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Abstract

Let g^g be the class of commutative rings R with comparable regular elements, that is, given two non
zero-divisors in R, one divides the other. Applying the notion of V-valuation due to Harrison and Vitulli,
we define the class V-val of V-valuated rings, which is contained in ££<& and contains the class of Manis
valuation rings. We prove that these inclusions of classes are both proper. We investigate Priifer rings
inside Sf€, showing that there exist Priifer rings which lie in Sfc'g but not in V-val; we prove that a ring
R is a Priifer valuation ring if and only if it is Priifer and K-valuated, if and only if its lattice of regular
ideals is a chain. Finally, we introduce and investigate the ideal /<» of a ring R e SPtf, which corresponds
to the counterimage of oo, whenever R is V-valuated.

1991 Mathematics subject classification (Amer. Math. Soc): 13A18, 13F30.

Introduction

The classical notion of a valuation of a field, given by Krull in his fundamental paper
[9], was extended by Manis to commutative rings [10]. More recently, Harrison
and Vitulli introduced in [4] the notion of V-valuation of a commutative ring, which
includes the preceding ones; in their papers [4, 5, 6], they were mainly interested
in investigating rings (possibly integral domains) through the various V -valuations
defined on them.

Adopting a different point of view, the present paper is devoted to investigate
classes stf of commutative rings which satisfy properties that force an R € srf to
be a valuation domain, whenever R is an integral domain. The largest possible of
these classes, which we denote by tftftf, is constituted by commutative rings R with
comparable regular elements, which means that, for any given a,b e R regular, that
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[2] Commutative rings with comparable regular elements 91

is non zero-divisors, we have that one of them is a multiple of the other.
We call a ring R V-valuated if there is a V -valuation v defined on the total ring

of fractions T(R) of R, such that R = [x e T(R) : v(x) > 0}; of course, this
definition agrees with the classical one of valuation domain, and also with that of
Manis valuation ring (see [7]). For a ring R to be V-valuated is equivalent to a very
simple property: namely (T(R) \ R)(T(R) \ R) c T(R) \ R; the idea of investigating
a subring whose complement is multiplicatively closed, as an extension of the notion
of valuation domain, goes back to Samuel [14].

The class ^"^ contains the class V-val of V-valuated rings, and V-val contains
the class JiVS^ of Manis valuation rings.

hi the first section we give some easy properties of V-valuated rings, and show in
Theorems 1.7 and 1.8 that the inclusions Sfc'tf D V-val D JtfSfc are all proper (we
note that our Theorem 1.8 follows also from the results by Grater [3] or Lucas [8]).

In the second section we examine the rings of M'io through properties of their lattice
of ideals. We fix our attention in particular on Prufer rings; these rings, which extend
the classical notion of Prufer domains, have raised considerable interest in recent
years (for a large list of references see the book by Huckaba [7]). We prove that there
exist Prufer rings in ̂ "^ which are not V-valuated (Theorem 2.1); on the other hand,
if a Prufer ring is V-valuated, then it is automatically a Manis valuation ring. This
result is acheived, in Theorem 2.9, through a characterization of Prufer V-valuated
rings in terms of the lattice of their regular ideals (that is ideals which contain regular
elements): a ring R is a Prufer V-valuated ring if and only if it is a Prufer valuation
ring if and only if the lattice of its regular ideals is a chain (this condition implies that
R € tffl'tf). Let us recall that the second equivalence of the preceding result had been
already proved by Anderson and Pascual in [2].

In the third section, for a given R € @F€\ with /? ^ T (/?), we define and investigate
the ideal Ix, which, when R is V-valuated by the V-valuation v, corresponds to the
prime ideal ^"'(oo), the counterimage of oo. In particular, we show in Example 3.5
that /oo is not prime, in general, if R € &<€ \ V-val.

We finally remark that all our constructions of rings in ̂ "^ are based on the method
of idealization, originally due to Nagata [13].

The author is grateful to the referee for a number of suggestions, improvements
and corrections to the original manuscript.

§1

In the sequel, every ring considered will be commutative with identity. Let R be a
ring; an element r in R is said to be regular if it is not a zero-divisor; an ideal I of R
is said to be regular if / contains regular elements. We denote by Z(R), Reg/? and
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U (/?) the sets of zero-divisors, of regular elements and of units of R, respectively; the
total ring of fractions of R is denoted by T(R). If an ideal / of R is generated by the
subset X c /?, we shall write, as usual, / = (X).

Two regular elements a, b e R are said to be comparable if either a divides b in
R, or viceversa. We say that a ring R has comparable regular elements if, for any
assigned a,b € Reg/?, a and b are comparable; we denote by ^ ^ the class of rings
which satisfy this property (the class ffl'tf was already considered in [16]).

LEMMA 1.1. / / R e <W, then the ideal ofR generated by Reg/? \ U(R) is proper.

PROOF. It is enough to prove that no x in the ideal (Reg/? \ U(R)) is a unit. In fact,
we have x = J^ A,a,, for suitable at e Reg/? \ £/(/?) and A, G /?; since /? € ^ ^ , one
of the a,, say <21; divides all the others in /?; therefore x = tfi(^A.,tf,/tfi), and from
a, £ £/(/?) it follows x <£ U(R), as desired.

