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Coinvariant Algebras
of Finite Subgroups of SL(3,C)

Yasushi Gomi, Iku Nakamura and Ken-ichi Shinoda

Abstract. For most of the finite subgroups of SL(3, C) we give explicit formulae for the Molien series of

the coinvariant algebras, generalizing McKay’s formulae [McKay99] for subgroups of SU(2). We also

study the G-orbit Hilbert scheme HilbG(C3) for any finite subgroup G of SO(3), which is known to

be a minimal (crepant) resolution of the orbit space C3/G. In this case the fiber over the origin of the

Hilbert-Chow morphism from HilbG(C3) to C3/G consists of finitely many smooth rational curves,

whose planar dual graph is identified with a certain subgraph of the representation graph of G. This is

an SO(3) version of the McKay correspondence in the SU(2) case.

0 Introduction

Let G be a finite subgroup of SL(n, C), SG the coinvariant algebra of G, and (SG)i the

subspace of SG of homogeneous degree i respectively. For each irreducible represen-

tation ρ of G, let 〈ρ, (SG)i〉G be the multiplicity of ρ in (SG)i and define the Molien

series PSG,ρ(t) of SG for ρ to be

PSG,ρ(t) =

∑

〈ρ, (SG)i〉Gt i .

Since SG is finite-dimensional, PSG,ρ(t) is a polynomial of t . One can define sim-

ilarly the Molien series PM,ρ(t) for an arbitrary graded G-module M with finite di-

mensional graded pieces. If M is the polynomial algebra S in two variables and if

G is a subgroup of SU(2), then the Molien series PS,ρ(t) of S is a rational function

of t by [Springer87] and it is well understood as is the connection with the Dynkin

diagram corresponding to G (cf. [Springer87] and [McKay99]). In these cases the

Molien series PSG,ρ(t) of SG is easily derived from the formula for PS,ρ(t).

The first purpose of this paper is to give an explicit formula for PSG,ρ when G is one

of the exceptional finite subgroups of SL(3, C) of type from (E) to (L) in the notation

of [YY93]. Using the Koszul complex with G-action, we derive a certain system of

equations analogous to the SU(2) case [McKay99] satisfied by the Molien series PS,ρ.

The equations are obtained just by taking alternating sums of componentwise gen-

erating functions of G-modules in the Koszul complex. They are given explicitly in
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terms of irreducible decompositions of tensor products with the natural representa-

tion ρnat and its second exterior product
∧2 ρnat . This will be discussed in Section 2.

The consequence of this section enables us to compute PS,ρ explicitly later. However

the calculation of PSG,ρ in the exceptional cases (E)–(L) is much harder, which will

be discussed in Sections 4 and 5. This study of the Molien series PSG,ρ was in fact

motivated by the study of the G-orbit Hilbert scheme explained below, in particular

by the study of π−1(0).

For a positive integer N , HilbN (Cn) is the universal scheme which parametrizes

all zero-dimensional subschemes of C3 of length N . For a finite subgroup G of

GL(n, C), we choose N = |G|, the order of G. Then the group G acts in the nat-

ural manner on Hilb|G|(Cn). The G-orbit Hilbert scheme HilbG(Cn) is by definition

the unique irreducible component of the G-invariant part of Hilb |G|(Cn) dominat-

ing Cn/G, the G-invariant part of the corresponding Chow scheme of |G| points. In

other words, HilbG(C
n) is the universal subscheme of the Hilbert scheme Hilb |G|(C

n)

which parametrizes all smoothable scheme-theoretic G-orbits of length |G|. The

G-orbit Hilbert scheme HilbG(Cn) is a fairly natural algebro-geometric object which

incorporates all representation-theoretic information about G as a subgroup of

GL(n, C). It has already been studied in detail in the SU(2) case [IN99] and in

the case where G is a noncommutative simple subgroup A5 or PSL(2, 7) of SL(3, C)

[GNS00]. The scheme HilbN (Cn) is known to be very singular if n ≥ 3. However for

a finite subgroup G of SL(3, C), HilbG(C3) is known to be nonsingular by [N01] in

the abelian case and by [BKR01] in the general case.

The second purpose of the article is to study HilbG(C3), among other things, the

fiber π−1(0) of the Hilbert-Chow morphism π : HilbG(C
3) → C

3/G when G is a

finite subgroup of SO(3). This will be discussed in Section 3.

It is well known that there is a surjective homomorphism from SU(2) onto SO(3)

having ±1 as its kernel, by which non-abelian subgroups of SU(2) and SO(3) cor-

respond bijectively. For a subgroup G of SO(3) we define the representation graph

R(G) of G by using the irreducible decompositions of tensor products with ρnat in

the same manner as in the SU(2) case. First we observe that π−1(0) is a union of

finitely many smooth rational curves. So we define, in the same way as in the SU(2)

case, the planar dual graph R̄(G) of π−1(0) by associating a vertex to each rational

curve in π−1(0), and by associating an edge connecting a pair of the vertices to each

intersection point of the corresponding curves. Then it turns out that the planar

dual graph R̄(G) is identified with a particular subgraph of R(G). In other words, ev-

ery irreducible rational curve in π−1(0) is labeled by one of the nontrivial irreducible

representations of G and vice versa, whose intersections are described purely in terms

of irreducible decompositions of tensor products with ρnat in a manner similar to the

SU(2) case. Thus we have a complete description of π−1(0) in the SO(3) case. How-

ever in almost all cases other than (A), (H) and (I) in the notation of [YY93] the

precise structure of π−1(0) is yet to be determined.

This paper is organized as follows. In Section 1, we explain basic lemmas necessary

for computing PSG,ρ. In Section 2, we first recall the Koszul complex over S and show

that any alternating sum of componentwise generating functions of the G-modules

in the Koszul complex is equal to zero, which yields a Springer-McKay type identity
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of PS,ρ. In Section 3, we describe π−1(0) completely when G is a subgroup of SO(3).

In Sections 4 and 5 we give tables of PSG,ρ for every finite subgroup G of SL(3, C) of

type from (E) to (L) and every non-trivial representation ρ of G.

We would like to thank J. McKay and A. King for helpful discussions.

1 The Coinvariant Algebra for a Finite Subgroup G of SL(3, C)

1.1 The Molien Series

Let V be an n-dimensional complex vector space, V ∨ the dual of V and G a finite

subgroup of GL(V ). We denote by ρ the matrix representation of G afforded by

the natural inclusion of G into GL(V ) and by ρ∨ its contragredient representation.

As usual we call ρ the natural representation of G. We use the same notation as in

[GNS00]; in particular we denote by S = S(V ∨), m = S+, SG and SG
+ respectively the

symmetric algebra of V ∨ over C, the maximal ideal of S of the origin, the invariant

algebra of G, and the maximal ideal of SG of the origin. Let n be the ideal of S gener-

ated by SG
+ and SG := S/n the coinvariant algebra of G. Since n is a graded ideal of S,

SG is a graded algebra, too.

By the Noether normalization lemma, we can take a minimal system of ho-

mogeneous parameters f1, f2, . . . , fn of SG so that SG is a finite module over

C[ f1, . . . , fn]. Extending them we choose a minimal system of homogeneous gen-

erators f1, f2, . . . , fr of SG and fix them once for all. The ideal n of S is generated by

f1, f2, . . . , fr.

Let Ĝ = {ρ0 = 1, ρ1, . . . , ρs} be the set of representatives of equivalence classes

of all irreducible representations of G and χi the character of ρi for 0 ≤ i ≤ s. For

an arbitrary graded CG-module M =

⊕

i≥0 Mi with dim Mi < ∞, we define the

Molien series of M for ρ j by

PM,ρ j
(t) =

∑

i≥0

〈Mi, ρ j〉Gt i ,

where

〈Mi, ρ j〉G = dim HomG(ρ j , Mi) =

1

|G|
∑

g∈G

χ j(g) TrMi
(g).

The following is derived easily from the formula in [Bourbaki, Lemme 2, p. 110]

(1) PS,ρ j
(t) =

1

|G|
∑

g∈G

χ j(g)

det
(

1 − ρ∨(g)t
) .

Now we recall from [Stanley79, (4.9)].

Theorem 1.2 Let f1, f2, . . . , fr be homogeneous generators of SG chosen as above,

di = deg fi , ( f1, f2, . . . , fn) the ideal of S generated by f1, f2, . . . , fn, and let R =

S/( f1, f2, . . . , fn). Then as CG-modules we have

S ' R ⊗ C[ f1, f2, . . . , fn] and R ' (CG)e

where e = |G|−1d1d2 · · · dn.
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Proposition 1.3 Keeping the notations as above, we have

(i)

PR,ρ j
(t) =

∏n
i=1(1 − tdi )

|G|
∑

g∈G

χ j(g)

det(1 − ρ∨(g)t)
.

(ii) PR,ρ j
(t) − PSG,ρ j

(t) is a polynomial with non-negative integer coefficients.

(iii)
s
∑

j=0

(deg ρ j)PSG,ρ j
(t) =

∑

j≥0

dim(SG)it
i .

Proof (i) It follows from Theorem 1.2 that PS,ρ j
(t) = PR,ρ j

(t)/
∏n

i=1(1 − tdi ). From

Molien’s formula (1), we infer (i).

(ii) Since we have a canonical surjection from R to SG, PR,ρ j
(t) − PSG,ρ j

(t) has

non-negative integer coefficients.

(iii) Let SG =

⊕s
j=0(SG)ρ j

be the decomposition into homogeneous components,

namely ρ j-factors (SG)ρ j
of SG. Since dim(SG)ρ j

= (deg ρ j)〈SG, ρ j〉G, the above equa-

tion is clear from the definition of PSG,ρ j
(t).

We note that if there exists a complex reflection group G̃ of GL(V ) containing G

with [G̃ :G] = 2, then it is easier to calculate PSG,ρ j
(t) by using the following

Theorem 1.4 ([Bourbaki] or [GNS00, 1.6]) Assume that there exists a complex re-

flection subgroup G̃ of GL(V ) containing G with [G̃ :G] = 2.

