
OPERATORS OF THE FORM PAQ -QAP 
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1. In this note the Hilbert spaces under consideration are complex, and the 
operators referred to are bounded, linear operators. If § is a Hilbert space, 
then the algebra of all operators on § is denoted by ?(£>). 

I t is known (1) that if § is any Hilbert space, then the class of commutators 
on § , i.e., the class of all operators that can be written in the form PQ — QP 
for some P , Q 6 SOp), can be exactly described. A similar problem is that of 
characterizing all operators on § that can be written in the form PAQ — QAP 
for some P , A, Q Ç 8 (§) . If no restrictions are placed on the operators P , A, 
and Q, it is relatively easy to see that for dim § > 1, every operator in &(§) 
can be written in this form. (A very brief and pretty proof of this fact for 
infinite-dimensional § was shown to us by Paul Federbush; it is reproduced in 
Remark 3.3.) 

Since every commutator PQ — QP is automatically a commutator of 
invertible operators by virtue of the identity 

PQ-QP = (P + \){Q + M) - 02 + M ) ( P + X), 

valid for every pair of scalars X and n, it is natural to ask which operators can 
be written in the form PAQ — QAP with invertible P , A, and Q. This problem 
is somewhat more difficult, and it is the purpose of this note to furnish the 
solution by proving the following theorem. 

THEOREM. If § is a Hilbert space of dimension greater than one, and T is any 
operator on § , then there exist invertible operators P , A, Q on § satisfying 
T = PAQ - QAP. 

This theorem settles a question posed to us by Olga Taussky-Todd, to 
whom we are indebted for several interesting conversations. 

The proof of the theorem splits naturally into cases depending on the dimen­
sion of § . In the finite-dimensional case, the proof depends on the following 
lemmas and (4, Theorem III) . 

LEMMA 1.1. If T ^ 0 is an operator on an n-dimensional complex Hilbert 
space § ( 1 < ^ < O O ) , then there exists an orthonormal basis for & relative to 
which the matrix (a^)*^=i of T satisfies an 9e 0 9e «22-

Proof. Consider the numerical range (or field of values) W(T) of P. If 
W(T) consists of a single point {X}, then T is the scalar operator T = XI and 

Received March 13, 1967. This research was supported in part by the National Science 
Foundation. At the time the paper was written, the second author was an Alfred P. Sloan 
Research Fellow. 

1353 

https://doi.org/10.4153/CJM-1968-135-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-135-8


1354 A. BROWN AND C. PEARCY 

the result is obvious. Otherwise, W(T) contains at least two points, and thus 
the line segment joining them. Hence, W(T) contains a number a n ^ 0 such 
that an ?± trace T. Let Xi be a unit vector such that (Tx±, xf) = an, and 
extend {xi} to an orthonormal basis {xi, . . . , xn} for § . Since a n ^ trace T, 
there must be some k (2 ^ k ^ n) such that (Tx^, xk) = /3 ^ 0. If we now 
interchange x2 and xk, then (Tx2, x2) = £ = a22 ^ 0, and the proof is complete. 

LEMMA 1.2. If T is an operator on an n-dimensional Hilbert space § (1 < 
n < oo), tfAew //^re exw£ invertible operators X and Y on § 5̂ c& /fta/ 
determinant X = determinant F and swcfe / t o J" = X — F. 

Proof. If r = 0, the result is clear. We suppose that T 9e- 0, and use the 
preceding lemma to pick a basis for § relative to which the matrix (aif) of T 
satisfies «n ^ 0 ^ a22. We write 

f a n «12 

« 2 1 

l « n l > 

« I n au+di 

«21 «22 + ^2 

«nl 

0 \ /*' -— a i 2 . . . —ai«\ 

d2 

n + dnj 
0 

where the numbers d\, . . . , dn are to be determined. Let X and F be the 
operators having these matrices (relative to the given basis), and note that to 
complete the proof, it suffices to show that the numbers dt can be chosen so 
that 

(1) did2 . . . dn 9e- 0 and 

(2) (an + df) {a22 + d2) . . . (ann + dn) = dxd2 . . . dn. 