Of course, the statement of Lemma 1.1 is not invertible, as we can see by easy
examples.

In the paper [16] it is shown that the class ffl'tf properly contains the class J?y@
of Manis valuation rings; the book by Huckaba [7] is our main reference for definitions
and results about valuations on commutative rings.

Harrison and VituUi introduced in [4] the notion of V-valuation of a commutative
ring 5. It is convenient to recall their main definitions (see Definitions 2.1 and 2.10
of [4]).

DEFINITION H-V 1. A V -monoid is a triple (r, +, <) such that:

(i) (F, +) is a commutative monoid.
(ii) (F, <) is a totally ordered set with a maximum denoted by oo.

(iii) For all a, p, y in T,
a <p=>a + y < p + y.

(iv) For all y e T,
y + OO = OO.

(v) For all a, p e T,

a < fi =>• 3y e T such that a + y < 0 < P + y.

From the above definition of V-monoid it follows also that, for a, p, y, S e F,
a < p and y < S implies a + y < P + 8, whence, in particular, a, P < oo implies
a + P < oo (see [4, Lemma 2.5]). On the other hand a < P and y < oo does not
guarantee a + y < p + y, in general.
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DEFINITION H-V 2 A V-valuation of a commutative ring R is a pair (u, F), where
r is a V-monoid and v : R -> F is a surjective map, such that:

(a) v(rs) = v(r) + v(s) for all r . s e i ? ;
(b) there exists a unit t e R such that:

(i) rmn{v(r), v(s)} < v(r + s) + v(t) for all r, s e R;
(ii) v(s) < 0 => 3n e N such that nv(s) + v(t) < 0.

We note at once that the definition of V -valuation become simplified in the case in
which we are interested.

We must, however, slightly enlarge the notion of V-monoid given in Def. H-V 1;
namely, we require that F = {0, oo}, with the obvious structure, be a V-monoid (note
that {0, oo} does not satisfy condition (v) in Def. H-V 1). This assumption is needed
to get rid of the apparently trivial case when a ring R coincides with its total ring of
fractions T(R).

DEFINITION. A ring R is V-valuated if there exists a V-valuation v, denned on the
total ring of fractions T(R) of R, such that R = Rv - [x e T(R) : v(x) > 0}.

The above definition is the most natural, because if a V-valuated ring is a domain,
then R is a valuation domain, in the usual sense; also, a V-valuated ring R is a Manis
valuation ring if and only if the V-monoid F is of the form F = G U {oo}, where G
is a totally ordered abelian group.

The following facts about V-valuated rings are straightforward consequences of
Definition H-V 2, Definition 2.13, and Theorem 2.15 of [4].

PROPOSITION 1.2. Let Rbea ring with total ring of fractions T = T(R). Then R
is V-valuated if and only if

(T \ R)(T \R)£T\R.

We note that Samuel [12] already observed that a domain satisfying (T\R)(T\R) c
T \ R is a valuation domain.

Let R be V-valuated and suppose that R ^ T(R). Then the V-valuation defined
on T = T(R) such that R = Rv is unique up to isomorphism ([4], Theorem 2.15); it
is given by

x H > v(x) = ( R : x ) = { t € T : t x e R } .

The sum on the V-monoid F = {v(x) = (/? : x) : x e T} is defined by v(x) + v(y) =
v(xy), and the total order on F by

v(x) < v(y) ^ (R : x) C (R : ?).
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We have u(l) = 0 (neutral element of F) and v(0) = oo. In our situation / = 1
satisfies (b) of Def. H-V 2 (see [4, Remark 2.14]); therefore the V-valuation v
satisfies the two usual properties enjoyed by valuations:

(i) v(xy) = v(x) + v(y)

(ii) v(x + v) > min{t;(;t), v(y)} for all x, y e T.

Let us also observe that, if r e Reg/?, then (R : r) = 1/rR; hence, if R is
V-valuated and x e T(R), then v(x) < v(r) if and only if x/r <£ /?; in particular,
v(r) < v(rs), for all r e Reg/? and s e Reg/? \ [/(/?).

Let us now look at the case when R coincides with T(R).

PROPOSITION 1.3. Let R be a ring such that R — T(R). Then R is a Manis
valuation ring, and there is a one-to-one correspondence between the prime ideals
^ of R and the valuations of R; in any case the image of a valuation of R is the
V-monoid T = {0, oo}.

PROOF. For a given prime ideal & of /? we define a map v&> : R ->• {0, oo} by
setting, for x e /?, v&>(x) — 0 if x £ &, v&(x) = oo if x e &\ since & is prime,
we readily see that v& satisfies properties (i) and (ii) above, hence it is a valuation.
Vice-versa, for a given valuation v of /?, the prime ideal & = v~l(oo) is such that
v = vg>. Finally, note that T(R) = R = {x e T(R) : v(x) > 0}, implies that
v(R) = {0, oo}, in any case.

We have thus seen that R does not determine its V-valuation, if R — T(R).
In the third section we shall need the following property of a V-valuated ring (cf.

[1, Lemma 1.1]).