(i) There exist n homogeneous G̃-invariants f1, f2, . . . , fn such that as CG̃-modules

SG̃
= C[ f1, f2, . . . , fn] and SG̃ = S/( f1, f2, . . . , fn) ' CG̃.

(ii) Let fn+1 = Jac( f1, f2, . . . , fn). Then we have

SG
= C[ f1, f2, . . . , fn, fn+1] and SG̃ ' SG ⊕ C fn+1.

Moreover

(SG̃)k '











(SG)k, if k < dn+1,

C fn+1, if k = dn+1,

0, if k > dn+1,

where dn+1 = deg fn+1 =

∑n
i=1(di − 1).

Corollary 1.5 Under the same assumptions in Theorem 1.4

PSG,ρ j
(t) = PSG̃,ρ j

(t) =

n
∏

i=1

(1 − tdi )PS,ρ j
(t),

PSG,ρ0
(t) = PSG̃,ρ0

(t) + tn+1
=

n
∏

i=1

(1 − tdi )PS,ρ j
(t) + tdn+1 .
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Proof Immediate from Theorem 1.4.

Remark 1.6 Let G be a finite subgroup of SL(3, C) of exceptional type (E)–(L).

Then homogeneous generators of SG are known explicitly in [YY93]. Moreover, since

(SG)i ' Si/(n)i and (n)i = V∨ · (n)i−1 +
∑

deg f j=i C f j , we can calculate (n)i induc-

tively. Thus all the informations of Proposition 1.3 are available, which turns out to

be sufficient to determine PSG,ρ j
(t) by the case-by-case examination. The results are

summarized in Sections 4 and 5.

Either of the groups of type (H), (I) and (L) is a subgroup of some complex re-

flection group of index two, while the group of type (E), (F) or (J) is a subgroup of

some complex reflection group of index 6, 3 or 12 respectively. In these cases we can

apply [Steinberg64] and [Stanley79] to describe R := S/( f1, f2, f3) in some detail.

However no group of type (G) or (K) is a subgroup of a complex reflection group.

Nevertheless in any case from (E) to (L) the algebra R has a remarkable duality as in

the cases of complex reflection groups. We will discuss it elsewhere.

2 Koszul Complex and Springer-McKay Identities of Molien Series

We keep the previous notation. We start with the Koszul complex for the symmetric

algebra S = S(V ∨) (cf. [Lang84, XVI Section 10]).

Lemma 2.1 Let
∧k

V∨ be the k-th alternating product of V ∨.

(i) There is a unique homomorphism

dk :

k
∧

V∨ ⊗ S →
k−1
∧

V∨ ⊗ S

such that for xi ∈ V∨ and y ∈ S

dk

(

(x1 ∧ x2 ∧ · · · ∧ xk) ⊗ y
)

=

k
∑

i=1

(−1)i−1(x1 ∧ x2 ∧ · · · ∧ x̂i ∧ · · · ∧ xk) ⊗ (xi · y).

(ii) There is an exact sequence with dk given by (i)

0 →
n
∧

V∨ ⊗ S
dn→

n−1
∧

V∨ ⊗ S
dn−1→ · · · d2→ V∨ ⊗ S

d1→ S
d0→ C → 0.

(iii) For each integer m ≥ 1 we have an exact sequence

0 →
n
∧

V∨ ⊗ Sm−n →
n−1
∧

V∨ ⊗ Sm−n+1 → · · · → Sm → 0,

where S j = 0 for j < 0.
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(iv) For each integer m ≥ 1 and for each irreducible representation ρ j (0 ≤ j ≤ s), we

have an exact sequence

0 →
(

n
∧

V∨ ⊗ Sm−n

)

ρ j

→
(

n−1
∧

V∨ ⊗ Sm−n+1

)

ρ j

→ · · · → (Sm)ρ j
→ 0.

Proof For a proof of (i), (ii) and (iii), see [Lang84, (10.13) and (10.14)]. Since dk is

a G-homomorphism, we decompose the exact sequence of (iii) into ρ j-components,

which proves (iv).

We denote by ρ(k) (resp. ρ∨(k)) the CG-module
∧k

V (resp.
∧k

V∨). Note that

ρ(0)
= 1, ρ(1)

= ρ, ρ(n)
= det, and ρ∨(k) is the dual CG-module of ρ(k). Define

non-negative integers a(k)
i, j by

(2) ρ(k) ⊗ ρi =

s
∑

j=0

a(k)
i j ρ j , for 0 ≤ i ≤ s and 0 ≤ k ≤ n.

Theorem 2.2 The Molien series PS,ρ j
(t) satisfy the following equations:

n
∑

k=0

s
∑

j=0

(−1)ka(k)
i j tkPS,ρ j

(t) = δi,0 for i = 0, 1, . . . , s.

Proof We see

dim
(

k
∧

V∨ ⊗ Sm−k

)

ρi

= deg(ρi) dim HomG(ρi , ρ
∨(k) ⊗ Sm−k)

= deg(ρi) dim HomG(ρ(k) ⊗ ρi , Sm−k)

= deg(ρi)

s
∑

j=0

a(k)
i j dim HomG(ρ j , Sm−k).

Thus we obtain

∑

m≥0

(

dim
(

k
∧

V∨ ⊗ Sm−k

)

ρi

)

tm
= deg(ρi)

s
∑

j=0

a(k)
i j tkPS,ρ j

(t).

Hence our theorem follows from Lemma 2.1 (ii) and (iv).

Remark 2.3 This proposition can be proved directly by using (1).

Corollary 2.4 Keep the same notation in Theorem 2.2.
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(i) If G is a subgroup of SL(V ), then

n−1
∑

k=1

s
∑

j=0

(−1)ka(k)
i j tkPS,ρ j

(t) =

(

−1 − (−1)ntn
)

PS,ρi
(t) + δi,0,

(ii) If G is a subgroup of SL(2, C), then

s
∑

j=0

a(1)
i j PS,ρ j

(t) = (t + t−1)PS,ρi
(t) − t−1δi,0,

(iii) If G is a subgroup of SL(3, C) and if ρ∨
= ρ, then

s
∑

j=0

a(1)
i j PS,ρ j

(t) = (t + 1 + t−1)PS,ρi
(t) + (t2 − t)−1δi,0.

(The assumption in (iii) is satisfied if G ⊂ SO(3).)

Proof If G is a finite subgroup of SL(V ), then ρ(0) and ρ(n) are trivial. So (i) follows

at once from Theorem 2.2. If dimV = 2, we obtain (ii) by dividing both sides of (i)

by −t . Under the assumption of (iii), we have ρ(1)
= ρ(2)

= ρ. Dividing both sides

of (i) by (t2 − t), we obtain (iii).

Put F j(t) = PS,ρ j
(t)
∏n

i=1(1 − tdi ) for 0 ≤ j ≤ s. By Theorem 1.4

F j(t) =

{

1 + tdn+1 if j = 0

PSG,ρ j
(t) if j 6= 0.

The next corollary is immediate from Corollary 2.4.

Corollary 2.5 Keep the notation as above. Let 0 ≤ i ≤ s. Then

(i) If G is a finite subgroup of SL(2, C), then

s
∑

j=0

a(1)
i j F j(t) = (t + t−1)Fi(t) − (1 − td1 )(1 − td2 )

t
δi,0.

(ii) If G is a finite subgroup of SO(3), then

s
∑

j=0

a(1)
i j F j(t) = (t + 1 + t−1)Fi(t) +

(1 − td1 )(1 − td2 )(1 − td3 )

(t2 − t)
δi,0.

Remark 2.6 The system of equations in Corollary 2.4(ii) were given in [Springer87]

and [McKay99] by using corresponding Coxeter-Dynkin diagrams, or McKay’s semi-

affine graphs. Corollary 2.4(i) claims, roughly speaking, that one can calculate all

the Molien series once one knows a(k)
i j , in particular only a(1)

i j when G ⊂ SL(2, C) or

G ⊂ SO(3). In this sense the representation graph (or rather the indices a(1)
i j ) of a

subgroup G of SO(3) plays the same role in calculating Molien series as the Coxeter-

Dynkin diagram for a finite subgroup of SL(2, C).

https://doi.org/10.4153/CJM-2004-023-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-023-4


502 Gomi, Nakamura and Shinoda

2.7 Complex Reflection Groups

If G is a finite subgroup of SL(2, C) or SO(3), there exists a complex reflection group

G̃ containing G with [G̃ :G] = 2. We list all such pairs G and G̃ in Table 1 and Table 2.

We use the notation in [Cohen76]; the group Gi is the complex reflection group with

Shephard-Todd number i. The symbol W (A) stands for the Weyl group of type A.

The integer di in the tables is the degree of fi defined in Theorem 1.4.

G in SL(2, C) order G̃ d1, d2

cyclic l W (I(l)
2 ) 2, l

binary dihedral 4l G(2l, l, 2) 4, 2l

binary tetrahedral 24 G12 6, 8

binary octahedral 48 G13 8, 12

binary icosahedral 120 G22 12, 20

Table 1: Subgroups of SL(2, C)

G in SO(3) order G̃ d1, d2, d3

cyclic l W (I(l)
2 ) 1,2,l

dihedral 2l W (I(l)
2 × A1) 2,2,l

tetrahedral (' A4) 12 W (A3) 2,3,4

octahedral (' S4) 24 W (B3) 2,4,6

icosahedral (' A5) 60 W (H3) 2,6,10

Table 2: Subgroups of SO(3)
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3 Geometric McKay Correspondence for Subgroups of SO(3)

Let π : HilbG(C3) → C3/G be the Hilbert-Chow morphism for G ⊂ SO(3).

Theorem 3.1 Let G be a finite subgroup of SO(3). For I ∈ HilbG(C3) with I ⊂ m,

we define V (I) = I/(mI + n). For 1 ≤ i ≤ s, we define C j = {I ∈ HilbG(C
3) ;

V (I) ⊃ ρ j , I ⊂ m}. Then

(i) C j ' P
1 and π−1(0) =

⋃s
j=1 C j .

(ii) If I ∈ C j and I /∈ Ci for any j 6= i, then V (I) ' ρ j as G-modules.