This amounts to choosing each dt 9e 0 so that (2) is satisfied. If n = 2, this 
is equivalent to choosing non-zero numbers d\ and d2 such that 

«11^2 + «22^1 + «11«22 = 0, 

and this is a task that is easily accomplished since «n ^ 0 ^ a22. If n > 2 
we first choose dif 3 ^ i S n, subject only to the conditions dx 9e- 0 9^ dt + a«. 
Next, we arrange things so that f$ = d2 . . . dn is unequal to 

7 = («22 + d2) . . . (o»n + dn). 
To this end let % = d% . . . dn and 77 = (a33 + d%) . . . (awn + dn). Then we need 
d2% 9e (a22 + d2)rj, and since £, 77, and a22 are all non-zero, it is easy to see 
that we can choose d2 so as to satisfy this requirement and also to satisfy 
d2 9^ 0 9e d2 + «22. Assume this done; to complete the proof it then suffices 
to choose di 5* 0 so that 

di0 = (an + di)y, 

and since 1 3 ^ 7 ^ 0 and a n 9e 0, this is possible. 
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COROLLARY 1.3. The theorem is true if § is finite-dimensional. 

Proof. Let T be an operator on £). By Lemma 1.2 there exist invertible 
operators X and Y on § with equal determinants such that T = X — Y. 
According to (4, Theorem III) , there exist operators P , A, and Q such that 
X = PAQ and Y = QAP; the invertibility of X and F guarantees that P , A, 
and Q are invertible. Thus T = PAQ — QAP, as desired. 

2. The separable case. We turn now to the case in which § is a separable, 
infinite-dimensional, space. According to (1, Theorem 3), an operator T on § 
is a commutator if it is not of the form X + K for some non-zero scalar X and 
compact operator K. For such a commutator T there exist operators P i and 
Qi such that T = PiQi — Q\P\. Since, as noted before, for any scalar M we 
also have that 

T= (P1 + M)((2i + M) - (<2i + M)(PI + /0, 
Mo can be chosen so that the operators P = P± + MO and Q = Qi + MO are 
invertible. If we then define A = 1, we have that 

T = P ^ Ç - (MP 

with invertible P , -4, and <2. Thus, it suffices to prove the theorem for operators 
T of the form T = X + K, where À ^ O and K is compact. 

We shall have occasion to write T as a matrix with operator entries, and in 
so doing, we observe the usual conventions. If § is written as the direct sum 

§ = § i © . . . e § m , 

and if Et denotes the projection of § onto Sfru then we write T = (P0)7,y=i, 
where Ttj denotes the linear operator 

The following lemma begins our program. 

LEMMA 2.1. Let T G 8(§) be of the form T = X + K for X ^ O and K 
compact, and let e > 0. Then there exists a finite-dimensional subspace $ of § 
such that if 2 and 3D? are sub spaces satisfying ? C fi1 and SDî C 8"1", and if E 
and F denote the projections of § onto 8 and 93?, respectively, then ETF, FTE, 
and ETE — \E all have norm less than e. 

Proof. I t is well known that there exist finite-dimensional projections P 
with the property that 

\\K - PKP\\ < e. 

(Indeed, if {Pn} is any sequence of projections converging strongly to the 
identity operator, then ||X" — PnKPn\\ —>0.) Fix any one such projection P0 , 
choose its range for the subspace $, and denote by L the operator K — 
P0KP0. Then with 8, 9K, E, and F as in the statement of the lemma, we have 
that EK = EL and KE = LE. Hence, EKF, FKE, and EKE all have norm 
less than e, and the result follows. 
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PROPOSITION 2.2. Let T £ 8 (£ ) be of the form T = X + K for X ^ 0 andK 
compact. Then there exists a decomposition & = &i ® &2 of Q into the direct 
sum of two infinite-dimensional sub spaces such that, if the corresponding matrix 
for T is 

then both A\ and D\ are invertible. 