PROPOSITION 1.4. Let R ^ T(R) be V-valuated and let v be the V-valuation
defined on T{R). For all x & R such that v{x) < oo there exists r e Reg R such that
v(x) < v(r).

PROOF. We use property (v) of Def. H-V 1: given x € R with 0 < v(x) < oo,
there exists f e T(R) such that

v(x) + v(§) < 0 < oo.

We have § = z/r with z 6 /?, r € Reg/?; hence v(x) + v(z) + v(l/r) < 0. From
v(z) > 0 and (hi) of Def. H-V 1, we get v(x/r) = v(x) + v(l/r) < 0; as observed
above, v(x/r) < 0 implies v(x) < v(r),as desired.

We shall denote by V-val the class of V-valuated rings.
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PROPOSITION 1.5. If R is V-valuated, then R e Sffi>.

PROOF. By contradiction, let us suppose that a, b e RegT? are not comparable;
hence a/b and b/a are both in T = T(R) but not in R. Then (a/b)(b/a) = 1 G R
implies that (T\R)(T\R) <£T\R, whence R is not V-valuated which is impossible.

Thus we have the following inclusions of classes:

V-val

moreover &?€ ^ JfY&Z, in view of [16, Theorem 6].
We note that the proper inclusion V-val ^ ^"¥8$ is not an obvious consequence

of our definitions. In [4, Theorem 3.14] V-valuations are constructed with values into
V-monoids P which are not of the form G U {oo}, with G a totally ordered abelian
group; however, these V-valuations are defined on rings which are integral domains
and so they do not fall in the case of V-valuated rings. Our next purpose is to show
that the inclusions in (*) are both proper.

All our constructions of rings will be based on the method of idealization, which
was already extensively used in [16]. We refer to Chapter VI of [7] for the results
on idealizations which we shall invoke henceforth. We recall the definition, given by
Nagata in [13]. Let R be a ring, B an R-module; the idealization of B in R is the ring,
denoted by R(+)B, whose elements are the couples (r, b), r e R, b e B, endowed
with componentwise sum, and product defined by

We shall consider R a subring of R(+)B, via the embedding r H> (r, 0).
The following lemma relates idealizations and rings in &ffi>.

LEMMA 1.6. Let R be a ring, B an R-module, and let

c Reg R.

Then R(+)B e Sffi? if and only if the elements of SCR are comparable in R and
rB = B for all r e XR.

PROOF. (<=) It is routine to prove that

Reg(J?(+)fl) = {(r, b):re$:R,beB)

(see [7, Theorem 25.3]). Let (r, b), (s, b') e Reg(/?(+)B) with r, s e 3£R, where we
assume, without loss, that s — rt with t e R; then we have

(r,b)(t,x) = (s,b')
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where x G B is such that rx = b' — bt, possible, since rB = B. Therefore (r, b) and
(s,b') are comparable; from the arbitrariness of their choice we get that R (+) B e &%?.

(=£•) From R(+)B e Mff it follows that any two elements r, s of &R are
comparable in R, since (r, 0) and (s, 0) are comparable in R(+)B. Fix now r e SCR

and let us prove that B = rB. In fact, for all b e B, the elements (r, &) and (r, 0)
are in Reg(R(+)B) and so they are comparable; assume first that (r, b) divides (r, 0).
Then (r, 0) = (r, £>)(M, x), for suitable u e R, x e B, that is r = r«, 0 = rx + ub,
from which we get u = 1 (since r e Reg R) and therefore 6 = —rx is divisible by r
in B. Analogously, if (r, 0) divides (r, 6), we get that b is again divisible by r in B.
The desired conclusion follows.

THEOREM 1.7. There exist rings R in ffl'tf which are not V-valuated.

PROOF. Let A be a valuation domain with maximal ideal P and field of quotients
Q, x an indeterminate, and let us consider the following subring of A[x]:

D = A+xP+x2A[x]

consisting of those polynomials such that the coefficient of x lies in P. Set

^ = {/ G Q\x\ : / irreducible}; B = £P) Q[x]/(f)

and consider the idealization R = D(+)B. We shall prove that R e ^"^ \ V-ua/.
If g(x) e D is a non constant polynomial then g(;t) e (/) for some irreducible
polynomial / e Q[x], whence

(S0c),0)(0,l+ (/)) = (0,0)

so that g(x) e Z(D(+)B). Thus we easily conclude that &D — A \ {0}. Since A is
a valuation domain, the elements of 3£D are comparable in D D A; it is also obvious
that aB = B for all a e A. Therefore we can apply Lemma 1.6 to get R G ffi'tf.
Moreover R £ V-val; in fact, for any 0 ^ p € P we have px/p = x e T(R) \ R,
while x2 e D c R so that (T(R)\R)(T(R)\R) £ T(R)\R. The desired conclusion
follows.

As already observed in the introduction, our next theorem is a consequence of the
results by Grater [3] or Lucas [8], which both constructed paravaluation rings (see
[7]) of their total ring of fractions which are not valuation rings; such paravaluation
rings are automatically V-valuated. To prove Theorem 1.8 we make use of a ring in

which already appeared in [16, Theorem 6].
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THEOREM 1.8. There exist V-valuated rings which are not Manis valuation rings.