(iii) If only two rational curves C i and C j meet at I ∈ π−1(0), then Ci and C j intersect

at I transversally and V (I) ' ρi + ρ j .

(iv) If G is either cyclic, A4 or D4m+2, then there are no three rational curves meeting at

a point of π−1(0).

(v) If G = D4m, S4 or A5, then there is a unique I ∈ π−1(0) such that {I} = C i ∩
C j ∩ Ck for ρi , ρ j , ρk ∈ Ĝ all distinct. In this case V (I) ' ρi + ρ j + ρk and the

curves Ci , C j , Ck meet transversally at I as coordinate axes of (C
3, 0).

(vi) No four rational curves C i meet at a point of π−1(0).

Our proof of Theorem 3.1 is carried out by the case by case examination. When

G is abelian, our theorem is proved by the same argument as in the two dimensional

case. When G is isomorphic to the alternating group A4 or A5, our theorem has been

proved in [GNS00]. So we only need to prove our theorem when G is a dihedral

group or G = S4. We will give a proof of it in the subsections 3.4, 3.5 and 3.6.

3.2 Graphs of G

Here we define three graphs for a finite subgroup G of SO(3).

First we define the planar dual graph R̄(G) of π−1(0) as follows: the set of vertices

of R̄(G) is {C j}1≤ j≤s; Ci and C j are joined by a single edge if and only if C i ∩C j 6= φ.

We note that in Theorem 3.1 there are three rational curves C i , C j and Ck in π−1(0)

meeting at a point, for which we define a planar triangle in R̄(G) with three vertices

Ci , C j and Ck instead of a two cell. See Table 3.

Next we define the (unoriented) representation graph R(G) of G as follows: the set

of vertices is Ĝ; let a(1)
i, j be the integer defined in (2); ρi and ρ j are joined by an edge of

multiplicity a(1)
i, j if a(1)

i, j 6= 0, where if i = j the edge joining ρi with itself is understood

as a loop of multiplicity a(1)
i,i . We note a(1)

i, j = 0 or 1 for i 6= j, while a(1)
i,i = 0, 1, or 2.

We also note that a(1)
i, j = a(2)

i, j for any finite subgroup G of SO(3).

Finally we define a subgraph R0(G) of R(G) as follows: the set of vertices is

{ρ j}1≤ j≤s and ρi and ρ j are joined by a single edge if and only if i 6= j and a(1)
i, j 6= 0.

In other words, R0(G) is the subgraph of R(G) obtained from R(G) by removing the

vertex ρ0, all the edges starting from ρ0 and all the loops in R(G).

The following theorem is a corollary to the proof of Theorem 3.1 once we calculate

the representation graph R(G).
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Theorem 3.3 R̄(G) is isomorphic to R0(G) under the map C i 7→ ρi (1 ≤ i ≤ s). The

graphs R̄(G) and R(G) are given in Table 3.

In the rest of this section we give proofs of Theorem 3.1 in the cases where G is a

dihedral group or G is isomorphic to S4.

3.4 Proof of Theorem 3.1—The Dihedral Group of Order 2` = 4m

Let G be the dihedral group of order 2`:

G =

〈

σ =

(ε−1 0 0

0 ε 0

0 0 1

)

, τ =

(

0 1 0

1 0 0

0 0 −1

)

〉

, where ε = e2πi/`.

We define

f1 = z2, f2 = xy, f3 = x` + y`, f4 = z(x` − y`).

Then we see { f1, f2, f3, f4} is a system of generators of SG which satisfies

f 2
4 − f1 f 2

3 + 4 f1 f `
2 = 0,

regardless of the parity of `.

First in this subsection we consider the case where ` is even. So we write ` = 2m,

|G| = 4m. The character table of G is given in Table 4.

The coinvariant algebra SG splits into irreducible components as in Table 5. Using

Table 5 we define ideals in HilbG(C
3) [a :b] ∈ P

1 as in [GNS00].

I([a :b]12
) =

(

az + b(x2m − y2m), xz, yz
)

+ n,

I([a :b]13
) =

(

a(xm + ym) + b(xm − ym)z, xm+1, ym+1, (xm + ym)z
)

+ n,

I([a :b]14
) =

(

a(xm − ym) + b(xm + ym)z, xm+1, ym+1, (xm − ym)z
)

+ n,

I([a :b]2 j
) = S[G] · (ax jz + by2m− j , x j+1z, x2m− j+1) + n, (i = 1, 2, . . . , m − 1).

It is clear that V
(

I([a :b]ρ)
)

' ρ as G-modules. We note that the following ex-

haust all the possible cases of coincidence between I([a :b]ρ).

I([0 :1]12
) = I([1 :0]21

),

I([0 :1]2 j
) = I([1 :0]2 j+1

), for j = 1, 2, . . . , m − 2,

I([0 :1]2m−1
) = I([0 :1]13

) = I([0 :1]14
).

Now we prove

π−1(0) =

⋃

ρ∈Ĝ\{11}

I([a :b]ρ).
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G R̄(G)
(

= R0(G)
)

R(G)

Z/mZ

ρ1

ρ2

ρm−1

ρm−2

ρ j+1 ρ j−1

ρ j

ρ1

ρ2

ρm−1

ρm−2

ρ j+1 ρ j−1

ρ j

ρ0

D2l (l: odd)

2 l−1
2

2 l−3
2

22 21

12

2 l−1
2

2 l−3
2

22 21

12

11

D2l (l: even)

2 l
2
−1 2 l

2
−2 22 21

1214

13

2 l
2
−1 2 l

2
−2 22 21

1214

13
11

A4

12

3 13

12

3 1311

S4

2

31 32 12

2

31 32 1211

A5

31 5

32

4 31 5

32

41

Table 3: Graphs of subgroups of SO(3)
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c.c 1 −1 τ τσ σi

age 0 1 1 1 1

] 1 1 m m 2

11 1 1 1 1 1

12 1 1 −1 −1 1

13 1 (−1)m 1 −1 (−1)i

14 1 (−1)m −1 1 (−1)i

2 j 2 (−1) j 2 0 0 εi j + ε−i j

(1 ≤ i, j ≤ m − 1)

Table 4: Characters of G(D2`), ` = 2m:even.

degree (SG) j irred. factors

1 〈x, y〉 ⊕ 〈z〉 21 + 12

2 ≤ j ≤ m − 1 〈x j , y j〉 ⊕ 〈x j−1z,−y j−1z〉 2 j + 2 j−1

m 〈xm + ym〉 ⊕ 〈xm − ym〉
⊕〈xm−1z,−ym−1z〉 13 + 14 + 2m−1

m + 1 〈ym+1, xm+1〉 ⊕ 〈(xm − ym)z〉
⊕〈(xm + ym)z〉 2m−1 + 13 + 14

m + 2 ≤ j ≤ 2m − 1 〈y j , x j〉 ⊕ 〈y j−1z,−x j−1z〉 22m− j + 22m− j+1

2m 〈x2m − y2m〉 ⊕ 〈y2m−1z,−x2m−1z〉 12 + 21

Table 5: The coinvariant algebra of G(D2`), ` = 2m: even.

It is immediate from the definition and the Diagram D4m (see 3.7) that I([a :b]ρ)

are contained in π−1(0). Conversely let I be an ideal contained in π−1(0), that is,

n ⊂ I ⊂ m and S/I ' C[G]. By the Diagram D4m, it is easy to see that x2m− jz,

y2m− jz ∈ I for all j = 1, 2, . . . , m − 1 and that x j + ax jz + by2m− j 6∈ I for any

a, b ∈ C and j = 1, 2, . . . , m − 1. If x jz + by2m− j ∈ I for some b 6= 0 and some

j = 1, 2, . . . , m − 1, then we have I([1 :b]2 j
) ⊂ I which implies I([1 :b]2 j

) = I.

Now we assume the contrary, that is, that x jz + by2m− j 6∈ I for any nonzero b and

any j = 1, . . . , m − 1. Then by the condition S/I ' C[G] we have either x jz ∈ I or

y2m− j ∈ I. If there is j ≥ 2 such that x jz ∈ I, x j−1z 6∈ I, then y2m− j+1 ∈ I. It follows

that I = I([1 :0]2 j
). If xz ∈ I, then I = I([a :b]12

).

It remains to consider the case where there is no j such that x jz ∈ I. Hence

ym+1 ∈ I. If xm + ym + b(xm − ym)z ∈ I (resp. xm − ym + b(xm + ym)z ∈ I) for

some b ∈ C, then I = I([1 :b]13
)(resp. I([1 :b]14

)). Otherwise I contains (xm − ym)z
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and (xm + ym)z and then we have I = I([0 :1]13
). Thus we complete the proof of

Theorem 3.1 when G is a dihedral group of order 4m.

3.5 Proof of Theorem 3.1—The Dihedral Group of Order 4m + 2

Now we consider the second case where G is a dihedral group of order 2` = 4m + 2.

Table 6 is the character table of G. The coinvariant algebra SG splits into irreducible

components as in Table 7.

c.c 1 τ σi

age 0 1 1

] 1 2m + 1 2

11 1 1 1

12 1 −1 1

2 j 2 0 εi j + ε−i j

(1 ≤ i, j ≤ m)

Table 6: Characters of G(D2`), ` = 2m + 1:odd.

degree (SG) j irred. factors

1 〈x, y〉 ⊕ 〈z〉 21 + 12

j 〈x j , y j〉 ⊕ 〈x j−1z,−y j−1z〉 2 j + 2 j−1

(2 ≤ j ≤ m − 1)

m 〈xm, ym〉 ⊕ 〈xm−1z,−ym−1z〉 2m + 2m−1

m + 1 〈ym+1, xm+1〉 ⊕ 〈xmz,−ymz〉 2m + 2m

m + 2 〈ym+2, xm+2〉 ⊕ 〈xm+1z,−ym+1z〉 2m−1 + 2m

j 〈y j , x j〉 ⊕ 〈y j−1z,−x j−1z〉 22m− j+1 + 22m− j+2

(m + 3 ≤ j ≤ 2m)

2m + 1 〈x2m+1 − y2m+1〉 ⊕ 〈y2mz,−x2mz〉 12 + 21

Table 7: The coinvariant algebra of G(D2`), ` = 2m + 1: odd.

