{20} + 4t^{23} + t^{26}, \\ & P_{S_G,9_1}(t) = t^5 + t^8 + 4t^{11} + 3t^{14} + 6t^{17} + 3t^{20} + 4t^{23} + t^{26}, \\ & P_{S_G,9_1}(t) = t^5 + t^8 + 4t^{11} + 3t^{14} + 6t^{17} + 3t^{20} + 4t^{23} + t^{26}, \\ & P_{S_G,9_2}(t) = 2t^7 + 2t^{10} + 5t^{13} + 3t^{16} + 6t^{19} + 3t^{22} + 2t^{25}. \end{split}$$

5.3 The Group of Type (H)

$$G = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & \varepsilon^{-1} & 0 \\ 0 & 0 & \varepsilon \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 1 & 1 \\ 2 & s & t \\ 2 & t & s \end{pmatrix} \right\rangle,$$

where $\varepsilon = e^{2\pi i/5}$, $\omega = e^{2\pi i/3}$, $s = \varepsilon^2 + \varepsilon^3$ and $t = \varepsilon + \varepsilon^5$. |G| = 60. $\hat{G} = \{1_0, 3_1 = \rho = \rho^{\vee}, 3_2, 4, 5\}$. Let \tilde{G} be a group generated by G and -I where I is the identity matrix of degree 3. Then \tilde{G} is a Coxeter group of type H_3 and there exist three homogeneous invariants f_1, f_2, f_3 with deg $f_1 = 2$, deg $f_2 = 6$, deg $f_3 = 10$ such that $S^{\tilde{G}} = \mathbb{C}[f_1, f_2, f_3]$ and $S^G = \mathbb{C}[f_1, f_2, f_3, f_4]$ where $f_4 = \operatorname{Jac}(f_1, f_2, f_3)$. Hence we have

$$\begin{split} P_{S_G,1_0} &= 1, \\ P_{S_G,3_1} &= t^3 + t^5 + t^7 + t^8 + t^{10} + t^{12}, \\ P_{S_G,3_2} &= t + t^5 + t^6 + t^9 + t^{10} + t^{14}, \\ P_{S_G,4} &= t^3 + t^4 + t^6 + t^7 + t^8 + t^9 + t^{11} + t^{12}, \\ P_{S_G,5} &= t^2 + t^4 + t^5 + t^6 + t^7 + t^8 + t^9 + t^{10} + t^{11} + t^{13}, \end{split}$$

5.4 The Group of Type (I)

$$G = \left\langle \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} \varepsilon & 0 & 0 \\ 0 & \varepsilon^2 & 0 \\ 0 & 0 & \varepsilon^4 \end{pmatrix}, \frac{-1}{\sqrt{-7}} \begin{pmatrix} \varepsilon^4 - \varepsilon^3 & \varepsilon^2 - \varepsilon^5 & \varepsilon - \varepsilon^6 \\ \varepsilon^2 - \varepsilon^5 & \varepsilon - \varepsilon^6 & \varepsilon^4 - \varepsilon^3 \\ \varepsilon - \varepsilon^6 & \varepsilon^4 - \varepsilon^3 & \varepsilon^2 - \varepsilon^5 \end{pmatrix} \right\rangle,$$

where $\varepsilon = e^{2\pi i/7}$. |G| = 168. $\hat{G} = \{1_0, 3_1 = \rho, 3_2 = \rho^{\vee}, 6, 7, 8\}$, Let \tilde{G} be a group generated by G and -I where I is the identity matrix of degree 3. Then \tilde{G} is a complex reflection group of type $J_3(4)$ (*cf.* [Cohen76]) and there exist three homogeneous invariants f_1, f_2, f_3 with deg $f_1 = 4$, deg $f_2 = 6$, deg $f_3 = 14$ such that $S^{\tilde{G}} = \mathbb{C}[f_1, f_2, f_3]$ and $S^G = \mathbb{C}[f_1, f_2, f_3, f_4]$ where $f_4 = \operatorname{Jac}(f_1, f_2, f_3)$. Hence we have

$$\begin{split} P_{S_G,1_0} &= 1, \\ P_{S_G,3_1} &= t^3 + t^5 + t^{10} + t^{12} + t^{13} + t^{20}, \\ P_{S_G,3_2} &= t + t^8 + t^9 + t^{11} + t^{16} + t^{18}, \\ P_{S_G,6} &= t^2 + t^4 + t^6 + t^8 + t^9 + t^{10} + t^{11} + t^{12} + t^{13} + t^{15} + t^{17} + t^{19}, \\ P_{S_G,7} &= t^3 + t^5 + t^6 + t^7 + t^8 + t^9 + t^{10} + t^{11} + t^{12} + t^{13} + t^{14} + t^{15} + t^{16} + t^{18}, \\ P_{S_G,8} &= t^4 + t^5 + t^6 + 2t^7 + t^8 + t^9 + t^{10} + t^{11} + t^{12} + t^{13} + 2t^{14} + t^{15} + t^{16} + t^{17}. \end{split}$$