PROOF. Part of the proof is contained in that of [16, Theorem 6]; in fact we
consider the same ring examined there (with a change of notation); let us now recall
its definition. Let A be a valuation domain with Krull dimension > 1, so that A
contains a nonzero prime ideal Pi different from the maximal P. Set

D = A+xPdx]; B = (T) Q[x]/(f); R = D(+)B

where Px [x] are the polynomials with coefficients in Px and Q, W are as in the proof
of Theorem 1.7. It is proved in Theorem 6 of [16] that R e $%<€ \ JtVffl. To
conclude, it is enough to show that (T \ R)(T \R)C.T\R, where T = T(R). As
in the proof of Theorem 1.7, we see that SCD = A; using the fact that (1, b) is a unit
of R for all b e B and aB — B for all 0 ^ a e A, one readily checks that

T = {{f(x)/a, b):0^aeA, f(x) e D, b e B}

(cf. Corollary 25.5 of [7]). To verify that (T \ R)(T \ R) c T \ R it is enough to
prove that if f(x)/a, g(x)/a' e Q[x] \ D, with f(x),g(x) e D, a, a' € A, then
f(x)g(x)/aa' £ D. It is convenient to distinguish two different cases:
(I) let f(x)/a = \/p + x<P(x), g{x)/a' = \/q + xxfr(x), with \/p, \/q 6 Q \ A,
4>{x), \(f(x) 6 Q[x]; it is then clear that f(x)g(x)/aal <£ A[x] D D.
(II) If we are not in case (I), we can assume without loss that f{x)/a = a + x<p(x),
with a € A and <j>{x) e Q[x] \ P\[x]. If A. e A is the least common multiple of the
denominators of the coefficients of </>(x) (recall that A is a valuation domain), it is
easy to see that Xf{x)/a e A[x] \ D so that kf(x)/a — J2 f'x'> where f, € A and
there exists a maximal h > 1 such that fh £ Px. In a similar way, we can multiply
g(x)/a' by a suitable /x e A in such a way that /xg(x)/a' = J^ gjXj e A[x] and there
exists a maximal k such that gk £ Pt (here we cannot ask that k > 1). Let us show
that Xf(x)ixg(x)/aa' £ D, so that a fortiori f(x)g(x)/aa' <£ D. Since h + k > 1, it
suffices to show that the coefficient of xh+k in Xf(x)fj,g(x)/aa' is not an element of
Pi; actually this coefficient is

f'8j = fhgk + P
i+j=h+k

where fhgk £ Pu while p € Pi in view of the maximality of A, k.
We have thus proved our assertion.

It could be interesting to examine the V-monoid T associated to the V-valuated
ring R in the proof above. One sees, for instance, that the element v(x) e I" has
no opposite element in F, and that v(\/q) < v(x) < v{\/p) < 0 for all nonzero
p e P \ P i and<? e Pi.
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§2

The main purpose of this section is to investigate Priifer rings inside the class ffl'tf.
Recall that a ring R is said to be a Priifer ring if every regular finitely generated ideal

/ of R is invertible, that is JJ'1 = R, where J~l = (R : J) = {£ e T(R) : %J c R]
(see [7], in particular Theorem 6.2 for equivalent definitions of Priifer rings).

A first natural question is if there are Priifer rings in &€ but not in V-val; this
question is also motivated by [7, Theorem 7.7] in the sense we now explain.

Recall that a ring R is called a Marot ring if every regular ideal of R is generated
by regular elements [12, 7]. When dealing with valuations the class of Marot rings is
a natural subclass of the one of Priifer rings.

If R is a Marot ring, then R is in !%<€ if and only if R is a Manis valuation ring
(and in this case it is also a Priifer valuation ring) [7, Theorem 7.7]. Thus a Priifer
ring R e S&'tf \ V-val shows that the above result cannot be extended from Marot to
Priifer rings.

In the next results we shall make free use of some notions about Dedekind domains,
for which we refer to the book by Marcus [11]. If Do C D are Dedekind domains, we
shall always assume that the field of quotients of D is an algebraic extension of the
one of Do; if a e D, we denote by N%o(a) the relative norm of a. If J( is a prime
ideal of D, we denote by D^ the localization of D at Jl'.

THEOREM 2.1. Let Do C D be Dedekind domains, where Do is a unique factoriza-
tion domain; let p be a prime element ofD0 satisfying the following properties:

(a) there exist a^, a2 e D such that a\, oc2 £ pD and a\a2 € p2D;
(b) if pk = N%o(P),for suitable k e N and fi e D, then necessarily /} is of the

form P = phu with h e N and u a unit of D.

Set

<& = {J( : Jl prime ideal and p $ J(\\ B =

Then the idealization R = D(+)B is a Priifer ring which lies in ffl'tf and is not
V -valuated.