We define

I([a :b]12
) =

(

az + b(x2m+1 − y2m+1), xz, yz
)

+ n,

I([a :b]2 j
) = S[G] · (ax jz + by2m− j+1, x j+1z, x2m− j+2) + n, j = 1, 2, . . . , m,
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where

I([0 :1]12
) = I([1 :0]21

),

I([0 :1]2 j
) = I([1 :0]2 j+1

), for j = 1, 2, . . . , m − 1.

We see π−1(0) =

⋃

ρ∈Ĝ\{11} I([a :b]ρ) in the same manner as in the case of even

`. As before we see that x2m− j z, y2m− jz ∈ I for any j = 1, 2, . . . , m − 1 and that

x j + ax jz + by2m− j 6∈ I for any a, b ∈ C and j = 1, 2, . . . , m − 1. If x jz + by2m− j ∈ I

for some b 6= 0 and some j = 1, 2, . . . , m − 1, then I = I([1 :b]2 j
). If there is j ≥ 2

such that x jz ∈ I, x j−1z 6∈ I, then I = I([1 :0]2 j
). If xz ∈ I, then I = I([a :b]12

). If

xmz 6∈ I, then ym+1, xm+1 ∈ I so that I = I([0 :1]2m
).

3.6 Proof of Theorem 3.1—The Symmetry Group G = S4

Let

G =

〈

σ =

(

0 −1 0

1 0 0

0 0 1

)

, τ =

(

0 1 0

0 0 1

1 0 0

)

〉

.

We define

f1 = xyz, f2 = x2 + y2 + z2, f3 = x4 + y4 + z4,

f4 = (x2 − y2)(y2 − z2)(z2 − x2).

Then { f 2
1 , f2, f3, f1 f4} is a system of generators of SG which satisfies

4( f1 f4)2 + 108 f 6
1 − 20 f 4

1 f 3
2 + 36 f 4

1 f2 f3 + f 2
1 f 6

2 − 4 f 2
1 f 4

2 f3 + 5 f 2
1 f 2

2 f 2
3 − 2 f 2

1 f 3
3 = 0.

The following is the character table of G.

c.c 1 σ2 τ σ στσ2

age 0 1 1 1 1

] 1 3 8 6 6

11 1 1 1 1 1

12 1 1 1 −1 −1

2 2 2 −1 0 0

31 3 −1 0 1 −1

32 3 −1 0 −1 1

Table 8: Characters of S4.
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The decomposition of the coinvariant algebra SG into irreducible components is

given in Table 9 where

g = x2 + ωy2 + ω2z2, ḡ = x2 + ω2 y2 + ωz2, ω = e2π
√
−1/3.

d (SG)d irred. factors

1 〈x, y, z〉 31

2 〈g, ḡ〉 ⊕ 〈yz, zx, xy〉 2 + 32

3 〈 f1〉 ⊕ 〈x3, y3, z3〉
⊕〈(y2 − z2)x, (z2 − x2)y, (x2 − y2)z〉 12 + 31 + 32

4 〈ḡ2, g2〉 ⊕ 〈(y2 − z2)yz, (z2 − x2)zx, (x2 − y2)xy〉
⊕〈 f1x, f1 y, f1z〉 2 + 31 + 32

5 〈 f1g,− f1ḡ〉 ⊕ 〈 f1 yz, f1zx, f1xy〉
⊕〈(y2 − z2)x3, (z2 − x2)y3, (x2 − y2)z3〉 2 + 31 + 32

6 〈 f4〉 ⊕ 〈 f1(y2 − z2)x, f1(z2 − x2)y, f1(x2 − y2)z〉
⊕〈 f1x3, f1 y3, f1z3〉 12 + 31 + 32

7 〈 f1ḡ2,− f1g2〉
⊕〈 f1(y2 − z2)yz, f1(z2 − x2)zx, f1(x2 − y2)xy〉 2 + 32

8 〈 f1(y2 − z2)x3, f1(z2 − x2)y3, f1(x2 − y2)z3〉 31

Table 9: The coinvariant algebra of S4.

We define

I([a :b]12
) = S · (a f1 + b f4, f1x, f1 y, f1z) + n,

I([a :b]2) = S[G] ·
(

ag2 + b f1ḡ, (y2 − z2)x3, f1 yz
)

+ n,

I([a :b]31
) = S[G] ·

(

a(y2 − z2)yz + b f1 yz, f1g, (y2 − z2)x3
)

+ n,

I([a :b]32
) = S[G] ·

(

a f1x + b(y2 − z2)x3, f1g, f1 yz
)

+ n.

Let S̄d = (SG)d, the degree d part of SG. Let I ∈ HilbG(C
3) such that n ⊂ I ⊂ m.

First we note by using the quiver diagram of S4 as before that I does not contain

the elements whose projections to S̄1 ⊕ S̄2 (the degree one and two parts of SG) are

nonzero. We note also that I contains S̄7 ⊕ S̄8.

Assume that I contains an element a f1 +b f4 for a 6= 0. Then by the quiver diagram

of S4, we see easily that I = I([a :b]12
).

Now we consider the case I contains no element a f1 + b f4 for a 6= 0. Since SG/I =

C[G], f4 ∈ I, that is S̄6(12) ⊂ I. If I contains an element a f1x + b(y2 − z2)x3 for
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a 6= 0, then I = I([a :b]32
). If I contains an element a(y2 − z2)yz + b f1 yz for a 6= 0,

then I = I([a :b]31
).

Now we consider the remaining cases. By the quiver diagram of S4, we see S̄5(31)⊕
S̄5(32) ⊂ I and S̄6 ⊂ I. If aḡ2 + b f1g ∈ I for a 6= 0, then I = I([a :b]2). If I contains

no element aḡ2 + b f1g for a 6= 0, then f1g ∈ S̄5(2) ⊂ I because I contains no

elements with nonzero projections to S̄1 ⊕ S̄2. Hence S̄5 ⊂ I, and I = I([0 :1]2) =

I([0 :1]31
) = I([0 :1]32

).

The following exhaust all the possible cases of coincidence between I([a :b]ρ).

I([0 :1]12
) = I([1 :0]31

),

I([0 :1]2) = I([0 :1]31
) = I([0 :1]32

).

This completes the proof of Theorem 3.1.

3.7 Quiver Diagrams

The diagrams D2` and S4 on the next page are drawn in the same manner as in

[GNS00]. They express the quiver structure of SG, that is the decomposition of

S1 · ((SG)d)ρ j
. The rows are indexed by degrees and the columns by irreducible rep-

resentations. Each irreducible factor ρ j of (SG)d has multiplicity one except when

G = D4m+2, d = m+1, ρ j = 2m and (SG)m+1 = 〈ym+1, xm+1〉⊕〈xmz,−ymz〉 = 2 ·2m.

Each vertex in the diagram stands for nonzero ((SG)d)ρ j
and we join ((SG)d)ρ j

and

((SG)d+1)ρk
with an edge when nonzero ((SG)d+1)ρk

appears in S1 · ((SG)d)ρ j
. In the

unique exceptional case where G = D4m+2, the diagram shows

S1 ·
(

(SG)m

)

2m−1
= 〈xmz,−ymz〉, S1 ·

(

(SG)m

)

2m
= (SG)m+1.

4 The Molien Series PSG,ρ j
—The Case (E)

Finite subgroups of SL(3, C) are classified in [Blichfeldt17]. With the notation in

[YY93], there are exactly 4 infinite series labeled by (A), (B), (C), (D), and 8 ex-

ceptional cases labeled by (E) through (L). Homogeneous generators of the invariant

rings for the exceptional 8 groups, together with explicit descriptions of these groups,

are given in [YY93], which we shall follow.1 Since the character tables of these groups

can be obtained by using, for example, GAP, we omitted them; instead we give short

descriptions of irreducible characters. In what follows we denote by 10 the trivial

character (or representation) of G.

In this and the next section we calculate PR,ρ j
and PSG,ρ j

explicitly for (E)–(L). See

also [GNS00]. In this section we discuss the case (E) in some detail as a prototype

for all the other cases. In what follows in order to save space we will not explain the

customary notation.

1Since our results use the results in [YY93], we mention here some of their misprints: page 34, line 1,
1

√

−7
should be −1

√

−7
, page 80, line 2, (15 + 5

√
15i)x3 y3 should be (15 + 5

√
15i)y3z3.
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12 21 22 2m−2 2m−1 13 14

Diagram D2`

(` = 2m: even)

12 21 22 2m−1 2m

Diagram D2`

(` = 2m + 1: odd.)

Diagram S4:

12 2 31 32
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Let

G =

〈

(

1 0 0

0 ω 0

0 0 ω2

)

, T =

(

0 1 0

0 0 1

1 0 0

)

,V =

1√
−3

(

1 1 1

1 ω ω2

1 ω2 ω

)

〉

,

where ω = e2πi/3. Then we have |G| = 108, and Ĝ = {10, 11, 12, 13, 31, 32, 33, 34,
35, 36, 37, 38, 41, 42}, where 11(V ) =

√
−1, 12 = 12

1, 13 = 13
1, 31 = ρ, 32 = 11ρ,

33 = 12ρ, 34 = 13ρ, 35 = ρ∨, 36 = 11ρ
∨, 37 = 12ρ

∨, 38 = 13ρ
∨, 41(T) = 1 and

42(T) = −2.

The decompositions of ρi ⊗ ρ are given in Appendix.

We also have SG
= C[ f1, f2, f3, f4, f5] with deg f1 = 6, deg f2 = 6, deg f3 = 12,

deg f4 = 12, and deg f5 = 9.

Put R = S/( f1, f2, f3). Then we can easily compute PR,ρ j
(t) by applying Proposi-

tion 1.3. Thus we see that R splits into irreducible representations as in Table 10.

Next we calculate the Molien series PSG
(t) by the repeated use of the trivial relation

(n)i = V∨·(n)i−1+(SG)i for any i. In the case (E) we need to compute only for i ≤ 21.