5.5 The Group of Type (J)

$$G = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & \varepsilon^{-1} & 0 \\ 0 & 0 & \varepsilon \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \\ \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 1 & 1 \\ 2 & s & t \\ 2 & t & s \end{pmatrix}, W = \begin{pmatrix} \omega & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega \end{pmatrix} \right\rangle,$$

where $\varepsilon = e^{2\pi i/5}$, $\omega = e^{2\pi i/3}$, $s = \varepsilon^2 + \varepsilon^3$, and $t = \varepsilon + \varepsilon^4$. |G| = 180. $\hat{G} = \{1_0, 1_1, 1_2, 3_1, 3_2, 3_3, 3_4, 3_5, 3_6, 4_1, 4_2, 4_3, 5_1, 5_2, 5_3\}$, where 4_1 and 5_1 are rational valued characters and $1_1(W) = \omega$, $1_2 = 1_1^2$, $3_1 = \rho$, $3_2 = \rho^{\vee} = 1_13_1$, $3_3 = 1_23_1$, $3_4(x) = 3_1(x^7)$, $\forall x \in G$, $3_5 = 1_13_4$, $3_6 = 1_23_4$, $4_2 = 1_14_1$, $4_3 = 1_24_1$, $5_2 = 1_15_1$ and $5_3 = 1_25_1$. $S^G = \mathbb{C}[f_1, f_2, f_3, f_4]$, with deg $f_1 = 6$, deg $f_2 = 6$, deg $f_3 = 15$, deg $f_4 = 12$. Put $R = S/(f_1, f_2, f_3)$. Then we have

$$\begin{split} P_{R,1_0}(t) &= 1 + t^{12} + t^{24}, \\ P_{R,1_1}(t) &= t^2 + t^{14} + t^{20}, \\ P_{R,1_2}(t) &= t^4 + t^{10} + t^{22}, \\ P_{R,3_1}(t) &= 2t^5 + t^8 + 2t^{11} + 2t^{14} + t^{17} + t^{23}, \\ P_{R,3_2}(t) &= t + t^7 + 2t^{10} + 2t^{13} + t^{16} + 2t^{19}, \\ P_{R,3_3}(t) &= t^3 + t^6 + 2t^9 + t^{12} + 2t^{15} + t^{18} + t^{21}, \\ P_{R,3_4}(t) &= 2t^5 + t^8 + t^{11} + 2t^{14} + 3t^{17}, \\ P_{R,3_5}(t) &= 3t^7 + 2t^{10} + t^{13} + t^{16} + 2t^{19}, \\ P_{R,3_6}(t) &= t^3 + 2t^9 + 3t^{12} + 2t^{15} + t^{21}, \\ P_{R,4_1}(t) &= t^3 + 2t^6 + 2t^9 + 2t^{12} + 2t^{15} + 2t^{18} + t^{21}, \\ P_{R,4_2}(t) &= t^5 + 3t^8 + 3t^{11} + 2t^{14} + 2t^{17} + t^{20}, \\ P_{R,4_3}(t) &= t^4 + 2t^7 + 2t^{10} + 3t^{13} + 3t^{16} + t^{19}, \\ P_{R,5_1}(t) &= 3t^6 + 3t^9 + 3t^{12} + 3t^{15} + 3t^{18}, \\ P_{R,5_2}(t) &= t^2 + t^5 + 3t^8 + 3t^{11} + 3t^{14} + 2t^{17} + 2t^{20}, \\ P_{R,5_3}(t) &= 2t^4 + 2t^7 + 3t^{10} + 3t^{13} + 3t^{16} + t^{19} + t^{22}, \end{split}$$

We see that

$$P_{S_G}(t) = 1 + 3t + 6t^2 + 10t^3 + 15t^4 + 21t^5 + 26t^6 + 30t^7 + 33t^8 + 35t^9 + 36t^{10} + 36t^{11} + 35t^{12} + 33t^{13} + 30t^{14} + 25t^{15} + 19t^{16} + 12t^{17} + 5t^{18} + 3t^{19} + t^{20}.$$

Hence we have

$$\begin{split} P_{S_G,1_0}(t) &= 1, \\ P_{S_G,1_1}(t) &= t^2 + t^{20}, \\ P_{S_G,1_2}(t) &= t^4 + t^{10}, \\ P_{S_G,3_1}(t) &= 2t^5 + t^8 + 2t^{11} + 2t^{14}, \\ P_{S_G,3_2}(t) &= t + t^7 + 2t^{10} + t^{13} + t^{16} + t^{19}, \\ P_{S_G,3_3}(t) &= t^3 + t^6 + 2t^9 + t^{12} + t^{15}, \\ P_{S_G,3_4}(t) &= 2t^5 + t^8 + t^{11} + 2t^{14} + t^{17}, \\ P_{S_G,3_5}(t) &= 3t^7 + 2t^{10} + t^{13} + t^{16}, \\ P_{S_G,3_6}(t) &= t^3 + 2t^9 + 3t^{12} + t^{15}, \\ P_{S_G,4_1}(t) &= t^3 + 2t^6 + 2t^9 + 2t^{12} + t^{15}, \\ P_{S_G,4_2}(t) &= t^5 + 3t^8 + 3t^{11} + 2t^{14} + t^{17}, \\ P_{S_G,4_3}(t) &= t^4 + 2t^7 + 2t^{10} + 3t^{13} + 2t^{16}, \\ P_{S_G,5_1}(t) &= 3t^6 + 3t^9 + 3t^{12} + 3t^{15} + t^{18}, \\ P_{S_G,5_2}(t) &= t^2 + t^5 + 3t^8 + 3t^{11} + 2t^{14} + t^{17}, \\ P_{S_G,5_3}(t) &= 2t^4 + 2t^7 + 3t^{10} + 3t^{13} + t^{16}. \end{split}$$