Proof. To begin with, it is a simple matter to obtain via Lemma 2.1 a 
preliminary resolution § = $ i © $ 2 with respect to which the matrix 
representation 

has the property that D is invertible. Indeed, we have only to choose for e any 
positive number less than |X|, and then choose $2 to be any infinite-dimensional 
subspace whose orthocomplement $1 is infinite-dimensional and contains the 
subspace $ of Lemma 2.1. Next, note that if U is a unitary operator on § 
with (Uij)2i,j=i as its matrix representation relative to the decomposition 
& = $1 © $2 , and if 

, m (Uu Uu\(A B\(Un* U2A (At B1\ 
U ; W21 UJ\C Dj\U12* U22*/ \d Dj' 
then 

(U*AXU E/*3iE/\ 
\U*dU U^DtU/ 

is the matrix representation for T relative to the decomposition § = §1 © §2, 
where §* = U*($i), i = 1, 2. Thus the theorem will be proved if we can find 
a unitary operator [/such that in equation (II), both A\ and D± are invertible. 
Now the operator A is a compression of T, and therefore is also of the form 
A = X + Kij where K\ is a compact operator on $1. Hence, A is either invertible 
or has a non-trivial null space. In the former case, the proof is complete; in the 
latter case, the set of all those vectors x € $1 satisfying Akx = 0 for some 
positive integer k form a non-trivial finite-dimensional subspace 911 of $1. Let 
dim (9h) = n, and define 9l2 = ®i © 9li, so that $1 = 9ti ® 9l2. The sub-
space 911 is invariant under ^4, and if we write N for the nilpotent operator in 
8(9ii) defined by N = A\ytly then the matrix representation for A relative to 
the decomposition $1 = 9li © 9̂ 2 has the form 

A-(N A») 
A~\o AJ-

The advantage of this particular dissection of A is that the diagonal entry 
A 22 is invertible. To see this, note that A 22 is of the form X + K2, where K2 € 
8(^2) is compact. Thus, it suffices to show that A 22 has trivial null space. 
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Suppose, accordingly, that A22y = 0 with y g 9t2. Then Ay £ Sfti, so that 
A* (Ay) = ,4*+1;y = 0 for some k > 0. But then y Ç 9^, and therefore 3/ = 0. 

Let now 93? i be an ^-dimensional subspace of $2 , the precise determination 
of which will be made later, and write Wfl2 = $ 2 0 2)?i, so that 

£ = SRi © 9̂ 2 0 3Ki 0 9W2. 

The matrix representation for T corresponding to this decomposition may be 
written as 

(N An Bn Bl2y 
! n A 

(Hi) r = 
0 -422 B2\ B22 

COS0 0 sin 6 V tf 
0 1 0 0 

sin 07* 0 COS0 0 
0 0 0 1, 

C n Cl2 D l l i^l2 

^C 2 1 C22 ^ 2 1 ^ 2 2 ^ 

We next consider unitary operators U(9) on § (0 < 0 < 7r/2) whose matrices 
relative to this same decomposition of § have the form 

U(0) = 

where V is some arbitrary isometry mapping Mi onto Sfti. A brief calculation 
shows that in the representation of U(d)TU*(d) as a 2 X 2 matrix correspond­
ing to the splitting § = $1 © $ 2 (see (II) above), the entries Ax and T>\ are 
given by 

,41(0) = 

(cos2dN + sinW-DnF* + sin 0 cos 0(BnF* + VCu) cos 0̂ 412 + sin 0FCi2\ 
V sin SB 21V* A 22 / 

and 

Pi(0) = 

/ s in 2 0FWF + cos20Z>n - sin0cos0(CuF + V*Bn) -sinOV*B12 + cosdDn\ 
\ - s i n 0C21F+ cos 0Z>2i #22 / 