PROOF. In order to verify that R e Sffl, let us look for 5£D (notation of Lemma
1.6). First of all, p is a unit in any DM, since p £ M for all M £ W and this yields
p € 3£D and B — pB. If a e D lies in some prime ideal M e fy', then a e Z(R),
since (or, 0)(0, 1 + Jf) = (0, 0); otherwise aD = &x...&t, where p e &, for
1 < i < t. This yields aDyD = pkD, for suitable y e D, k e N, so that N%o(a) is a
power of p times a unit of D, whence, in view of (b), a = phu for suitable h € N and
u e U(D). Thus we deduce that S£D = {pku : i t e N , « e U(D)}; it is then obvious
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[10] Commutative rings with comparable regular elements 99

that the elements of 3£D are comparable in D. Moreover, from B — pB it follows
that rB = B for all r e 3£D\ therefore R e 3F€ by Lemma 1.6.

The fact that R £ V-val is an immediate consequence of (a); in fact, at /p, a2/p e
T(R) \ R and ala2/p

2 € D C R, so that (T(R) \ R)(T(R) \ R) £ T(R) \ R.
It remains to check that R is a Priifer ring. Now D is a Priifer domain, being a

Dedekind domain; this suffices to ensure that the idealization R — D{+)B is Priifer,
too [7, Corollary 25.12].

We have to show the existence of Do, D, p satisfying the hypotheses of Theorem
2.1. We remark that Do, D cannot be ring of integers in suitable number fields, due to
the fact that the class group of these kind of Dedekind domains is finite. The author
is indebted to U. Zannier for having suggested to him the two next results.

LEMMA 2.2. In the notation of Theorem 2.1, assume that pD = &\ &lt where the
£?i are prime ideals of D whose isomorphism classes have infinite orders in the class
group ^(D) of D; then p satisfies condition (b).

PROOF. Let us suppose that k e N and p e D are such that N%o(P) = pk. Then
pk = pp~, where p € D0[P] C D; therefore we have the following equality of ideals
ofD

The uniqueness of factorization implies that pD = @>™2?^, for suitable m, n e N,
where we assume that m — n = h > 0, so that PD = p" &\. Consequently £?\ is
a principal ideal, whence, necessarily, h = 0 since the isomorphism class of ^\ has
infinite order in <€(!)). Thus PD = p"D, whence p = p"u for a suitable u G £/(£>).
We conclude that condition (b) is satisfied.

In the next proposition we take for granted some known results on the nonsingular
elliptic curve of equation y2 = f(x), where f(x) is a polynomial of degree 3 in C[x]
with no multiple roots. A description of the results we invoke may be found in the
book by Silverman [15]; we just recall that the group Pic0 defined on the elliptic
curve is full of non-torsion elements, since it is isomorphic to <C/ A, A a lattice.

PROPOSITION 2.3. Let x be an indeterminate over the complex field C. Let Do =
C[x], D = D0[y] where y2 = f(x) is the equation of a nonsingular elliptic curve.
Let us choose x0 e C in such a way that the point A = (x0, yo), where y2, = f(x0), is
not torsion in the group Pic0 on the elliptic curve and let p = x — x0 € Do. Then Do,
D and p satisfy the hypotheses of Theorem 2.1.
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PROOF. Let us note y0 ^ 0, since A is not torsion. In the Dedekind domain D the
ideal pD factorizes as follows:

(1) pD = &l0>2\ &i = (x-xo)D + (y±yo)D.

The points A = (x0, y0) and A' = (JC0, — yo) are both non-torsion in the group Pic0,
which is isomorphic to the class group ^(D) of D; then the isomorphism classes of
Pi, &2, corresponding to A, A' respectively, have infinite order in ^(D). Therefore
p satisfies (b), in view of Lemma 2.2. Let us now check that p satisfies (a) too. We
set ci\ = a(x) + y,a2 = a(x) — y G D, where a(x) e <C[x]. To have au a2 £ pD
and aia2 6 p2D it is enough that

(2) a(x0) ^ 0; (x - x0)
2 divides a\x) - f(x).

Using the fact that f(x0) ^ 0 (and C is algebraically closed), we can see, by an easy
exercise, that (2) is verified with a(x) a suitable polynomial of degree one.

We now look for informations on rings in Sft'tf by examining their lattice of ideals.
For a given commutative ring A, we denote by L(A) the lattice of the ideals of A. Let
J5? be the class of lattices L such that L = L(A), for some ring A.

PROPOSITION 2.4. For every L e .if there exists R e Sft'io such that L c L{R).

PROOF. For any given L e J?, let us choose a ring A such that L = L(A) and set

B= fl) AjM;

let us consider the idealization R = A(+)B. We have T(R) = R (see the proof of
Theorem 1.7), and so R e &*€; moreover

2 U(+)B : / ideal of A} = L(A)

as desired.

It is not true that {L(R) : R € ^"^} = %. In fact we have

PROPOSITION 2.5. For all R e &£<€ we have L(R) ¥ L(l).

PROOF. If R e &*€ is an integral domain, then R is a valuation domain, hence L(R)
is a chain and cannot be isomorphic to L(Z). Thus we can assume that Z(R) ^ {0};
let x, y e R \ {0} be such that xy = 0. If Rx (1 Ry = 0 then L(R) ? L{T), since
L(Z) does not contain two nonzero elements whose inf is zero. On the other hand, if
0 ^ u e Rx n Ry, then u2 = 0, so that the nilradical of R is not zero. We infer that
in L(R) the intersection of all maximal elements is nonzero, which does not happen
in L(l).
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In view of Proposition 2.4, it is natural to confine our attention to regular ideals
of rings in <^V. The following easy characterization extends an analogous result for
valuation domains.