5.6 The Group of Type (K)

$$G = \left\langle \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} \varepsilon & 0 & 0 \\ 0 & \varepsilon^2 & 0 \\ 0 & 0 & \varepsilon^4 \end{pmatrix}, \frac{1}{\sqrt{-7}} \begin{pmatrix} \varepsilon^4 - \varepsilon^3 & \varepsilon^2 - \varepsilon^5 & \varepsilon - \varepsilon^6 \\ \varepsilon^2 - \varepsilon^5 & \varepsilon - \varepsilon^6 & \varepsilon^4 - \varepsilon^3 \\ \varepsilon - \varepsilon^6 & \varepsilon^4 - \varepsilon^3 & \varepsilon^2 - \varepsilon^5 \end{pmatrix}, \\ W = \begin{pmatrix} \omega & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega \end{pmatrix} \right\rangle,$$

where $\varepsilon = e^{2\pi i/7}$ and $\omega = e^{2\pi i/3}$. $|\hat{G}| = 504$. $\hat{G} = \{1_0, 1_1, 1_2, 3_1, 3_2, 3_3, 3_4, 3_5, 3_6, 6_1, 6_2, 6_3, 7_1, 7_2, 7_3, 8_1, 8_2, 8_3\}$, where 6_1 , 7_1 and 8_1 are rational valued characters and $1_1(W) = \omega$, $1_2 = 1_1^2$, $3_1 = \rho$, $3_2 = 1_13_1$, $3_3 = 1_23_1$, $3_4 = \rho^{\vee}$, $3_5 = 1_13_4$, $3_6 = 1_23_4$, $6_2 = 1_16_1$, $6_3 = 1_26_1$, $7_2 = 1_17_1$, $7_3 = 1_27_1$, $8_2 = 1_18_1$ and $8_3 = 1_28_1$. $S^G = \mathbb{C}[f_1, f_2, f_3, f_4]$, with deg $f_1 = 6$, deg $f_2 = 12$, deg $f_3 = 21$, deg $f_4 = 18$. Put $R = S/(f_1, f_2, f_3)$. Then we have

$$P_{R,1_0}(t) = 1 + t^{18} + t^{36},$$

 $P_{R,1_1}(t) = t^8 + t^{14} + t^{32},$

$$\begin{split} P_{R,1_2}(t) &= t^4 + t^{22} + t^{28}, \\ P_{R,3_1}(t) &= t^5 + t^{11} + t^{14} + 2t^{17} + 2t^{20} + t^{23} + t^{35}, \\ P_{R,3_2}(t) &= t^7 + t^{10} + 2t^{13} + t^{16} + t^{19} + t^{25} + t^{28} + t^{31}, \\ P_{R,3_3}(t) &= t^3 + t^9 + t^{12} + t^{18} + 2t^{21} + t^{24} + 2t^{27}, \\ P_{R,3_4}(t) &= t + t^{13} + 2t^{16} + 2t^{19} + t^{22} + t^{25} + t^{31}, \\ P_{R,3_5}(t) &= 2t^9 + t^{12} + 2t^{15} + t^{18} + t^{24} + t^{27} + t^{33}, \\ P_{R,3_6}(t) &= t^5 + t^8 + t^{11} + t^{17} + t^{20} + 2t^{23} + t^{26} + t^{29}, \\ P_{R,6_1}(t) &= 2t^6 + t^9 + 3t^{12} + 2t^{15} + 2t^{18} + 2t^{21} + 3t^{24} + t^{27} + 2t^{30}, \\ P_{R,6_2}(t) &= t^2 + 2t^8 + t^{11} + 2t^{14} + 3t^{17} + 3t^{20} + 2t^{23} + 3t^{26} + t^{32}, \\ P_{R,6_3}(t) &= t^4 + 3t^{10} + 2t^{13} + 3t^{16} + 3t^{19} + 2t^{22} + t^{25} + 2t^{28} + t^{34}, \\ P_{R,7_1}(t) &= t^3 + t^6 + 2t^9 + 2t^{12} + 3t^{15} + 3t^{18} + 3t^{21} + 2t^{24} + 2t^{27} + t^{30} + t^{33}, \\ P_{R,7_2}(t) &= t^5 + t^8 + 3t^{11} + 3t^{14} + 3t^{17} + 3t^{20} + 3t^{23} + 2t^{26} + 2t^{29}, \\ P_{R,7_3}(t) &= 2t^7 + 2t^{10} + 3t^{13} + 3t^{16} + 3t^{19} + 3t^{22} + 3t^{25} + t^{28} + t^{31}, \\ P_{R,8_1}(t) &= t^6 + 2t^9 + 3t^{12} + 4t^{15} + 4t^{18} + 4t^{21} + 3t^{24} + 2t^{27} + t^{30}, \\ P_{R,8_2}(t) &= t^5 + 2t^8 + 3t^{11} + 4t^{14} + 3t^{17} + 3t^{20} + 3t^{23} + 2t^{26} + 2t^{29} + t^{32}, \\ P_{R,8_3}(t) &= t^4 + 2t^7 + 2t^{10} + 3t^{13} + 3t^{16} + 3t^{19} + 4t^{22} + 3t^{25} + 2t^{28} + t^{31}. \end{split}$$