What we do is not more than elementary linear algebra, so we omit the details of the

computation. We see

PR(t) =

(1 − t6)2(1 − t12)

(1 − t)3

= 1 + 3t + 6t2 + 10t3 + 15t4 + 21t5 + 26t6 + 30t7

+ 33t8 + 35t9 + 36t10 + 36t11 + 35t12 + 33t13 + 30t14

+ 26t15 + 21t16 + 15t17 + 10t18 + 6t19 + 3t20 + t21,

PSG
(t) = 1 + 3t + 6t2 + 10t3 + 15t4 + 21t5 + 26t6 + 30t7

+ 33t8 + 34t9 + 33t10 + 30t11 + 24t12 + 15t13 + 6t14.

Then in view of Proposition 1.3 we can compute the Molien series PSG,ρ j
(t). Sum-

marizing the computation we see SG splits as in Table 11.

In other words,

PSG,10
(t) = 1,

PSG,11
(t) = t3 + t9,

PSG,12
(t) = 2t6,

PSG,13
(t) = t3 + t9,

PSG,31
(t) = 3t5 + 3t8 + 2t11,

PSG,32
(t) = t2 + t5 + 3t8 + 2t11,

PSG,33
(t) = 2t5 + 2t8 + 4t11 + 2t14,
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deg 10 11 12 13 31 32 33 34 35 36 37 38 41 42 dim Rd

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3

2 0 0 0 0 0 1 0 1 0 0 0 0 0 0 6

3 0 1 0 1 0 0 0 0 0 0 0 0 1 1 10

4 0 0 0 0 0 0 0 0 1 2 0 2 0 0 15

5 0 0 0 0 3 1 2 1 0 0 0 0 0 0 21

6 0 0 2 0 0 0 0 0 0 0 0 0 3 3 26

7 0 0 0 0 0 0 0 0 2 2 4 2 0 0 30

8 0 0 0 0 3 3 2 3 0 0 0 0 0 0 33

9 1 1 0 1 0 0 0 0 0 0 0 0 4 4 35

10 0 0 0 0 0 0 0 0 2 3 4 3 0 0 36

11 0 0 0 0 2 3 4 3 0 0 0 0 0 0 36

12 1 1 0 1 0 0 0 0 0 0 0 0 4 4 35

13 0 0 0 0 0 0 0 0 3 3 2 3 0 0 33

14 0 0 0 0 2 2 4 2 0 0 0 0 0 0 30

15 0 0 2 0 0 0 0 0 0 0 0 0 3 3 26

16 0 0 0 0 0 0 0 0 3 1 2 1 0 0 21

17 0 0 0 0 1 2 0 2 0 0 0 0 0 0 15

18 0 1 0 1 0 0 0 0 0 0 0 0 1 1 10

19 0 0 0 0 0 0 0 0 0 1 0 1 0 0 6

20 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3

21 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 10: The decomposition of R of type (E).

deg 10 11 12 13 31 32 33 34 35 36 37 38 41 42 dim(SG)d

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3

2 0 0 0 0 0 1 0 1 0 0 0 0 0 0 6

3 0 1 0 1 0 0 0 0 0 0 0 0 1 1 10

4 0 0 0 0 0 0 0 0 1 2 0 2 0 0 15

5 0 0 0 0 3 1 2 1 0 0 0 0 0 0 21

6 0 0 2 0 0 0 0 0 0 0 0 0 3 3 26

7 0 0 0 0 0 0 0 0 2 2 4 2 0 0 30

8 0 0 0 0 3 3 2 3 0 0 0 0 0 0 33

9 0 1 0 1 0 0 0 0 0 0 0 0 4 4 34

10 0 0 0 0 0 0 0 0 1 3 4 3 0 0 33

11 0 0 0 0 2 2 4 2 0 0 0 0 0 0 30

12 0 0 0 0 0 0 0 0 0 0 0 0 3 3 24

13 0 0 0 0 0 0 0 0 1 1 2 1 0 0 15

14 0 0 0 0 0 0 2 0 0 0 0 0 0 0 6

Table 11: The decomposition of SG of type (E).
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PSG,34
(t) = t2 + t5 + 3t8 + 2t11,

PSG,35
(t) = t + t4 + 2t7 + t10 + t13,

PSG,36
(t) = 2t4 + 2t7 + 3t10 + t13,

PSG,37
(t) = 4t7 + 4t10 + 2t13,

PSG,38
(t) = 2t4 + 2t7 + 3t10 + t13,

PSG,41
(t) = t3 + 3t6 + 4t9 + 3t12,

PSG,42
(t) = t3 + 3t6 + 4t9 + 3t12.

As a consequence we see

PSG,ρ j
(t) = [(1 − t9)(1 − t12)PR,ρ j

(t)]+

where [ f (t)]+ =

∑21
d=0 max{ad, 0}td for f (t) =

∑

adtd ∈ Z[t]. Note that this

formula does not imply a similar formula for ρSG
.

5 The Molien Series PSG,ρ j

In this section we report the results for the other types (F)–(L). For the sake of the

reader’s convenience we list the decompositions of ρi ⊗ ρ in the appendix.

5.1 The Group of Type (F)

G =

〈

(

1 0 0

0 ω 0

0 0 ω2

)

,

(

0 1 0

0 0 1

1 0 0

)

,

1√
−3

(

1 1 1

1 ω ω2

1 ω2 ω

)

,
1√
−3

(

1 1 ω2

1 ω ω
ω 1 ω

)

〉

,

where ω = e2πi/3. |G| = 216. Ĝ = {10, 11, 12, 13, 2, 31, 32, 33, 34, 35, 36, 37, 38,
61, 62, 8}, where 13 = 1112, 31 = ρ, 32 = 11ρ, 33 = 12ρ, 34 = 13ρ, 35 = ρ∨,

36 = 11ρ
∨, 37 = 12ρ

∨, 38 = 13ρ
∨, 61 = ρ2−ρ∨, 62 = ρ∨2−ρ. SG

= C[ f1, f2, f3, f4],

with deg f1 = 6, deg f2 = 9, deg f3 = 12, deg f4 = 12. Let R = S/( f1, f2, f3). Then

we have

PR,10
(t) = 1 + t12 + t24,

PR,11
(t) = PR,12

= PR,13
= t6 + t12 + t18,

PR,2(t) = t3 + 2t9 + 2t15 + t21,

PR,31
(t) = 2t5 + 2t8 + 2t11 + t17 + t20 + t23,
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PR,32
(t) = PR,33

= PR,34
= t5 + t8 + 3t11 + 2t14 + 2t17,

PR,35
(t) = t + t4 + t7 + 2t13 + 2t16 + 2t19,

PR,36
(t) = PR,37

= PR,38
= 2t7 + 2t10 + 3t13 + t16 + t19,

PR,61
(t) = 2t4 + 2t7 + 5t10 + 3t13 + 4t16 + t19 + t22,

PR,62
(t) = t2 + t5 + 4t8 + 3t11 + 5t14 + 2t17 + 2t20,

PR,8(t) = t3 + 3t6 + 5t9 + 6t12 + 5t15 + 3t18 + t21.

We see that

PSG
(t) = 1 + 3t + 6t2 + 10t3 + 15t4 + 21t5 + 27t6 + 33t7 + 39t8 + 44t9 + 48t10

+ 51t11 + 51t12 + 48t13 + 42t14 + 34t15 + 24t16 + 15t17 + 8t18 + 3t19.

Hence we have

PSG,10
(t) = 1,

PSG,11
(t) = PSG,12

= PSG,13
= t6 + t12,

PSG,2(t) = t3 + 2t9 + t15,

PSG,31
(t) = 2t5 + 2t8 + 2t11,

PSG,32
(t) = PSG,33

= PSG,34
= t5 + t8 + 3t11 + 2t14 + t17,

PSG,35
(t) = t + t4 + t7 + t13 + t16 + t19,

PSG,36
(t) = PSG,37

= PSG,38
= 2t7 + 2t10 + 3t13 + t16,

PSG,61
(t) = 2t4 + 2t7 + 5t10 + 3t13 + 2t16,

PSG,62
(t) = t2 + t5 + 4t8 + 3t11 + 4t14 + t17,

PSG,8(t) = t3 + 3t6 + 5t9 + 6t12 + 4t15 + t18.

5.2 The Group of Type (G)

G =

〈

(

1 0 0

0 ω 0

0 0 ω2

)

,

(

0 1 0

0 0 1

1 0 0

)

,

U =

(ε2 0 0

0 ε2 0

0 0 ε5

)

,
1√
−3

(

1 1 1

1 ω ω2

1 ω2 ω

)

〉

,

where ε = e2πi/9, ω = e2πi/3. |G| = 648. Ĝ = {10, 11, 12, 21, 22, 23, 31, 32, 33, 34, 35,
36, 37, 61, 62, 63, 64, 65, 66, 81, 82, 83, 91, 92}, where 21 and 37 are rational valued char-

acters and 11(U ) = ω, 12 = 12
1, 22 = 1121, 23 = 1221, 31 = ρ, 32 = 1131, 33 = 1231,

https://doi.org/10.4153/CJM-2004-023-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-023-4


516 Gomi, Nakamura and Shinoda

34 = ρ∨, 35 = 1134, 36 = 1234, 61 = ρ2 − ρ∨, 62 = 1161, 63 = 1261, 64 = ρ∨2 − ρ,

65 = 1164, 66 = 1264, 81 = ρρ∨ − 10, 82 = 1181, 83 = 1281, 91 = 37ρ, 92 = 37ρ
∨.

SG
= C[ f1, f2, f3, f4], with deg f1 = 9, deg f2 = 12, deg f3 = 18, deg f4 = 18.