PROPOSITION 2.6. A ring R lies in ffl'io if and only if the set of ideals ofR generated
by regular elements is totally ordered by inclusion.

PROOF. Let us suppose that / , / are ideals of R e 3%'io generated by regular
elements; then I = (rk : A), J = (s^ : /x), with rk, s^ e Reg R, for all A, fM. Let us
prove that I £ J implies / 2 / . In fact, choose rko e / \ / ; then s^ does not divide
rXo for all /*, and therefore r^ divides all the s^, so that / 2 rkoR 2 / . This proves
half of the statement. The converse is obvious.

Of course, a regular ideal is not necessarily generated by regular elements. Our
next step is to investigate the rings R such that the lattice of their regular ideals is a
chain; we shall be led to a characterization of Priifer V-valuated rings.

We recall that Anderson and Pascual in [2] extensively investigated sublattices of
regular ideals of commutative rings; here we focus our attention to rings lying in M^.

For a given ring R, we shall denote by Lreg(R) the sublattice of L(R) formed by
the regular ideals of R (it is immediate to check that Lreg{R) is in fact a sublattice;
note that it is not complete, in general).

As premised, we are interested in the case when Lreg (/?) is a chain. From Proposi-
tion 2.6 it follows that R lies in {ft^o if Lreg(R) is a chain.

LEMMA 2.7. Let R be a ring; Lreg(R) is a chain if and only if, for all r,se Reg R
and for all x, y e Z(R), the ideals (r, x) and (s, y) are comparable by inclusion.

PROOF. One implication is obvious. Let us now choose arbitrary regular ideals / ,
J of R, and let us verify that they are comparable by inclusion. If / £ / , there must
exist a pair of elements r,xel, with r regular and x € Z(R), such that (r, x) <£ J
(otherwise / should contain a system of generators of / ) . But then, for every pair
of elements s,y e J with s regular and y e Z(R), we have (r, x) <£. (s, y), whence
(r, x) 2 (s, y), by hypothesis. From the arbitrariness of the choice of s, y we deduce
that

/ c (r, x) c /

from which the assertion.

LEMMA 2.8. IfLreg(R) is a chain, then every finitely generated regular ideal of R
is generated by two elements.
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PROOF. Let / be a finitely generated regular ideal of /?; since R e &'£', we readily
see that / can be written in the form

J — (r, x\,..., xn) with r e Reg R and x, e Z(R).

In view of Lemma 2.7, we can assume that (r, Xi) 2 (r, xn), so that/ = (r,xu...,xn_x);
by iterated applications of Lemma 2.7 we obtain that / is two-generated, as desired.

The equivalence of (i) and (iii) in the next theorem was proved by Anderson and
Pascual [2, Theorem 3.8]; however, here we give a complete proof of our result.

THEOREM 2.9. Let R be a ring; the following are equivalent:

(i) Lreg(R) is a chain;
(ii) R is a Pru'fer ring and R is V -valuated;

(iii) R is a Pru'fer valuation ring.

PROOF, (i) =$• (ii) Let us first show that R is a Priifer ring; in view of Lemma 2.8,
it is enough to prove that every ideal of the form / = (r, z), with r e Reg R, is
invertible. If z € rR, then obviously J = rR is invertible. Thus we can assume that
z $ rR and also that z G Z(/?), otherwise / is again a principal ideal, since R e £%'$.
Let us compare the regular ideals rR and (r2, z); from z ^ rR it follows (r2, z) 2 rR,
and therefore

r = ar2 + fiz for suitable a, 0 e R.

Then we have
1 = ar + (fi/r)z

where a e R c (r, z)"1 = / " ' and /3/r e J~\ since G8/r)r = £ e R and
(fi/r)z = 1 — ar € /?. We conclude that / / " ' = /?, that is / is invertible, as desired.

Let us now verify that R is V -valuated. By contradiction, let us suppose that there
exist x,y € R and r e Reg R such that x/r, y/r e T(R) \ R and {x/r){y/r) e /?.
Since Lreg(R) is a chain, we can assume without loss that (x, r) 2 (y, r) and so

y = ax + fir for suitable a, ft e R

from which
y/r = ax/r + p.

Let | = ax/r; we have i- £ R, since v/r ^ /?; moreover §v/r € aR c /?. From
j / r = £ + y6 we deduce the following relation

(3) | ( f + P)eR with | 6 T(/?) \ /?.
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But (3) is impossible, since R is integrally closed, being a Priifer ring. From the
contradiction we get the desired conclusion.

(ii) =^ (i) In view of Lemma 2.7 it is enough to verify that any two ideals of the
form (r, x), (s, y) with r, s e Reg R and x, y € Z(R) are comparable by inclusion.
Let v be the V-valuation defined on T = T(R); we can assume, without loss, that
T 7̂  R (otherwise the result is trivial) and that v(y) > v(x). Since (x, r) is invertible,
we have the relation

(4) 1 = §x + r)r with £, r\ € (x, r)"1;

from (4) we obtain
(5) y = (£?)* + (r)y)r.