We see that

$$P_{S_G}(t) = 1 + 3t + 6t^2 + 10t^3 + 15t^4 + 21t^5 + 27t^6 + 33t^7 + 39t^8 + 45t^9 + 51t^{10} + 57t^{11} + 62t^{12} + 66t^{13} + 69t^{14} + 71t^{15} + 72t^{16} + 72t^{17} + 71t^{18} + 69t^{19} + 66t^{20} + 61t^{21} + 54t^{22} + 45t^{23} + 35t^{24} + 24t^{25} + 13t^{26} + 3t^{27} + t^{28}.$$

Hence we have

$$\begin{split} P_{S_G,1_0}(t) &= 1, \\ P_{S_G,1_1}(t) &= t^8 + t^{14}, \\ P_{S_G,1_2}(t) &= t^4 + t^{28}, \\ P_{S_G,3_1}(t) &= t^5 + t^{11} + t^{14} + 2t^{17} + 2t^{20}, \\ P_{S_G,3_2}(t) &= t^7 + t^{10} + 2t^{13} + t^{16} + t^{19}, \\ P_{S_G,3_3}(t) &= t^3 + t^9 + t^{12} + t^{18} + t^{21} + t^{24} + t^{27}, \end{split}$$

Gomi, Nakamura and Shinoda

$$\begin{split} P_{S_G,3_4}(t) &= t + t^{13} + 2t^{16} + t^{19} + t^{22} + t^{25}, \\ P_{S_G,3_5}(t) &= 2t^9 + t^{12} + 2t^{15} + t^{18} + t^{24}, \\ P_{S_G,3_6}(t) &= t^5 + t^8 + t^{11} + t^{17} + t^{20} + t^{23}, \\ P_{S_G,6_1}(t) &= 2t^6 + t^9 + 3t^{12} + 2t^{15} + 2t^{18} + 2t^{21} + t^{24}, \\ P_{S_G,6_2}(t) &= t^2 + 2t^8 + t^{11} + 2t^{14} + 3t^{17} + 2t^{20} + 2t^{23} + t^{26}, \\ P_{S_G,6_3}(t) &= t^4 + 3t^{10} + 2t^{13} + 3t^{16} + 3t^{19} + t^{22} + t^{25}, \\ P_{S_G,7_1}(t) &= t^3 + t^6 + 2t^9 + 2t^{12} + 3t^{15} + 3t^{18} + 2t^{21} + t^{24}, \\ P_{S_G,7_2}(t) &= t^5 + t^8 + 3t^{11} + 3t^{14} + 3t^{17} + 3t^{20} + 2t^{23} + t^{26}, \\ P_{S_G,7_3}(t) &= 2t^7 + 2t^{10} + 3t^{13} + 3t^{16} + 3t^{19} + 3t^{22} + t^{25}, \\ P_{S_G,8_1}(t) &= t^6 + 2t^9 + 3t^{12} + 4t^{15} + 4t^{18} + 4t^{21} + 2t^{24}, \\ P_{S_G,8_2}(t) &= t^5 + 2t^8 + 3t^{11} + 4t^{14} + 3t^{17} + 3t^{20} + 2t^{23}, \\ P_{S_G,8_3}(t) &= t^4 + 2t^7 + 2t^{10} + 3t^{13} + 3t^{16} + 3t^{19} + 3t^{22} + t^{25}. \end{split}$$