Thus our task reduces to choosing the subspace Wfli and the angle 0 in such a 
way that these operators are invertible. To this end, note that the entries of 
the matrix (III) are all bounded in norm by ||r| |, independently of how the 
subspace 9Jh is selected. I t follows that ||Z>i(0) — D\\ —» 0 as 0 —» 0, and that 
this convergence is uniform with respect to Sfti. Since D is invertible, there 
exist angles 0 > 0 so small that D (0) is invertible no matter how SD?i is chosen. 
We choose one such 0O, hold it fixed, and proceed to adjust 9Ki so as to make 
A 1(60) invertible. That such a choice is possible may be seen most clearly as 
follows. Let Du = X + Kz, with X and Kz in £ (9Ki). (The operator Kz depends, 
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of course, on the choice of SDîi.) Also, write Ai(60) = A0 + ô(9fti), where 

A I cos2doN + sin20oX cos doAu] 
Ao = \ o ^22 ) 

and 

ô(9fti) = 
sin^oFXaF* + sin 0O cos 0o(£nF* + VCU) sin floFCV 

sin0O-B2iF* 0 

so that AQ is independent of the choice of 9fti. Since N is nilpotent and sin20oX 
is a non-zero scalar, the entry cos2d0N + sin20oX of A 0 is invertible; since A 22 

is also known to be invertible, it follows that A0 is invertible. On the other 
hand, according to Lemma 2.1, it is possible to choose 9ft i in such a way so as 
to make JBn, JB2I, d i , Ci2, and i£3 as small in norm as desired. Since || V\\ = 1, 
it follows that by appropriate choice of 9fti, ||<$(9fti)|| can be made arbitrarily 
small. Hence Ai($o) can be made arbitrarily close to A0} and the result follows. 

Summary. We have shown that if T is an arbitrary operator of the form 
X + K with X 9e 0 and K compact, then T can be viewed, relative to some 
decomposition § = § i © § 2 of § , as a 2 X 2 matrix whose diagonal entries 
are invertible. 

If we now identify § 2 with § i via a unitary isomorphism, then § is identified 
with § i © § i , and 7" is identified with (is unitarily equivalent to) an operator 
T\ £ 8 (§ i © €>i). The advantage of this identification is that 7\ can be 
regarded as a 2 X 2 matrix all of whose entries act on the same space § i ; of 
course, the diagonal entries of T\ remain invertible. The following lemma thus 
concludes the proof of our theorem in the separable case. 

LEMMA 2.3. If T is an operator on 8 ( § © § ) whose 2 X 2 matrix over 

\rz TJ' 
where T± and T± are invertible operators, then there exist invertible operators P, 
A, and Q on & © § such that T = PAQ - QAP. 

Proof. We define P, A, and Q by writing 

' - (»- r , o
r) .*-(fO--«-( . f t;0-

where the entries ^4,-, Qt are to be determined. Note that if A t and Qt, i = 1,2, 
are all invertible, then P, 4 , and Q are invertible also. A brief calculation 
reduces the matrix equation PAQ — QAP = T to the system of equations 

QiAiTi - T1A1Q1 = 0 
T1A1 + A2Ti = -T2 

r4<2i + QtTi = T3 

T4A2Q2 - QiAzT* = 0. 

(IV) 
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That this system possesses invertible solutions Ai, A2, Qi, Q2 when T± and T4 

are themselves both invertible may be seen as follows. If we agree to write 

A 2 = aQ2~
l and Qx = pT± 

(where a and & denote positive parameters to be determined), then the first 
and last equations will be automatically satisfied, so that the problem reduces 
to solving the third equation 

$T,T1 + Q2TX = T3 

for Q2 in such a way as to make Q2 invertible, and then solving the second 
equation 

T1A1 + aQ2~
1T, = -T2 

for A1 in such a way as to make it invertible. Clearly these requirements will 
be met if /3 is first chosen large enough to ensure the invertibility of Tz — $T{T\ 
and if a is then chosen large enough to make T2 + aQ2~

lT± invertible. 