R = S/( f1, f2, f3). Then we have

PR,10
(t) = 1 + t18 + t36,

PR,11
(t) = 2t12 + t30,

PR,12
(t) = t6 + 2t24,

PR,21
(t) = 3t15 + 3t21,

PR,22
(t) = 2t9 + 2t15 + t27 + t33,

PR,23
(t) = t3 + t9 + 2t21 + 2t27,

PR,31
(t) = t8 + 2t11 + 3t17 + t20 + t26 + t35,

PR,32
(t) = t5 + 2t11 + t14 + 2t20 + t23 + 2t29,

PR,33
(t) = t5 + t8 + t14 + 2t17 + 3t23 + t32,

PR,34
(t) = t + t10 + t16 + 3t19 + 2t25 + t28,

PR,35
(t) = 2t7 + t13 + 2t16 + t22 + 2t25 + t31,

PR,36
(t) = t4 + 3t13 + 2t19 + t22 + t28 + t31,

PR,37
(t) = t6 + 2t12 + 3t18 + 2t24 + t30,

PR,61
(t) = t4 + t7 + t10 + 2t13 + 4t16 + t19 + 5t22 + t25 + t28 + t31,

PR,62
(t) = t4 + 3t10 + 2t13 + 2t16 + 3t19 + 3t22 + t25 + 3t28,

PR,63
(t) = t7 + 3t10 + t13 + 5t16 + 2t19 + 2t22 + 2t25 + t28 + t34,

PR,64
(t) = t5 + t8 + t11 + 5t14 + t17 + 4t20 + 2t23 + t26 + t29 + t32,

PR,65
(t) = t2 + t8 + 2t11 + 2t14 + 2t17 + 5t20 + t23 + 3t26 + t29,

PR,66
(t) = 3t8 + t11 + 3t14 + 3t17 + 2t20 + 2t23 + 3t26 + t32,

PR,81
(t) = 3t9 + 3t12 + 3t15 + 6t18 + 3t21 + 3t24 + 3t27,

PR,82
(t) = t3 + t6 + t9 + 4t12 + 3t15 + 3t18 + 5t21 + 2t24 + 2t27 + 2t30,

PR,83
(t) = 2t6 + 2t9 + 2t12 + 5t15 + 3t18 + 3t21 + 4t24 + t27 + t30 + t33,

PR,91
(t) = t5 + t8 + 4t11 + 3t14 + 6t17 + 3t20 + 5t23 + 2t26 + 2t29,

PR,92
(t) = 2t7 + 2t10 + 5t13 + 3t16 + 6t19 + 3t22 + 4t25 + t28 + t31.
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We see that

PSG
(t) = 1 + 3t + 6t2 + 10t3 + 15t4 + 21t5 + 28t6 + 36t7 + 45t8 + 54t9

+ 63t10 + 72t11 + 80t12 + 87t13 + 93t14 + 98t15 + 102t16

+ 105t17 + 105t18 + 102t19 + 96t20 + 88t21 + 78t22

+ 66t23 + 52t24 + 36t25 + 21t26 + 10t27 + 3t28,

and PSG,10
(t) = 1,

PSG,11
(t) = 2t12,

PSG,12
(t) = t6 + t24,

PSG,21
(t) = 3t15 + 3t21,

PSG,22
(t) = 2t9 + 2t15,

PSG,23
(t) = t3 + t9 + t21 + t27,

PSG,31
(t) = t8 + 2t11 + 3t17 + t20,

PSG,32
(t) = t5 + 2t11 + t14 + 2t20,

PSG,33
(t) = t5 + t8 + t14 + 2t17 + 2t23,

PSG,34
(t) = t + t10 + t16 + 2t19 + 2t25,

PSG,35
(t) = 2t7 + t13 + 2t16 + t22,

PSG,36
(t) = t4 + 3t13 + 2t19 + t28,

PSG,37
(t) = t6 + 2t12 + 3t18 + t24,

PSG,61
(t) = t4 + t7 + t10 + 2t13 + 4t16 + t19 + 4t22,

PSG,62
(t) = t4 + 3t10 + 2t13 + 2t16 + 3t19 + 2t22 + t25,

PSG,63
(t) = t7 + 3t10 + t13 + 5t16 + 2t19 + 2t22 + t25,

PSG,64
(t) = t5 + t8 + t11 + 5t14 + t17 + 4t20 + t23,

PSG,65
(t) = t2 + t8 + 2t11 + 2t14 + 2t17 + 4t20 + t23 + 2t26,

PSG,66
(t) = 3t8 + t11 + 3t14 + 3t17 + 2t20 + 2t23,

PSG,81
(t) = 3t9 + 3t12 + 3t15 + 6t18 + 3t21 + 3t24,

PSG,82
(t) = t3 + t6 + t9 + 4t12 + 3t15 + 3t18 + 4t21 + t24 + t27,

PSG,83
(t) = 2t6 + 2t9 + 2t12 + 5t15 + 3t18 + 3t21 + 2t24,

PSG,91
(t) = t5 + t8 + 4t11 + 3t14 + 6t17 + 3t20 + 4t23 + t26,

PSG,92
(t) = 2t7 + 2t10 + 5t13 + 3t16 + 6t19 + 3t22 + 2t25.
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5.3 The Group of Type (H)

G =

〈

(

1 0 0

0 ε−1 0

0 0 ε

)

,

(−1 0 0

0 0 −1

0 −1 0

)

,
1√
5

(

1 1 1

2 s t

2 t s

)

〉

,

where ε = e2πi/5, ω = e2πi/3, s = ε2 + ε3 and t = ε + ε5. |G| = 60. Ĝ = {10, 31 =

ρ = ρ∨, 32, 4, 5}. Let G̃ be a group generated by G and −I where I is the identity

matrix of degree 3. Then G̃ is a Coxeter group of type H3 and there exist three ho-

mogeneous invariants f1, f2, f3 with deg f1 = 2, deg f2 = 6, deg f3 = 10 such that

SG̃
= C[ f1, f2, f3] and SG

= C[ f1, f2, f3, f4] where f4 = Jac( f1, f2, f3). Hence we

have

PSG,10
= 1,

PSG,31
= t3 + t5 + t7 + t8 + t10 + t12,

PSG,32
= t + t5 + t6 + t9 + t10 + t14,

PSG,4 = t3 + t4 + t6 + t7 + t8 + t9 + t11 + t12,

PSG,5 = t2 + t4 + t5 + t6 + t7 + t8 + t9 + t10 + t11 + t13.

5.4 The Group of Type (I)

G =

〈

(

0 1 0

0 0 1

1 0 0

)

,

(ε 0 0

0 ε2 0

0 0 ε4

)

,
−1√
−7

(ε4 − ε3 ε2 − ε5 ε − ε6

ε2 − ε5 ε − ε6 ε4 − ε3

ε − ε6 ε4 − ε3 ε2 − ε5

)

〉

,

where ε = e2πi/7. |G| = 168. Ĝ = {10, 31 = ρ, 32 = ρ∨, 6, 7, 8}, Let G̃ be a

group generated by G and −I where I is the identity matrix of degree 3. Then G̃ is

a complex reflection group of type J3(4) (cf. [Cohen76]) and there exist three ho-

mogeneous invariants f1, f2, f3 with deg f1 = 4, deg f2 = 6, deg f3 = 14 such that

SG̃
= C[ f1, f2, f3] and SG

= C[ f1, f2, f3, f4] where f4 = Jac( f1, f2, f3). Hence we

have

PSG,10
= 1,

PSG,31
= t3 + t5 + t10 + t12 + t13 + t20,

PSG,32
= t + t8 + t9 + t11 + t16 + t18,

PSG,6 = t2 + t4 + t6 + t8 + t9 + t10 + t11 + t12 + t13 + t15 + t17 + t19,

PSG,7 = t3 + t5 + t6 + t7 + t8 + t9 + t10 + t11 + t12 + t13 + t14 + t15 + t16 + t18,

PSG,8 = t4 + t5 + t6 + 2t7 + t8 + t9 + t10 + t11 + t12 + t13 + 2t14 + t15 + t16 + t17.
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5.5 The Group of Type (J)

G =

〈

(

1 0 0

0 ε−1 0

0 0 ε

)

,

(−1 0 0

0 0 −1

0 −1 0

)

,

1√
5

(

1 1 1

2 s t

2 t s

)

,W =

(ω 0 0

0 ω 0

0 0 ω

)

〉

,

where ε = e2πi/5, ω = e2πi/3, s = ε2 + ε3, and t = ε + ε4. |G| = 180. Ĝ =

{10, 11, 12, 31, 32, 33, 34, 35, 36, 41, 42, 43, 51, 52, 53}, where 41 and 51 are rational val-

ued characters and 11(W ) = ω, 12 = 12
1, 31 = ρ, 32 = ρ∨ = 1131, 33 = 1231,

34(x) = 31(x7), ∀x ∈ G, 35 = 1134, 36 = 1234, 42 = 1141, 43 = 1241, 52 = 1151

and 53 = 1251. SG
= C[ f1, f2, f3, f4], with deg f1 = 6, deg f2 = 6, deg f3 = 15,

deg f4 = 12. Put R = S/( f1, f2, f3). Then we have

PR,10
(t) = 1 + t12 + t24,

PR,11
(t) = t2 + t14 + t20,

PR,12
(t) = t4 + t10 + t22,

PR,31
(t) = 2t5 + t8 + 2t11 + 2t14 + t17 + t23,

PR,32
(t) = t + t7 + 2t10 + 2t13 + t16 + 2t19,

PR,33
(t) = t3 + t6 + 2t9 + t12 + 2t15 + t18 + t21,

PR,34
(t) = 2t5 + t8 + t11 + 2t14 + 3t17,

PR,35
(t) = 3t7 + 2t10 + t13 + t16 + 2t19,

PR,36
(t) = t3 + 2t9 + 3t12 + 2t15 + t21,

PR,41
(t) = t3 + 2t6 + 2t9 + 2t12 + 2t15 + 2t18 + t21,

PR,42
(t) = t5 + 3t8 + 3t11 + 2t14 + 2t17 + t20,

PR,43
(t) = t4 + 2t7 + 2t10 + 3t13 + 3t16 + t19,

PR,51
(t) = 3t6 + 3t9 + 3t12 + 3t15 + 3t18,

PR,52
(t) = t2 + t5 + 3t8 + 3t11 + 3t14 + 2t17 + 2t20,

PR,53
(t) = 2t4 + 2t7 + 3t10 + 3t13 + 3t16 + t19 + t22.