5.7 The Group of Type (L)

$$G = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & \varepsilon^{-1} & 0 \\ 0 & 0 & \varepsilon \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \\ \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 1 & 1 \\ 2 & s & t \\ 2 & t & s \end{pmatrix}, \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & \lambda_1 & \lambda_1 \\ 2\lambda_2 & s & t \\ 2\lambda_2 & t & s \end{pmatrix} \right\rangle,$$

where $\varepsilon = e^{2\pi i/5}$, $s = \varepsilon^2 + \varepsilon^3$, $t = \varepsilon + \varepsilon^4$, $\lambda_1 = -\frac{1-\sqrt{-15}}{4}$ and $\lambda_2 = -\frac{1+\sqrt{-15}}{4}$. |G| = 1080. $\hat{G} = \{1_0, 3_1, 3_2, 3_3, 3_4, 5_1, 5_2, 6_1, 6_2, 8_1, 8_2, 9_1, 9_2, 9_3, 10, 15_1, 15_2\}$, where $3_1 = \rho$, $3_2 = \rho^{\vee}$, $3_3(x) = 3_1(x^7)$ for all $x \in G$, $3_4(x) = 3_2(x^7)$ for all $x \in G$, $6_1 = \rho^2 - \rho^{\vee}$, $6_2 = \rho^{\vee 2} - \rho$, $8_1 = 3_13_2 - 1_0$, $8_2 = 3_33_4 - 1_0$, $9_1 = 3_13_4$, $9_2 = 3_13_3$, $9_3 = 3_23_4$, $15_1 = 3_15_1$ and $15_2 = 3_25_1$. Let \tilde{G} be a group generated by G and -I where I is the identity matrix of degree 3. Then \tilde{G} is a complex reflection group of type $J_3(5)$ (*cf.* [Cohen76]) and there exist three homogeneous invariants f_1 , f_2 , f_3 with deg $f_1 = 6$, deg $f_2 = 12$, deg $f_3 = 30$ such that $S^{\tilde{G}} = \mathbb{C}[f_1, f_2, f_3]$ and $S^G = \mathbb{C}[f_1, f_2, f_3, f_4]$ where $f_4 = Jac(f_1, f_2, f_3)$. Hence we have

$$\begin{split} P_{S_G,1_0} &= 1, \\ P_{S_G,3_1} &= t^5 + t^{11} + t^{20} + t^{26} + t^{29} + t^{44}, \\ P_{S_G,3_2} &= t + t^{16} + t^{19} + t^{25} + t^{34} + t^{40}, \\ P_{S_G,3_3} &= t^5 + t^{17} + t^{20} + t^{23} + t^{32} + t^{38}, \end{split}$$

$$\begin{split} P_{S_G,3_4} &= t^7 + t^{13} + t^{22} + t^{25} + t^{28} + t^{40}, \\ P_{S_G,5_1} &= t^6 + t^{12} + t^{15} + t^{18} + t^{21} + t^{24} + t^{27} + t^{30} + t^{33} + t^{39}, \\ P_{S_G,5_2} &= t^6 + t^{12} + t^{15} + t^{18} + t^{21} + t^{24} + t^{27} + t^{30} + t^{33} + t^{39}, \\ P_{S_G,6_1} &= t^4 + 2t^{10} + t^{16} + t^{19} + t^{22} + 2t^{25} + t^{28} + t^{31} + t^{37} + t^{43}, \\ P_{S_G,6_2} &= t^2 + t^8 + t^{14} + t^{17} + 2t^{20} + t^{23} + t^{26} + t^{29} + 2t^{35} + t^{41}, \\ P_{S_G,8_1} &= t^6 + t^9 + t^{12} + 2t^{15} + t^{18} + 2t^{21} + 2t^{24} + t^{27} + 2t^{30} + t^{33} + t^{36} + t^{39}, \\ P_{S_G,8_2} &= t^9 + 2t^{12} + 2t^{15} + t^{18} + 2t^{21} + 2t^{24} + 2t^{27} + 2t^{30} + 2t^{33} + t^{36}, \\ P_{S_G,8_2} &= t^9 + 2t^{12} + t^{15} + 2t^{18} + 2t^{21} + 2t^{24} + 2t^{27} + t^{30} + 2t^{33} + t^{36} + t^{39}, \\ P_{S_G,9_1} &= t^6 + t^9 + 2t^{12} + t^{15} + 2t^{18} + 2t^{21} + 2t^{24} + 2t^{27} + t^{30} + 2t^{33} + t^{36} + t^{39}, \\ P_{S_G,9_2} &= t^4 + t^{10} + 2t^{13} + 2t^{16} + 2t^{19} + 2t^{22} + t^{25} + 2t^{28} + 2t^{31} + t^{34} + 2t^{37}, \\ P_{S_G,9_3} &= 2t^8 + t^{11} + 2t^{14} + 2t^{17} + t^{20} + 2t^{23} + 2t^{26} + 2t^{29} + 2t^{32} + t^{35} + t^{41}, \\ P_{S_G,10} &= t^3 + 2t^9 + t^{12} + 2t^{15} + 2t^{18} + 2t^{21} + 2t^{24} + 2t^{27} + 2t^{30} + t^{33} + 2t^{36} + t^{42}, \\ P_{S_G,15_1} &= t^5 + t^8 + 3t^{11} + 3t^{14} + 3t^{17} + 3t^{20} + 3t^{23} + 3t^{26} + 3t^{29} + 3t^{32} + 2t^{35} + 2t^{38}, \\ P_{S_G,15_2} &= 2t^7 + 2t^{10} + 3t^{13} + 3t^{16} + 3t^{19} + 3t^{22} + 3t^{25} + 3t^{28} + 3t^{31} + 3t^{4} + t^{37} + t^{40}. \end{split}$$