3. The non-separable case. In this section we sketch a proof of the 
theorem in the case that dim(§) = X > Ko- Let (K) denote the maximal 
proper norm-closed ideal in 8 (§ ) . According to (1, Theorem 4), the non-
commutators on § are exactly the operators of the form X + K, where X 3^ 0 
and K Ç (K). Furthermore, just as above, it suffices to treat the non-commu­
tators. Let T = X + K be such an operator. Then the lemma obtained from 
Lemma 2.1 above by replacing the phrase "finite-dimensional subspace $ " by 
"subspace $ of dimension less than X" is valid for T and is essentially con­
tained in (1, Lemma 6.1) and (2, Lemma 4.1). Accordingly, in the notation 
of Lemma 2.1, let e = |X|/2, let $ be the corresponding subspace of dimension 
less than X, and let 9)? denote the smallest invariant subspace of T that 
contains $ . An easy cardinality argument shows that 9JÎ has dimension equal 
to that of $ . Since $Jl± is orthogonal to $, the compression Z of T — X to 9W"1" 
has norm less than e = |X|/2, and it follows that the matrix for T relative to 
the decomposition § = 9W © 99?x has the form 

T=(X Y ) 

\o z + x/ 
Since X Ç 8 (SDÎ) and dim 99? < X, we may assume by transfinite induction 
that the conclusion of the theorem holds for X. To see that the conclusion of 
the theorem also holds for Z + X, write <3Jl± = 9îi © 9̂ 2, where dim 9îi = 
dim yi2 = dim 99fJ"L. Then the matrix for Z + X relative to this resolution has 
the form 

* + >-(*zîX zflù-
and since \\Z\\ < e = |X|/2, ||Zi||, ||Z4|| < |X|/2, from which it follows that 
Zi + X and Z4 + X are invertible. Thus Lemma 2.3, which is easily seen to be 
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independent of the dimension of £>, can be applied to yield the desired con­
clusion for Z + A. 

The proof in the non-separable case is completed by the following lemma. 

LEMMA 3.1. Suppose that the conclusion of the theorem holds for operators X 
and Z on Hilbert spaces & and $ , respectively, and let Y be any operator from 
$ to § . Then the conclusion of the theorem also holds for the operator 

on the space § © $ . 

Proof. Choose invertible operators Pu Au and Qi (i = 1, 2) such that 

PiAiQx - QiA1P1 = X and P2A2Q2 - Q2A2P2 = Z. 

Let P G 8 ( § © $ ) denote the operator 

Vo pj ' 
let 

A - (Al °) 

where s is a positive real parameter to be determined, and finally, let 

e.™ " (o°* ^ ) • 
where PF is an operator from $ to § which also is to be determined. A simple 
calculation shows that 

PA,Q,m - Q,{w)A.r - ft ( iM ' )H ' - "r<"'"'>) 
so that, to complete the proof, it suffices to solve the equation 

(V) {PXAX)W - W{sA2P2) = Y 

for 5 and W. Now for fixed 5, it is well known that this equation possesses a 
unique solution W provided only that the spectra of PiA± and sA2P2 are 
disjoint. Furthermore, since A2P2 is invertible, it is obviously possible to make 
these spectra disjoint by choosing s sufficiently large. 

REMARK 3.2. The complete story concerning (V) is as follows: the spectrum 
of the linear transformation 

W->BW- WC 

is precisely the set of differences ft — 7, where /3 and 7 run over the spectra of 
B and C, respectively. The usual proof of this fact (see 3) assumes that B, C, 
and W are all operators on the same Hilbert space, but the argument can easily 
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be modified so as to apply to the case in which B and C act on different Hilbert 
spaces and W is a linear transformation from one Hilbert space to the other. 

REMARK 3.3. A very short construction due to Paul Federbush shows that 
every operator T on an infinite-dimensional space can be written as T — 
PAQ — QAP for P, A, Q not invertible. The argument goes as follows. Write 
§ = 9ft © (3Jl±

1 where 2JÎ and 9ft"1" are of the same dimension, and let P (Q) be 
an isometry with range Wd (5DÎ"1"). If X is an arbitrary operator, then X = 
PAQ- QAP, where A = P*XQ* - Q*XP*. We are also indebted to 
Federbush for bringing (4, Theorem 3) to our attention. 
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