We see that

PSG
(t) = 1 + 3t + 6t2 + 10t3 + 15t4 + 21t5 + 26t6 + 30t7 + 33t8

+ 35t9 + 36t10 + 36t11 + 35t12 + 33t13 + 30t14 + 25t15

+ 19t16 + 12t17 + 5t18 + 3t19 + t20.
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Hence we have

PSG,10
(t) = 1,

PSG,11
(t) = t2 + t20,

PSG,12
(t) = t4 + t10,

PSG,31
(t) = 2t5 + t8 + 2t11 + 2t14,

PSG,32
(t) = t + t7 + 2t10 + t13 + t16 + t19,

PSG,33
(t) = t3 + t6 + 2t9 + t12 + t15,

PSG,34
(t) = 2t5 + t8 + t11 + 2t14 + t17,

PSG,35
(t) = 3t7 + 2t10 + t13 + t16,

PSG,36
(t) = t3 + 2t9 + 3t12 + t15,

PSG,41
(t) = t3 + 2t6 + 2t9 + 2t12 + t15,

PSG,42
(t) = t5 + 3t8 + 3t11 + 2t14 + t17,

PSG,43
(t) = t4 + 2t7 + 2t10 + 3t13 + 2t16,

PSG,51
(t) = 3t6 + 3t9 + 3t12 + 3t15 + t18,

PSG,52
(t) = t2 + t5 + 3t8 + 3t11 + 2t14 + t17,

PSG,53
(t) = 2t4 + 2t7 + 3t10 + 3t13 + t16.

5.6 The Group of Type (K)

G =

〈

(

0 1 0

0 0 1

1 0 0

)

,

(ε 0 0

0 ε2 0

0 0 ε4

)

,
1√
−7

(ε4 − ε3 ε2 − ε5 ε − ε6

ε2 − ε5 ε − ε6 ε4 − ε3

ε − ε6 ε4 − ε3 ε2 − ε5

)

,

W =

(ω 0 0

0 ω 0

0 0 ω

)

〉

,

where ε = e2πi/7 and ω = e2πi/3. |Ĝ| = 504. Ĝ = {10, 11, 12, 31, 32, 33, 34, 35, 36, 61,
62, 63, 71, 72, 73, 81, 82, 83}, where 61, 71 and 81 are rational valued characters and

11(W ) = ω, 12 = 12
1, 31 = ρ, 32 = 1131, 33 = 1231, 34 = ρ∨, 35 = 1134, 36 =

1234, 62 = 1161, 63 = 1261, 72 = 1171, 73 = 1271, 82 = 1181 and 83 = 1281.

SG
= C[ f1, f2, f3, f4], with deg f1 = 6, deg f2 = 12, deg f3 = 21, deg f4 = 18. Put

R = S/( f1, f2, f3). Then we have

PR,10
(t) = 1 + t18 + t36,

PR,11
(t) = t8 + t14 + t32,
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PR,12
(t) = t4 + t22 + t28,

PR,31
(t) = t5 + t11 + t14 + 2t17 + 2t20 + t23 + t35,

PR,32
(t) = t7 + t10 + 2t13 + t16 + t19 + t25 + t28 + t31,

PR,33
(t) = t3 + t9 + t12 + t18 + 2t21 + t24 + 2t27,

PR,34
(t) = t + t13 + 2t16 + 2t19 + t22 + t25 + t31,

PR,35
(t) = 2t9 + t12 + 2t15 + t18 + t24 + t27 + t33,

PR,36
(t) = t5 + t8 + t11 + t17 + t20 + 2t23 + t26 + t29,

PR,61
(t) = 2t6 + t9 + 3t12 + 2t15 + 2t18 + 2t21 + 3t24 + t27 + 2t30,

PR,62
(t) = t2 + 2t8 + t11 + 2t14 + 3t17 + 3t20 + 2t23 + 3t26 + t32,

PR,63
(t) = t4 + 3t10 + 2t13 + 3t16 + 3t19 + 2t22 + t25 + 2t28 + t34,

PR,71
(t) = t3 + t6 + 2t9 + 2t12 + 3t15 + 3t18 + 3t21 + 2t24 + 2t27 + t30 + t33,

PR,72
(t) = t5 + t8 + 3t11 + 3t14 + 3t17 + 3t20 + 3t23 + 2t26 + 2t29,

PR,73
(t) = 2t7 + 2t10 + 3t13 + 3t16 + 3t19 + 3t22 + 3t25 + t28 + t31,

PR,81
(t) = t6 + 2t9 + 3t12 + 4t15 + 4t18 + 4t21 + 3t24 + 2t27 + t30,

PR,82
(t) = t5 + 2t8 + 3t11 + 4t14 + 3t17 + 3t20 + 3t23 + 2t26 + 2t29 + t32,

PR,83
(t) = t4 + 2t7 + 2t10 + 3t13 + 3t16 + 3t19 + 4t22 + 3t25 + 2t28 + t31.

We see that

PSG
(t) = 1 + 3t + 6t2 + 10t3 + 15t4 + 21t5 + 27t6 + 33t7 + 39t8 + 45t9

+ 51t10 + 57t11 + 62t12 + 66t13 + 69t14 + 71t15 + 72t16 + 72t17

+ 71t18 + 69t19 + 66t20 + 61t21 + 54t22 + 45t23 + 35t24 + 24t25

+ 13t26 + 3t27 + t28.

Hence we have

PSG,10
(t) = 1,

PSG,11
(t) = t8 + t14,

PSG,12
(t) = t4 + t28,

PSG,31
(t) = t5 + t11 + t14 + 2t17 + 2t20,

PSG,32
(t) = t7 + t10 + 2t13 + t16 + t19,

PSG,33
(t) = t3 + t9 + t12 + t18 + t21 + t24 + t27,
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PSG,34
(t) = t + t13 + 2t16 + t19 + t22 + t25,

PSG,35
(t) = 2t9 + t12 + 2t15 + t18 + t24,

PSG,36
(t) = t5 + t8 + t11 + t17 + t20 + t23,

PSG,61
(t) = 2t6 + t9 + 3t12 + 2t15 + 2t18 + 2t21 + t24,

PSG,62
(t) = t2 + 2t8 + t11 + 2t14 + 3t17 + 2t20 + 2t23 + t26,

PSG,63
(t) = t4 + 3t10 + 2t13 + 3t16 + 3t19 + t22 + t25,

PSG,71
(t) = t3 + t6 + 2t9 + 2t12 + 3t15 + 3t18 + 2t21 + t24,

PSG,72
(t) = t5 + t8 + 3t11 + 3t14 + 3t17 + 3t20 + 2t23 + t26,

PSG,73
(t) = 2t7 + 2t10 + 3t13 + 3t16 + 3t19 + 3t22 + t25,

PSG,81
(t) = t6 + 2t9 + 3t12 + 4t15 + 4t18 + 4t21 + 2t24,

PSG,82
(t) = t5 + 2t8 + 3t11 + 4t14 + 3t17 + 3t20 + 2t23,

PSG,83
(t) = t4 + 2t7 + 2t10 + 3t13 + 3t16 + 3t19 + 3t22 + t25.

5.7 The Group of Type (L)

G =

〈

(

1 0 0

0 ε−1 0

0 0 ε

)

,

(−1 0 0

0 0 −1

0 −1 0

)

,

1√
5

(

1 1 1

2 s t

2 t s

)

,
1√
5

(

1 λ1 λ1

2λ2 s t

2λ2 t s

)

〉

,

where ε = e2πi/5, s = ε2 + ε3, t = ε + ε4, λ1 = − 1−
√
−15

4
and λ2 = − 1+

√
−15

4
. |G| =

1080. Ĝ = {10, 31, 32, 33, 34, 51, 52, 61, 62, 81, 82, 91, 92, 93, 10, 151, 152}, where 31 =

ρ, 32 = ρ∨, 33(x) = 31(x7) for all x ∈ G, 34(x) = 32(x7) for all x ∈ G, 61 = ρ2 − ρ∨,

62 = ρ∨2 − ρ, 81 = 3132 − 10, 82 = 3334 − 10, 91 = 3134, 92 = 3133, 93 = 3234,

151 = 3151 and 152 = 3251. Let G̃ be a group generated by G and −I where I is

the identity matrix of degree 3. Then G̃ is a complex reflection group of type J3(5)

(cf. [Cohen76]) and there exist three homogeneous invariants f1, f2, f3 with deg f1 =

6, deg f2 = 12, deg f3 = 30 such that SG̃
= C[ f1, f2, f3] and SG

= C[ f1, f2, f3, f4]

where f4 = Jac( f1, f2, f3). Hence we have

PSG,10
= 1,

PSG,31
= t5 + t11 + t20 + t26 + t29 + t44,

PSG,32
= t + t16 + t19 + t25 + t34 + t40,

PSG,33
= t5 + t17 + t20 + t23 + t32 + t38,
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PSG,34
= t7 + t13 + t22 + t25 + t28 + t40,

PSG,51
= t6 + t12 + t15 + t18 + t21 + t24 + t27 + t30 + t33 + t39,

PSG,52
= t6 + t12 + t15 + t18 + t21 + t24 + t27 + t30 + t33 + t39,

PSG,61
= t4 + 2t10 + t16 + t19 + t22 + 2t25 + t28 + t31 + t37 + t43,

PSG,62
= t2 + t8 + t14 + t17 + 2t20 + t23 + t26 + t29 + 2t35 + t41,

PSG,81
= t6 + t9 + t12 + 2t15 + t18 + 2t21 + 2t24 + t27 + 2t30 + t33 + t36 + t39,

PSG,82
= t9 + 2t12 + 2t15 + 2t18 + t21 + t24 + 2t27 + 2t30 + 2t33 + t36,

PSG,91
= t6 + t9 + 2t12 + t15 + 2t18 + 2t21 + 2t24 + 2t27 + t30 + 2t33 + t36 + t39,

PSG,92
= t4 + t10 + 2t13 + 2t16 + 2t19 + 2t22 + t25 + 2t28 + 2t31 + t34 + 2t37,

PSG,93
= 2t8 + t11 + 2t14 + 2t17 + t20 + 2t23 + 2t26 + 2t29 + 2t32 + t35 + t41,

PSG,10 = t3 + 2t9 + t12 + 2t15 + 2t18 + 2t21 + 2t24 + 2t27 + 2t30 + t33 + 2t36 + t42,

PSG,151
= t5 + t8 + 3t11 + 3t14 + 3t17 + 3t20 + 3t23 + 3t26 + 3t29 + 3t32 + 2t35 + 2t38,

PSG,152
= 2t7 + 2t10 + 3t13 + 3t16 + 3t19 + 3t22 + 3t25 + 3t28 + 3t31 + 3t34 + t37 + t40.