5.8 Summary

Here we list the invariants for the subgroups of type (E)–(L) where $d_{\text{max}} = d_1 + d_2 + d_3 - 3$:

type	d_1, d_2, d_3	d_4, d_5	$d_{\rm max}$	G	е
Ε	6, 6, 12	12,9	21	108	4
F	6, 9, 12	12	24	216	3
G	9, 12, 18	18	36	648	3
H	2, 6, 10	15	15	60	2
Ι	4, 6, 14	21	21	168	2
J	6, 6, 15	12	24	180	3
Κ	6, 12, 21	18	36	504	3
L	6, 12, 30	45	45	1080	2

Table 12: Groups (E)–(L)

https://doi.org/10.4153/CJM-2004-023-4 Published online by Cambridge University Press

Summarizing the calculation in the previous subsections we infer

Theorem 5.9 Let G be a subgroup of SL(3, C) of type from (E) to (L). Let f_i be generators of the invariant ring S^G and $d_i = \deg f_i$ ($1 \le i \le n$), $d_{\max} = d_1 + d_2 + d_3 - 3$ as in Table 12, and S_G the coinvariant algebra. Then for any irreducible representation ρ_j of G the Molien series P_{S_G,ρ_i} is given by the formula

$$P_{S_G,\rho_j}(t) = \left[\prod_{i=4}^n (1-t^{d_i})P_{R,\rho_j}(t)\right]_+ + \begin{cases} t^{18}(\delta_{j,8}+\delta_{j,5_1}) & \text{if } G = (F) \text{ or } (J), \\ 0 & \text{otherwise.} \end{cases}$$

where $[f(t)]_{+} := \sum_{d=0}^{d_{max}} \max\{a_{d}, 0\} t^{d}$ for $f(t) = \sum a_{d} t^{d} \in \mathbf{Z}[t]$.

Remark 5.10 Theorem 5.9 implies the following. Suppose $j \neq 8$ if G is type (F) or $j \neq 5_1$ if G is of type (J). For any fixed irreducible representation ρ_j multiplication by f_{α} ($\alpha = 4, 5$) is a homomorphism ϕ_{d,ρ_j}^{α} from $(R_d)_{\rho_j}$ to $(R_{d+d_{\alpha}})_{\rho_j}$. Then ϕ_{d,ρ_j}^{α} is surjective if dim $(R_d)_{\rho_j} \geq \dim(R_{d+d_{\alpha}})_{\rho_j}$, while it is injective if dim $(R_d)_{\rho_j} \leq \dim(R_{d+d_{\alpha}})_{\rho_j}$. In other words, rank ϕ_{d,ρ_j}^{α} is equal to min $\{\dim(R_d)_{\rho_j}, \dim(R_{d+d_{\alpha}})_{\rho_j}\}$. Moreover $f_4R \cap f_5R = f_4f_5R \simeq f_4f_5\mathbf{C}$. In the exceptional case, for instance, of type (J) and $j = 5_1$, the nonzero coefficient of t^{19} in $P_{S_G,3_2}$ explains nonvanishing of the coefficient of t^{18} in $P_{S_G,5_1}$. We note that the above theorem does not imply $P_{S_G}(t) = [\prod_{i=4}^n (1 - t^{d_i})P_R(t)]_+$ even in the case other than (F) and (J).

6 Appendix

In this appendix we list the decompositions of irreducible representations tensored with the natural representation ρ .

6.1 Type (E)

$$\begin{array}{ll} 1_0 \otimes \rho = 3_1, & 1_1 \otimes \rho = 3_2, \\ 1_2 \otimes \rho = 3_3, & 1_3 \otimes \rho = 3_4, \\ 3_1 \otimes \rho = 3_5 + 3_6 + 3_8, & 3_2 \otimes \rho = 3_5 + 3_6 + 3_7, \\ 3_3 \otimes \rho = 3_6 + 3_7 + 3_8, & 3_4 \otimes \rho = 3_5 + 3_7 + 3_8, \\ 3_5 \otimes \rho = 1_0 + 4_1 + 4_2, & 3_6 \otimes \rho = 1_1 + 4_1 + 4_2, \\ 3_7 \otimes \rho = 1_2 + 4_1 + 4_2, & 3_8 \otimes \rho = 1_3 + 4_1 + 4_2, \\ 4_1 \otimes \rho = 3_1 + 3_2 + 3_3 + 3_4, & 4_2 \otimes \rho = 3_1 + 3_2 + 3_3 + 3_4. \end{array}$$