Now, by the definition of v, from u(j) > v{x) we get (/? : y) 2 (/? : A:) 2 (x, r)"1;
we infer that £y, yjj e /?, whence y e (JC, /•). Let us now examine s e Reg R. If
s/r 6 /? we have 5 € (x, r), whence (JC, r) 3 (y, s). If r/« e R and u(s) < u(x),
we have x/s e /?, whence (x, r) c. sR c. (y, s). Finally, if v(s) > v(x), arguing as
above with s in the place of y, we get s e (x, r) and so (y, s) c (JC, r). Therefore, in
any case, we have the desired conclusion.

(iii) => (ii) Trivial.
(i) and (ii) => (iii) Let v be the V-valuation defined on T; let us consider the prime

ideal of R,
Pv = {x eT : v(x) > 0}.

We shall prove that R is a Manis valuation ring, via [7, Theorem 5.1]: we must verify
that, for all £ e T \ R there exists a e Pv such that %a e R \ Pv. Let us write | = y/r,
with y e S . r e Reg R \ U(R). Since Lreg(R) is a chain, the regular ideals rR and
(y, r2) are comparable by inclusion. On the other hand, y £ rR, since £ ^ /? and
therefore r e (>>, r2), so that

r = ay + £r2 with a, /3 € /?

whence
1 = ary/r + 0r.

We deduce that c*£ = 1 — pr e R \ Pv, since v(r) > 0 implies fir e Pv. Let us show
that a € Pv, that is v(a) > 0, whence our conclusion. In fact, v(a) = 0 would imply

v(£) = «(?) + w(a) = w(f a) = 0

so that % € R, which is impossible.

The implication (ii) =>• (iii) of the above theorem is, in some sense, related to [7,
Theorem 7.7]; there, it is proved that a Marot ring in ffi£ is automatically a Manis
valuation ring; here we show that a Priifer ring in V-val is automatically in
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§3

If a ring R is V-valuated by v, the counterimage v~l(<x0 of oo 6 T is an ideal,
which is prime since a, fi < oo implies a + ft < oo for all a, /J e V [4, Lemma 2.5].
It is natural to investigate the analogy of the ideal v~l (oo) in any ring R e Sttf.

As remarked in the first section, the case when R = T(R) constitutes an exception,
due to the fact that R does not determine its valuation. Thus in this section we shall
always assume that R =£ T(R).

For an assigned R e 3F€, R ^ T(R), we define

/^ = {x e R :x/r e R for all r e Reg R}.

It is routine to check that /^ is an ideal of R and that 1^ c Z(/?), since /? ^ T{R);
moreover 1^ = f)reReg R rR. We also note that /<» is an ideal of T(R), too, as an
obvious consequence of the fact that x e /<» implies x/r e 1^, for all r € Reg/?.

We shall write /(»(/?) when we want to emphasize the dependence on the ring R.

PROPOSITION 3.1. Let R ^ T(R) be a V-valuatedring; then Ix — ir'(oo), where
v is the V-valuation determined by R.

PROOF. From v{xy) — v(x) + v(y), for x, y e T(R), and y + oo = oo, for y e F,
it follows that v~1(oo) c 7^. Conversely, let x e loo and assume, by contradiction,
that v(x) < oo; by Proposition 1.4, there exists r e Reg R such that v(x) < v(r), and
therefore x/r £ R, against the definition of I^.

We recall that a ring R is said to be chained if its ideals are totally ordered by
inclusion, that is L(R) is a chain (see §23 of [7]).

PROPOSITION 3.2. Let Rbea ring in

(i) ///oo = Z(R), then R is a local Manis valuation ring;
(ii) if R/loo is chained, then R is a Manis valuation ring and /TC is a prime ideal.

PROOF, (i) Let / be the ideal generated by Reg R \ U(R); J is proper by Lemma
1.1. It is clear that J 2 /<» = Z(R), so that any u e R \ J is a unit, whence R is a
local ring with unique maximal ideal / . To prove that R is a Manis valuation ring, we
again make use of [7, Theorem 5.1]. Choose f = x/r e T(R) \ R; from /<*, = Z(R)
it follows that x <£ Z(R). Since R e &&, we can assume that | = 1/r, with r e J,
and thus we have /•£ = 1 € R \ J, as desired.

(ii) Since R/Ioo is chained, and each regular ideal of R contains /«,, Lreg (/?) will be
a chain. From Theorem 2.9 we obtain that R is a Priifer Manis valuation ring, whence
/oo is a prime ideal, by Proposition 3.1.
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Looking at point (i) of the above proposition, it is natural to ask if R G Sft'tf and R
local is enough to ensure that R be a Manis valuation ring. This is not true in general,
as we shall see in the following example.

EXAMPLE 3.3. We consider an adaptation of the ring constructed in the proof of
Theorem 1.7. In that same notation, let D = A + Px + x2A[x] and let M =
P + Px + x2 A[x]; ̂  is a maximal ideal of D; we consider the localization D^. Let
B = ©/€* QUV(f), where W = {/ e Q[x]\ (f)HD c J( and / is irreducible }.
Then the idealization Ro = D^(+)B is a local ring, with maximal ideal ^((+)B.
It is easy to check that S^DM = AP \ {0}, and arguments similar to those used to
establish Theorem 1.7 will verify that Ro € &<€ \ V-val.