5.8 Summary

Here we list the invariants for the subgroups of type (E)–(L) where dmax =

d1 + d2 + d3 − 3:

type d1, d2, d3 d4, d5 dmax |G| e

E 6, 6, 12 12, 9 21 108 4

F 6, 9, 12 12 24 216 3

G 9, 12, 18 18 36 648 3

H 2, 6, 10 15 15 60 2

I 4, 6, 14 21 21 168 2

J 6, 6, 15 12 24 180 3

K 6, 12, 21 18 36 504 3

L 6, 12, 30 45 45 1080 2

Table 12: Groups (E)–(L)
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Summarizing the calculation in the previous subsections we infer

Theorem 5.9 Let G be a subgroup of SL(3, C) of type from (E) to (L). Let fi be gener-

ators of the invariant ring SG and di = deg fi (1 ≤ i ≤ n), dmax = d1 + d2 + d3 − 3 as

in Table 12, and SG the coinvariant algebra. Then for any irreducible representation ρ j

of G the Molien series PSG,ρ j
is given by the formula

PSG,ρ j
(t) =

[

n
∏

i=4

(1 − tdi )PR,ρ j
(t)
]

+
+

{

t18(δ j,8 + δ j,51
) if G = (F) or (J),

0 otherwise.

where [ f (t)]+ :=
∑dmax

d=0 max{ad, 0}td for f (t) =

∑

adtd ∈ Z[t].

Remark 5.10 Theorem 5.9 implies the following. Suppose j 6= 8 if G is type (F)

or j 6= 51 if G is of type (J). For any fixed irreducible representation ρ j multipli-

cation by fα (α = 4, 5) is a homomorphism φα
d,ρ j

from (Rd)ρ j
to (Rd+dα

)ρ j
. Then

φα
d,ρ j

is surjective if dim(Rd)ρ j
≥ dim(Rd+dα

)ρ j
, while it is injective if dim(Rd)ρ j

≤
dim(Rd+dα

)ρ j
. In other words, rank φα

d,ρ j
is equal to min{dim(Rd)ρ j

, dim(Rd+dα
)ρ j

}.

Moreover f4R ∩ f5R = f4 f5R ' f4 f5C. In the exceptional case, for instance, of

type (J) and j = 51, the nonzero coefficient of t19 in PSG,32
explains nonvanishing

of the coefficient of t18 in PSG,51
. We note that the above theorem does not imply

PSG
(t) = [

∏n
i=4(1 − tdi )PR(t)]+ even in the case other than (F) and (J).

6 Appendix

In this appendix we list the decompositions of irreducible representations tensored

with the natural representation ρ.

6.1 Type (E)

10 ⊗ ρ = 31, 11 ⊗ ρ = 32,

12 ⊗ ρ = 33, 13 ⊗ ρ = 34,

31 ⊗ ρ = 35 + 36 + 38, 32 ⊗ ρ = 35 + 36 + 37,

33 ⊗ ρ = 36 + 37 + 38, 34 ⊗ ρ = 35 + 37 + 38,

35 ⊗ ρ = 10 + 41 + 42, 36 ⊗ ρ = 11 + 41 + 42,

37 ⊗ ρ = 12 + 41 + 42, 38 ⊗ ρ = 13 + 41 + 42,

41 ⊗ ρ = 31 + 32 + 33 + 34, 42 ⊗ ρ = 31 + 32 + 33 + 34.
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6.2 Type (F)

10 ⊗ ρ = 31, 11 ⊗ ρ = 32,

12 ⊗ ρ = 33, 13 ⊗ ρ = 34,

2 ⊗ ρ = 62, 31 ⊗ ρ = 35 + 61

32 ⊗ ρ = 36 + 61, 33 ⊗ ρ = 37 + 61,

34 ⊗ ρ = 38 + 61, 35 ⊗ ρ = 10 + 8,

36 ⊗ ρ = 11 + 8, 37 ⊗ ρ = 12 + 8,

38 ⊗ ρ = 13 + 8 61 ⊗ ρ = 2 + 2 · 8,

62 ⊗ ρ = 35 + 36 + 37 + 38 + 61, 8 ⊗ ρ = 31 + 32 + 33 + 34 + 2 · 62.

6.3 Type (G)

10 ⊗ ρ = 31, 11 ⊗ ρ = 32,

12 ⊗ ρ = 33, 21 ⊗ ρ = 65,

22 ⊗ ρ = 66, 23 ⊗ ρ = 64,

31 ⊗ ρ = 34 + 61, 32 ⊗ ρ = 35 + 62,

33 ⊗ ρ = 36 + 63, 34 ⊗ ρ = 10 + 81,

35 ⊗ ρ = 11 + 82, 36 ⊗ ρ = 12 + 83,

37 ⊗ ρ = 91, 61 ⊗ ρ = 22 + 81 + 83,

62 ⊗ ρ = 23 + 81 + 82, 63 ⊗ ρ = 21 + 82 + 83,

64 ⊗ ρ = 34 + 62 + 92, 65 ⊗ ρ = 35 + 63 + 92,

66 ⊗ ρ = 36 + 61 + 92, 81 ⊗ ρ = 31 + 64 + 66 + 91,

82 ⊗ ρ = 32 + 64 + 65 + 91, 83 ⊗ ρ = 33 + 65 + 66 + 91,

91 ⊗ ρ = 61 + 62 + 63 + 92, 92 ⊗ ρ = 37 + 81 + 82 + 83.

6.4 Type (H)

10 ⊗ ρ = 31, 31 ⊗ ρ = 10 + 31 + 5,

32 ⊗ ρ = 4 + 5, 4 ⊗ ρ = 32 + 4 + 5,

5 ⊗ ρ = 31 + 32 + 4 + 5.
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6.5 Type (I)

10 ⊗ ρ = 31, 31 ⊗ ρ = 32 + 6,

32 ⊗ ρ = 10 + 8, 6 ⊗ ρ = 32 + 7 + 8,

7 ⊗ ρ = 6 + 7 + 8, 8 ⊗ ρ = 31 + 6 + 7 + 8.

6.6 Type (J)

10 ⊗ ρ = 31, 11 ⊗ ρ = 32,

12 ⊗ ρ = 33, 31 ⊗ ρ = 12 + 32 + 53,

32 ⊗ ρ = 10 + 33 + 51, 33 ⊗ ρ = 11 + 31 + 52,

34 ⊗ ρ = 43 + 53, 35 ⊗ ρ = 41 + 51,

36 ⊗ ρ = 42 + 52, 41 ⊗ ρ = 34 + 42 + 52,

42 ⊗ ρ = 35 + 43 + 53, 43 ⊗ ρ = 36 + 41 + 51,

51 ⊗ ρ = 31 + 34 + 42 + 52, 52 ⊗ ρ = 32 + 35 + 43 + 53,

53 ⊗ ρ = 33 + 36 + 41 + 51.

6.7 Type (K)

10 ⊗ ρ = 31, 11 ⊗ ρ = 32,

12 ⊗ ρ = 33, 31 ⊗ ρ = 34 + 63,

32 ⊗ ρ = 35 + 61, 33 ⊗ ρ = 36 + 62,

34 ⊗ ρ = 10 + 81, 35 ⊗ ρ = 11 + 82,

36 ⊗ ρ = 12 + 83, 61 ⊗ ρ = 36 + 72 + 82,

62 ⊗ ρ = 34 + 73 + 83, 63 ⊗ ρ = 35 + 71 + 81,

71 ⊗ ρ = 62 + 72 + 82, 72 ⊗ ρ = 63 + 73 + 83,

73 ⊗ ρ = 61 + 71 + 81, 81 ⊗ ρ = 31 + 62 + 72 + 82,

82 ⊗ ρ = 32 + 63 + 73 + 83, 83 ⊗ ρ = 33 + 61 + 71 + 81.

6.8 Type (L)

10 ⊗ ρ = 31, 31 ⊗ ρ = 32 + 61,

32 ⊗ ρ = 10 + 81, 33 ⊗ ρ = 92,
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34 ⊗ ρ = 91, 51 ⊗ ρ = 151,

52 ⊗ ρ = 151, 61 ⊗ ρ = 81 + 10,

62 ⊗ ρ = 32 + 152, 81 ⊗ ρ = 31 + 62 + 151,

82 ⊗ ρ = 93 + 151, 91 ⊗ ρ = 33 + 93 + 151,

92 ⊗ ρ = 82 + 91 + 10, 93 ⊗ ρ = 34 + 92 + 152,

10 ⊗ ρ = 62 + 93 + 151, 151 ⊗ ρ = 61 + 92 + 2 · 152,

152 ⊗ ρ = 51 + 52 + 81 + 82 + 91 + 10.

6.9 Addendum

In [GNS00, p. 52, p. 53] there are a few errors in notation and formulation, though

harmless for the consequences in the subsequent sections of [GNS00]. As the argu-

ments in this article are entirely independent from [GNS00] we would like to correct

the errors in [GNS00] in the paper [GNS3] much closer to [GNS00].

We acknowledge Professor Li Chiang for pointing out the following errors in

[GNS00] (different from the above) to us. The fourth line of [GNS00, p. 57] must be

replaced by

f 3 + f̄ 3
=

2
∏

i=0

( f + ωi f̄ ) = 27 f 2
3 − 9 f2 f4 + 2 f 3

2 .

The fifth column of Sd[ρ] of [GNS00, p. 57, Table 2.2] must be replaced by

{ f̄ 2} + { f 2} + {yz f , ω2zx f , ωxy f }.
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