6.2 Type (F)

$$\begin{array}{ll} 1_0 \otimes \rho = 3_1, & 1_1 \otimes \rho = 3_2, \\ 1_2 \otimes \rho = 3_3, & 1_3 \otimes \rho = 3_4, \\ 2 \otimes \rho = 6_2, & 3_1 \otimes \rho = 3_5 + 6_1 \\ 3_2 \otimes \rho = 3_6 + 6_1, & 3_3 \otimes \rho = 3_7 + 6_1, \\ 3_4 \otimes \rho = 3_8 + 6_1, & 3_5 \otimes \rho = 1_0 + 8, \\ 3_6 \otimes \rho = 1_1 + 8, & 3_7 \otimes \rho = 1_2 + 8, \\ 3_8 \otimes \rho = 1_3 + 8 & 6_1 \otimes \rho = 2 + 2 \cdot 8, \\ 6_2 \otimes \rho = 3_5 + 3_6 + 3_7 + 3_8 + 6_1, & 8 \otimes \rho = 3_1 + 3_2 + 3_3 + 3_4 + 2 \cdot 6_2. \end{array}$$

6.3 Type (G)

$1_1 \otimes \rho = 3_2,$
$2_1\otimes\rho=6_5,$
$2_3\otimes\rho=6_4,$
$3_2\otimes\rho=3_5+6_2,$
$3_4\otimes\rho=1_0+8_1,$
$3_{6}\otimes\rho=1_{2}+8_{3},$
$6_1 \otimes \rho = 2_2 + 8_1 + 8_3,$
$6_3 \otimes \rho = 2_1 + 8_2 + 8_3,$
$6_5 \otimes \rho = 3_5 + 6_3 + 9_2,$
$8_1 \otimes \rho = 3_1 + 6_4 + 6_6 + 9_1,$
$8_3 \otimes \rho = 3_3 + 6_5 + 6_6 + 9_1,$
$9_2 \otimes \rho = 3_7 + 8_1 + 8_2 + 8_3.$

6.4 Type (H)

$$\begin{split} 1_0 \otimes \rho &= 3_1, & 3_1 \otimes \rho &= 1_0 + 3_1 + 5, \\ 3_2 \otimes \rho &= 4 + 5, & 4 \otimes \rho &= 3_2 + 4 + 5, \\ 5 \otimes \rho &= 3_1 + 3_2 + 4 + 5. \end{split}$$

6.5 Type (I)

$$\begin{array}{ll} 1_0 \otimes \rho = 3_1, & & & & & & & & & \\ 3_2 \otimes \rho = 1_0 + 8, & & & & & & & & 6 \otimes \rho = 3_2 + 7 + 8, \\ 7 \otimes \rho = 6 + 7 + 8, & & & & & & & & & & 8 \otimes \rho = 3_1 + 6 + 7 + 8. \end{array}$$

6.6 Type (J)

$$\begin{array}{ll} 1_0 \otimes \rho = 3_1, & 1_1 \otimes \rho = 3_2, \\ 1_2 \otimes \rho = 3_3, & 3_1 \otimes \rho = 1_2 + 3_2 + 5_3, \\ 3_2 \otimes \rho = 1_0 + 3_3 + 5_1, & 3_3 \otimes \rho = 1_1 + 3_1 + 5_2, \\ 3_4 \otimes \rho = 4_3 + 5_3, & 3_5 \otimes \rho = 4_1 + 5_1, \\ 3_6 \otimes \rho = 4_2 + 5_2, & 4_1 \otimes \rho = 3_4 + 4_2 + 5_2, \\ 4_2 \otimes \rho = 3_5 + 4_3 + 5_3, & 4_3 \otimes \rho = 3_6 + 4_1 + 5_1, \\ 5_1 \otimes \rho = 3_1 + 3_4 + 4_2 + 5_2, & 5_2 \otimes \rho = 3_2 + 3_5 + 4_3 + 5_3, \\ 5_3 \otimes \rho = 3_3 + 3_6 + 4_1 + 5_1. \end{array}$$

6.7 Type (K)

$$\begin{split} &1_0 \otimes \rho = 3_1, & 1_1 \otimes \rho = 3_2, \\ &1_2 \otimes \rho = 3_3, & 3_1 \otimes \rho = 3_4 + 6_3, \\ &3_2 \otimes \rho = 3_5 + 6_1, & 3_3 \otimes \rho = 3_6 + 6_2, \\ &3_4 \otimes \rho = 1_0 + 8_1, & 3_5 \otimes \rho = 1_1 + 8_2, \\ &3_6 \otimes \rho = 1_2 + 8_3, & 6_1 \otimes \rho = 3_6 + 7_2 + 8_2, \\ &6_2 \otimes \rho = 3_4 + 7_3 + 8_3, & 6_3 \otimes \rho = 3_5 + 7_1 + 8_1, \\ &7_1 \otimes \rho = 6_2 + 7_2 + 8_2, & 7_2 \otimes \rho = 6_3 + 7_3 + 8_3, \\ &7_3 \otimes \rho = 6_1 + 7_1 + 8_1, & 8_1 \otimes \rho = 3_1 + 6_2 + 7_2 + 8_2, \\ &8_2 \otimes \rho = 3_2 + 6_3 + 7_3 + 8_3, & 8_3 \otimes \rho = 3_3 + 6_1 + 7_1 + 8_1. \end{split}$$