We know that /<» is a prime ideal if R is V-valuated. It is interesting to observe
that this fact is not true for a general R e S£c€; this will be shown in the subsequent
Example 3.5.

Though /oo is not in general a prime ideal, yet some properties, enjoyed by prime
ideals, hold for it.

PROPOSITION 3.4. Let R^T(R)bea ring in ,
(i) Ifrx e loo, where r e Reg R, then x e 1^;

(ii) ifx2 = 0, then x e I^;
(iii) if xy = 0 , where Ann* n Anny = 0, then either x or y are in I^; in

particular, ife&R is idempotent then either e or 1 — e are in 1^.

PROOF, (i) Follows at once from the definition of 7^.
(ii) Let x € R be such that x2 = 0. Choose an arbitrary r e Reg R; then from

(x + r2)(jc - r2) = —r4 e Reg R it follows that x + r2 e Reg R. Let us compare the
regular elements r and x + r2: if x + r2 = rs, we have x e r R; if (x + r2)s = r we
have rx = r2s.x, whence x e rR, again. From the arbitrariness of r e Reg /? we get

(iii) We first observe that, if xy = 0 and Annx n Annv = 0, then rx + sy is regular
for all r, s e Reg R. In fact (rx + sy)z = 0 implies rxz = —syz; since rxz e Army
and syz e Anruc, we must have xz = 0 = jz, so that z G Annx n Anny = 0.

Let us now suppose that x £ /^ and prove that then j e /w . Since the regular
elements are comparable, it suffices to prove that x/r £ R implies that y/r e R, for
any assigned r e Reg R. In fact, let us compare the regular elements rx + r2y and
r2x + ry; if

(r2x + ry)s = rx + r2y with s G Reg R

then (r2 — rs)y = (r2s — r)x G Annx D Anny, whence rx = r2sx and x = rsx e rR,
against our assumption. Thus, necessarily,

(rx + r2y)s = r2x + ry
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from which, arguing as above, we get y = rsy e rR, as desired.
Finally, we note that Anne n Ann(l — e) = 0 if e is idempotent.

As promised, we finish showing that /<*, can be a non-prime ideal.

EXAMPLE 3.5. Let A be a valuation domain, with maximal ideal P and field of
quotients Q, and let x, y be indeterminates. Let D = A[x, y], let ̂  be the set of
prime ideals of Q[x, y] and set B = 0 ^ , e ^ Q[x, y]/&.

We consider the idealization R = D(+)B and the ideal / = xyR = xyD(+)xyB
of R; let /?i = R/J. We shall verify that Rx e W and that the ideal /«,(/?,) of /?, is
not prime.

In order to prove that R\ e M'tf, we first prove the following

CLAIM, a = (f,b) + J e RX is regular if and only if f = c(mod xyD),for a
suitable 0 ^ c e A.

PROOF. («=) Let /? = (g, ft') + / € Ri be such that afi = 0. Then the following
relations must hold:

(6) fg = 0 mod xy D

(7) fb' + gbexyB.

From (6) we get eg e ;cy£>, so that g e xyi), since c ^ 0; therefore (7) reduces to
c6' € J:VB, which implies b' e xyB. This means that f> = 0, whence we conclude
that a is regular.

(^=^) We can assume that f £ A, otherwise the assertion is trivial. Let us write
/ as a product of irreducible elements of Q[x, y], f = ]"[• gj. Now observe that, for
every j ,

< . f , b H 0 , l + g j Q [ x , y ] ) = 0 e J

so that a regular implies

(8) l+gjQ[x,y]GxyB for ally

(recall that gj Q[x, y] is a prime ideal, since gj is irreducible). From f — \\. gj and
the relation (8) we obtain the following congruence of polynomials

(9) / / i = l mod xyQ[x,y]

for / , e Q[x, y] conveniently chosen. Let

fi = cx + xhx{x) + ykx{y) mod xyQ[x, y].

By direct computation we see that (9) implies h(x) = k(y) = 0 and c ^ O , whence
/ = c mod xy Q[x, y]; finally, f e D implies c e A and / = c mod ̂ yD, as desired.
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In view of the claim, to establish that Rt e ££<€ it is enough to verify that a =
(c, b) + J and a' — (d, b') + J, where c,d e A\ {0}, are always comparable. Let us
assume, without loss, that d = ct, with ; e A ; from the equality in R,

(c,b)(t,c-l(b' -bt)) = (c',b')

it follows at once that a divides a' in Rly as desired.
It remains to show that Ioc(R\) is not a prime ideal. We fix 0 ^ p € P; now

x + J,y + JeR\ and their product is zero; to conclude, we will show that p + J e
Regi?! divides in R{ neither x + J nor y + / , so that they both do not lie in I^iRi).
In fact, the relation

(p + J)((f,b) + J)=x + J with (f,b)eR

gives rise to the congruence

(10) pf - x = 0 mod xyD

which cannot hold, since the coefficient of x in the first member of (10) cannot
disappear. In a similar way we argue for v + / .

All our statements are thus verified.
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