6.8 Type (L)

$$\begin{array}{ll} 3_4 \otimes \rho = 9_1, & 5_1 \otimes \rho = 15_1, \\ 5_2 \otimes \rho = 15_1, & 6_1 \otimes \rho = 8_1 + 10, \\ 6_2 \otimes \rho = 3_2 + 15_2, & 8_1 \otimes \rho = 3_1 + 6_2 + 15_1, \\ 8_2 \otimes \rho = 9_3 + 15_1, & 9_1 \otimes \rho = 3_3 + 9_3 + 15_1, \\ 9_2 \otimes \rho = 8_2 + 9_1 + 10, & 9_3 \otimes \rho = 3_4 + 9_2 + 15_2, \\ 10 \otimes \rho = 6_2 + 9_3 + 15_1, & 15_1 \otimes \rho = 6_1 + 9_2 + 2 \cdot 15_2, \\ 15_2 \otimes \rho = 5_1 + 5_2 + 8_1 + 8_2 + 9_1 + 10. \end{array}$$

6.9 Addendum

In [GNS00, p. 52, p. 53] there are a few errors in notation and formulation, though harmless for the consequences in the subsequent sections of [GNS00]. As the arguments in this article are entirely independent from [GNS00] we would like to correct the errors in [GNS00] in the paper [GNS3] much closer to [GNS00].

We acknowledge Professor Li Chiang for pointing out the following errors in [GNS00] (different from the above) to us. The fourth line of [GNS00, p. 57] must be replaced by

$$f^{3} + \bar{f}^{3} = \prod_{i=0}^{2} (f + \omega^{i} \bar{f}) = 27f_{3}^{2} - 9f_{2}f_{4} + 2f_{2}^{3}.$$

The fifth column of $S_d[\rho]$ of [GNS00, p. 57, Table 2.2] must be replaced by

$$\{\bar{f}^2\} + \{f^2\} + \{yzf, \omega^2 zxf, \omega xyf\}.$$

References

[BDM16]	H.F. Blichfeldt, L. E. Dickson and G. A. Miller, <i>Theory and Application of Finite Groups</i> . Dover, New York, 1916.
[Blichfeldt05]	H.F. Blichfeldt, <i>The finite discontinuous primitive groups of collineations in three variables</i> . Math. Ann. 63 (1905), 552–572.
[Blichfeldt17]	, Finite collineation groups. Univ. Chicago Press, Chicago, 1917.
[BKR01]	T. Bridgeland, A. King and M. Reid, <i>The McKay correspondence as an equivalence of derived categories</i> . J. Amer. Math. Soc. 14 (2001), 535–554.
[Bourbaki]	N. Bourbaki, Éléments de mathétique. Chapitres 4, 5 et 6. Masson, Paris, 1981.
[Cohen76]	A. M. Cohen, <i>Finite complex reflection groups</i> . Ann. Sci. École Norm. Sup. 9 (1976), 379–436.
[GNS00]	Y. Gomi, I. Nakamura and K. Shinoda, <i>Hilbert Schemes of G-orbits in dimension three</i> . Kodaira's issue, Asian J. Math. (1) 4 (2000), 51–70.
[GNS3]	, Duality of the quotient ring by a regular sequence of G-invariants. In preparation.
[IN96]	Y. Ito and I. Nakamura, <i>McKay correspondence and Hilbert Schemes</i> . Proc. Japan Acad. 72 (1996), 135–138.
[IN99]	Y. Ito and I. Nakamura, <i>Hilbert schemes and simple singularities</i> . New trends in algebraic geometry, Warwick, 1996, 151–233, London Math. Soc. Lecture Note Series 264 , Cambridge Univ. Press, Cambridge, 1999.
[Lang84] [McKay99]	S. Lang, Algebra. Second edition. Addison-Wesley Publishing Co., 1984. J. McKay, Semi-affine Coxeter-Dynkin graphs and $G \subset SU_2(\mathbb{C})$. Canad. J. Math. 51 (1999), 1226–1229.

Gomi, Nakamura and Shinoda

[N01]	I. Nakamura, <i>Hilbert scheme of abelian group orbits</i> . J. Algebraic Geom. 10 (2001), 757–779.
[Springer87]	T. A. Springer, <i>Poincaré series of binary polyhedral groups and McKay's correspondence</i> . Math. Ann. 278 (1987), 99–116.
[Stanley79]	R. P. Stanley, <i>Invariants of finite groups and their applications to combinatorics</i> . Bull. Amer. Math. Soc. (N.S.) 1(1979), 475–511.
[Steinberg64]	R. Steinberg, <i>Differential equations invariant under finite reflection groups</i> . Trans. Amer. Math. Soc. 112 (1964), 392–400.
[YY93]	Stephen ST. Yau and Y. Yu, <i>Gorenstein quotient singularities in dimension three</i> . Mem. Amer. Math. Soc. 105 (1993).

Department of Mathematics Sophia University Tokyo 102-8554 Japan e-mail: gomi@mm.sophia.ac.jp Department of Mathematics Hokkaido University Sapporo 060-0810 Japan e-mail: nakamura@math.sci.hokudai.ac.jp

Department of Mathematics Sophia University Tokyo 102-8554 Japan e-mail: shinoda@mm.sophia.ac.jp